
A SPACE- AND TIME-EFFICIENT MOSAIC-BASED ICONIC
MEMORY FOR INTERACTIVE SYSTEMS
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Abstract: One basic capability of interactive and mobile systems to cope with unknown situations and environments is
active, sequence-based visual scene analysis. Image sequences provide static as well as dynamic and also 2D
as well as 3D information about a certain scene. However, at the same time they require efficient mechanisms
to handle their large data volumes. In this paper we introduce a new concept of a visual scene memory
for interactive mobile systems that supports these systems with a space- and time-efficient data structure for
representing iconic information. The memory is based on a new kind of mosaic images called multi-mosaics
and allows to efficiently store and process sequences of stationary rotating and zooming cameras. Its main
key features are polytopial reference coordinate frames and an online data processing strategy. The polytopes
provide euclidean coordinates and thus allow the application of standard image analysis algorithms directly
to the data yielding easy access and analysis, while online data processing preserves system interactivity.
Additionally, mechanisms are included to properly handle multi-resolution data and to deal with dynamic
scenes. The concept has been implemented in terms of an integrated system that can easily be included as
an additional module in the architecture of interactive and mobile systems. As one prototypical example for
possible fields of application the integration of the memory into the architecture of an interactive multi-modal
robot is discussed emphasizing the practical relevancy of the new concept.

1 INTRODUCTION

To build efficient interactive computer systems able
to cope with unknown situations and environments
is a present-day research topic. Using active cam-
eras enables task-directed data acquisition and pro-
vides increased flexibility to such interactive systems.
However, since active visual scene analysis also im-
plies the processing and storage of complete image
sequences rather than of single frames, also efficient
algorithms for data extraction and analysis as well as
appropriate data structures for compact representation
of the sequences are necessary ingredients.

Mosaicing algorithms are one possible approach
for representing image sequences in a compact and
space-efficient way. The basic idea is to fuse all im-
ages of a sequence into one single frame. The re-
sulting mosaic image covers the field of vision of the
complete sequence and thus may be viewed as extend-
ing the camera’s field of vision both in space and time.
In this sense, it supplies interactive systems with a vi-
sual scene memory. Processing of image data may
be done online during acquisition, but also at anytime

later. Thus, e.g., a detailed scene analysis might be
performed some time after image acquisition using
only the visual scene memory without need for a time
consuming physical rescan of the scene nor the neces-
sity to store all images ever acquired by the system.

During the last years a large amount of mosaicing
approaches has been published. Most of these works
are directed towards the generation of high quality
mosaic images as needed, e.g., in computer graph-
ics applications. However, adopting the algorithms
published for use with interactive and mobile systems
bears several problems since the general conditions
are pretty much different putting special demands on
mosaicing algorithms. Especially in mobile systems
most of the time only limited storage and computa-
tional resources are available. Thus it is, e.g., not pos-
sible to process whole sequences simultaneously, as
it is often done in existing approaches (e.g., (Davis,
1998; Sawhney et al., 1998)). Besides, such a strat-
egy would severely impede a system’s interactivity.
On the one hand a mosaic image is only available after
all images have been processed, and on the other hand
the system’s ability to immediately address user inter-
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actions is limited. Hence, within this field of appli-
cation mosaicing algorithms working in online mode
and providing data access all the time are mandatory,
preventing many existing approaches from easily be-
ing transferred to this field of application.

Regarding interactive systems not only online data
processing and anytime access but also easy access
with respect to the structures and representations of
the data are of significant importance. Especially the
direct applicability of existing image analysis tech-
niques to the mosaic data enables interactive systems
to efficiently exploit the visual data without need for
any algorithmic adaptations. Consequently, since the
majority of existing image processing algorithms as-
sumes an euclidean reference frame such a frame is
prerequisite for mosaic images to be applicable in this
context and to gain broad acceptance.

In this paper we present a new concept for a
mosaic-based visual scene memory that meets the
abovementioned requirements for use with interac-
tive mobile systems. It is currently capable of rep-
resenting image sequences of rotating and zooming,
but stationary cameras. Although mobile systems are
non-stationary this is not a severe restriction at all
since visual data of a scene can usually adequately
be represented based on a set of mosaic ’screenshots’
taken from different positions within the scene. The
most important features of the memory are its sup-
port for an incremental online-update of the data and
the direct applicability of standard image analysis al-
gorithms due to its euclidean coordinate frame (see
next paragraph). It allows a large field of vision and
implements efficiently varying resolutions of image
data as required for zooming active cameras. This pa-
per focusses on the representation of static scene data
within the memory. Nevertheless also mechanimsms
to additionally include dynamic as well as more ab-
stract representations of image data are integrated, for
details refer to (Möller and Posch, 2002).

One important decision in generating mosaic im-
ages is to choose a suitable reference coordinate sys-
tem for projecting the data. As one of our primary
goals is to support the application of conventional
image analysis techniques, our memory requires a
euclidean reference frame. Spheres or cylinders are
usually chosen to represent large field of vision of
stationary cameras but do not deliver such an euclid-
ean reference frame. Further on, they are difficult to
represent (Bishop and McMillan, 1995) and data ac-
cess as well as registration and integration of new data
in an online fashion using such coordinate frames of-
ten requires explicit view rendering (e.g., (Shum and
Szeliski, 2000)). Thus, an uniform representation and
handling of the mosaic images in registration and in-
tegration as well as for data access is favorable. Due
to these requirements our approach is based on poly-
topes approximating a sphere. Projecting the data

onto tiles of a polytope enclosing the camera center
allows to represent the entire field of vision of the
cameras while at the same time image distortions are
reduced and euclidean coordinates are granted.

Image sequences are typically captured with vary-
ing zoom. Using a single mosaic image with fixed
resolution is as a consequence not adequate for these
sequences. Hence, our memory is hierarchically or-
ganized and nests differently scaled incarnations of
a polytope. The resulting data structure consists of
different image planes arranged as polytopes and is
capable of representing different levels of resolution.
We call this enhanced mosaic a multi-mosaic.

The remainder of this paper is organized as fol-
lows. Section 2 outlines the basic mosaicing algo-
rithms while in section 3 our new multi-mosaic con-
cept is introduced. Additionally implementatory de-
tails can be found there. Section 4 presents some re-
sults before in section 5 an exemplary application in
the field of human-machine interaction is considered.
The paper finishes with a conclusion in section 6.

2 MOSAIC IMAGE BASICS

Mosaic images are usually generated following a two-
step strategy. First, for each image of a sequence pa-
rameters of a suitable motion model are estimated to
compensate for the camera motion (registration). Af-
terwards all images are warped towards a common co-
ordinate frame and integrated by fusing their color in-
formation. Both steps can either be performed in an
offline or an online fashion.

In the first case, all images of a sequence are
processed simultaneously in registration and integra-
tion. This yields a globally optimal mosaic repre-
sentation which is only accessible after all images
have been integrated. In interactive and mobile sys-
tems image data becomes available incrementally and
hence it is straightforward to process the data by fol-
lowing a continuous online strategy. This is accom-
plished by registering and integrating each image sep-
arately into the evolving mosaic image. With each
new image the mosaic is updated and a complete data
representation can be provided after each registration
step. However, it should be noted that the result-
ing representation is only locally optimal since im-
age registration and integration can only rely on the
current frame and the mosaic itself. Hence, incon-
sistent parameters and integration errors due to error
accumulation cannot be completely omitted. Never-
theless, even in long-term mosaicing as aimed by our
approach image quality is still sufficient to enable fur-
ther data analysis.

Registration. The parameter estimation is based on
a suitable model for the camera motion. This model
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Figure 1: Example mosaic demonstrating distortions and uncontrollable image growth during mosaicing an image sequence
of a rotating camera. The data is projected onto a single image plane yielding an inadequate coordinate frame.

mainly depends on the degrees of freedem of the cam-
era and is often chosen to be a pure translation or
an affine coordinate mapping. In our application we
use stationary rotating and zooming cameras. Their
motion can best be modeled by homographies (Hart-
ley and Zisserman, 2000) whose parameters are esti-
mated using projective flow (Mann and Picard, 1996).
The main idea is given to calculate the optical flow
between two images constraint by the projective mo-
tion model. However, due to the non-linearities within
the homographies the algorithm operates in an itera-
tive framework based on piecewise linear homogra-
phy approximations. Further on a resolution hierar-
chy (Bergen et al., 1992) is used to cope with large
offsets. To reduce the influence of accumulating er-
rors in online image registration as outlined in the pre-
vious section our mosaics are generated in frame-to-
mosaic mode (Burt and Anandan, 1994). Parameters
for each image are estimated with regard to a suitable
clip reprojected from the mosaic image generated so
far. Thus all images formerly integrated at least im-
plicitly influence the current estimation and parame-
ter quality is improved without processing the whole
sequence simultaneously.

Integration. During image integration the color in-
formation of all sequence images is merged to give
single mosaic pixel values. This can be accomplished
by fusing the values of all image pixels that are pro-
jected onto a mosaic pixel, e.g., calculating an average
or median. However, in long-term mosaicing contin-
uously averaging pixel values causes image blurring
which is primarily due to small registration errors un-
avoidable in online mosaic generation. Thus, an inte-
gration method needs to be applied that provides high-
quality images even for a long period of time.

In the literature several quite sophisticated meth-
ods for (offline) mosaic image quality enhancement
are to be found (e.g., (Capel, 2004)). However, for
efficiency reasons and due to the fact that online in-

tegration is required we rely on a more simple but
equally appropriate strategy. One single image is se-
lected as source for each mosaic pixel so that aver-
aging pixel values is omitted. The source images are
selected based on the time stamps of the input im-
ages. Each mosaic pixel is assigned the pixel value
from that input image providing the most recent data.
Thus, new information is directly integrated whenever
it becomes available yielding a continuous data up-
date. This strategy results in a segmentation of the
mosaic image into regions with each region originat-
ing from a different sequence image. Due to changes
in the lighting conditions or camera exposure settings
visible seams in the mosaic image might appear at the
boundaries between different regions. They are elim-
inated by applying linear or sigmoid blending func-
tions along region boundaries.

3 MULTI-MOSAICS

Mosaic images share a wide variety of applications
ranging from image-based rendering in computer
graphics and virtual reality to computer vision appli-
cations and visual scene analysis. Depending on cam-
era motion and intended area of application, which
in our case is given by mobile interactive systems, a
suitable reference coordinate system has to be chosen
for the mosaic images as already mentioned. In most
work it is defined as a single image plane, e.g., (Mann
and Picard, 1996). However, in case of a stationary
camera performing large rotations projecting all im-
ages onto a single plane usually results in undesirable
large distortions (fig. 1). They cause an excessive
growth of the mosaic image area and consequently
enforce extensive use of pixel interpolations which
results in low image quality. This in turn hampers
registration and integration and renders image analy-
sis nearly impossible. Using a cylinder (Bishop and
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McMillan, 1995) or sphere (Coorg and Teller, 2000)
as coordinate frame avoids distortions, but dealing
with spherical coordinates in image registration, in-
tegration and especially in further analysis steps is
bulky and often yields undesirable incompatibilities
to existing software modules.

3.1 Polytopial Coordinate Frames

Both requirements of representing the complete field
of vision of rotating cameras as well as providing
euclidean coordinates for image processing can ide-
ally be met employing polytopes to define the ref-
erence coordinate frame in registration and integra-
tion as well as in representation of the mosaic im-
ages itself. Such frames are up to now primarily
used with offline rendering applications (e.g.,(Shum
and Szeliski, 2000)), however, they also offer a great
flexibility for online scene modelling and representa-
tion tasks as discussed in this paper.

Figure 2: Left, polytopial coordinate frame with FIP at-
tached, and right, hierarchical structure of visual scene
memory based on nested polytope incarnations.

The polytopes are centered at the optical center of
the camera with their tiles regularly arranged around
tangentially to the sphere (fig. 2, left). The origin of
the 3D coordinate frame for the polytope is located at
the center of the camera and for convenience its z axis
is arranged parallel to the optical axis of the camera
when acquiring the first image of the sequence. Each
tile of the polytope owns a local orthogonal 2D co-
ordinate system. These coordinate frames as well as
projective transformations between neighboring tiles
are computed offline during an initialization step. All
transformations and the neighborhood relations are
represented in a graph data structure (fig. 3) providing
easy data access and saving time in online generation
and update.

The scaling of the polytope is initially chosen ac-
cording to the focal length of the camera given the
assumption that image pixels and pixels on the poly-
tope share the same scaling and aspect ratio. The fo-
cal length is currently extracted facilitating an offline
calibration strategy based on a 3D calibration pattern
(Hartley and Zisserman, 2000) and using a functional
mapping between hardware parameters and corre-
sponding focal length in online mode. In principal
self-calibration techniques (de Agapito et al., 1999)

H13

H15

H12

H24

H34

2
1

3

5

4

Figure 3: Implicit representation of polytope geometry: the
graph data structure stores neighborhood relations in terms
of its edges as well as homographies valid between various
tiles in terms of corresponding edge lables.

might also be applied, but they have proven to be too
unstable in long-term mosaicing so far.

3.2 Online Registration and
Integration

One problem during online generation of the multi-
mosaic representation results from discontinuities be-
tween neighboring tiles of the polytope. Obviously
the number of these discontinuities grows with the
number of tiles the polytope owns. On the other hand
this number should be large for a good approxima-
tion to the sphere and a reduction of distortions. We
typically use polytopes with about 20 to 30 tiles (e.g.
rhombicuboctahedrons, see fig. 2). Nevertheless, effi-
cient handling of the memory data structure requires
an elaborate approach for dealing with these disconti-
nuities, as presented below.

Integrating a new image into the multi-mosaic rep-
resentation requires registration of the image and pro-
jecting its data onto related tiles. For registration a
suitable reference image is needed which in frame-to-
mosaic mode is defined as a clip of the current mo-
saic representation. This clip might be chosen as part
of the one single tile that best approximates the orien-
tation of the new image. However, in worst case an
overlap of slightly more than 50% between the clip
and the image to be registered will result. Most of
the time this is not sufficient to guarantee robust pa-
rameter estimation (besides disregarding available in-
formation in any case). As an alternative, we can con-
struct a larger reference frame by clipping not only
from one tile, but also from neighboring tiles. How-
ever, constructing such a composed reference image
and back projecting the integrated new data to the
polytope is a time-consuming procedure. In a naive
implementation this would have to be repeated for
each frame of the image sequence.

Focus Image Plane. We solve this problem by fa-
cilitating an additional image plane, the so called fo-
cus image plane (FIP). It serves as some kind of
”cache” storing recently acquired image data and
granting easy access to it. The FIP is attached to the
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polytope (fig. 2, left) and used as reference in regis-
tration and integration, thus, masking the underlying
topological structure of the multi-mosaic representa-
tion. New image data is registered according to the
data on the FIP and also integrated into it following
the strategy mentioned in section 2. Integration into
the polytope itself is accomplished only when the po-
sition of the FIP needs to be updated. This is the case
if parts of the integration area of a new image do not
intersect with the domain of the focus image plane
any longer due to significant discrepancies between
the orientation of the current image plane and the one
of the FIP. As the size of the FIP is usually chosen two
to three times larger than that of the input images this
occurs only after several images have been integrated
depending on speed and/or size of rotation angles of
the camera.

Focus Image Plane Update. The shortest point dis-
tance of the area of integration of the current image on
the FIP to its boundaries is considered to monitor for
necessary updates of the position of the FIP. If the dis-
tance falls below a certain threshold the image data of
the FIP is projected onto related polytope tiles. These
are detected by projecting the rectangular bounding
box of available image data onto the polytope and cal-
culating intersections with domains of single tiles. A
pointer to the tile meeting the orientation of the FIP
best is always kept in memory for efficiency reasons
and used as starting point for copying the data. If parts
of the FIP data project outside of the domain of a tile,
the data update is recursively continued on neighbor-
ing tiles until the complete image data has been inte-
grated into some tile of the polytope. In this proce-
dure only tiles are checked if their orientations differ
by not more than 80 degrees from the one of the FIP.

Orientation and position of the FIP are updated af-
ter copying the data. The new parameters are chosen
according to the position and focal length of the cur-
rent input frame. Additionally the history of the mo-
tion path of the camera during the last frames is taken
into account. It is quadratically extrapolated based
on the assumption of smooth camera motion and thus
helps to minimize the overall number of FIP updates
necessary. Finally, new reference data is projected to
the new FIP. To efficiently identify the tiles providing
image data to the new FIP, the same strategy as for
copying data onto the polytope is applied.

3.3 Multi-Resolution Data

Representing image sequences that contain different
levels of resolution puts specials demands on a mosaic
data structure. Usually only a single resolution can
adequately be represented within one mosaic image.
Integrating image data with higher resolution forces
to downsample these data causing a loss of informa-

tion. Contrary, inserting low-resolution data into a
mosaic with higher resolution requires interpolating
the data and thus enlarges the data volume without
gaining more information.

In our memory several differently scaled instances
of the polytope are nested into each other (fig. 2, right)
covering a discrete set of resolutions. Depending on
the current focal length of the camera the polytope en-
tity is chosen for data integration that best meets the
focal length of the current input image. The granu-
larity of the resolution hierarchy can freely be con-
figured by the user and is, thus, highly flexible. In
particular, each distance between adjacent levels can
individually be defined according to the required level
of representation detail in certain resolutions.

In contrast to standard and commonly used multi-
scale representations like, e.g., gaussian resolution
pyramids or wavelets, the structure proposed provides
direct data access in all resolutions without need for
intermediate image reconstruction. Further on rep-
resentation of image data might be restricted to only
some few levels of resolution and need not to be car-
ried out for all available resolutions. On each level
only data is represented that was actually provided by
the camera. Consequently, the memory allows simul-
taneous representation of image data of a single scene
part that might have been acquired at completely dif-
ferent points in time and with varying zoom.

3.4 Sparse Memory Representation

Integrating an image sequence into a mosaic image
significantly reduces the amount of iconic data to be
represented in the multi-mosaic. However, covering
the whole potential field of vision at all resolutions
still requires a lot of memory space. This can cause
performance problems especially in mobile systems.
Due to the fact that most of the time not all parts of a
scene are actually scanned and explored in all resolu-
tions anyway, the space needed can be reduced facili-
tating a sparse memory representation: only tiles of a
multi-mosaic are instantiated that actually contain im-
age data. Hence, memory for a single tile is allocated
only after the camera has scanned the corresponding
regions of the scene and data needs to be stored.

Although restricting the representation to tiles that
actually contain data allows a reduction of the mem-
ory space needed, in levels of high-resolution an ad-
ditional segmentation of tiles into subcells is implied.
In these levels the size of a single tile usually exceeds
the size of acquired images for several times and only
some few regions of interest need to be represented.
Thus, the single tiles are further segmented into sub-
cells. Their actual number is chosen individually for
each tile and is derived according to the relation of
the input image size to the tile size so that the num-
ber of subcells that have to be checked on integrating
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Figure 4: Multi-mosaic resulting from a scene scan cov-
ering approximately 180◦ in horizontal direction, rendered
using Open InventorTM. Black regions indicate areas where
waste memory was allocated, and gray regions were added
to better illustrate the underlying structure of the complete
polytope representation.

new image data is kept small. Subcells where mem-
ory has to be allocated are determined by projecting
rectangular bounding boxes of available image data
onto the tiles. This leads to few regions on the poly-
topes where memory is allocated without image data
present (black regions in the example images). Never-
theless, we prefer this scheme to a polygonal approx-
imation of valid image regions since this complicates
memory handling and is less time efficient.

4 IMPLEMENTATION &
RESULTS

The concept of the multi-mosaics presented in this pa-
per has been implemented in terms of an integrated
system that might be included as an additional module
in the architecture of interactive systems. Within this
paragraph two exemplary memory representations are
discussed in detail while in section 5 a prototypical in-
tegration of the new concept into the architecture of a
mobile robot is presented.

Figure 4 shows a multi-mosaic representation
based on image data including only one single level
of resolution. The scene represented is the same as in
figure 1, but this time the image data is projected onto
an adequately scaled rhombicuboctahedron. Large
distortions are no longer present in the mosaic and the
image quality is sufficient to allow for image analy-
sis algorithms to be applied directly to the mosaic. It
should be mentioned that registration and integration
errors cannot be avoided completely over time. Espe-
cially in long-term mosaicing small errors accumulate
and could only be eliminated by registering all im-

ages simultaneously. This is not feasible for an online
processing strategy, but errors are reduced by apply-
ing the frame-to-mosaic mode as described. Further
on the integration heuristic copying new data region-
wise to the mosaic minimizes the effects of small er-
rors, but causes some blurring at region boundaries
within the mosaic. Since most image analysis algo-
rithms apply smoothing to the data anyway, the mo-
saic provides sufficient quality for image processing.

Figure 5: Hierarchical representation of a scene explored.
Two areas of the scene (whiteboard and shelves) have been
scanned in detail as apparent in the levels of higher resolu-
tion of the multi-mosaic image.

An example for the multi-resolution visual memory
is shown in fig. 5. The camera first scanned the whole
scene in coarse resolution to get an overview. Sub-
sequently the whiteboard and shelves were manually
selected for detailed exploration. The corresponding
representations for different resolution levels of the
shelf are magnified in fig. 6. Although the books in
the shelf are visible even in coarse resolution, their ti-
tle and other details are only accessible by zooming
in. The same holds, e.g., for text written on the white-
board. Contrarily, neither the whiteboard itself nor
other parts of the shelf need to be represented in larger
detail. The memory, thus, yields a compact represen-
tation of the scene requiring only minimal memory
resources to store important scene data.

5 MULTI-MOSAICS IN
PRACTICE

The multi-mosaic data structure yields an efficient
iconic representation of image sequences as acquired
by interactive and mobile systems. Due to the online
data processing and the euclidean coordinate frame
the memorized data provides a suitable base for more
efficient image sequence analysis in interactive and
particularly in mobile systems. Such systems often
explore new environments by first collecting data and
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Figure 6: Two example images of low- (left) and high-
resolution data (right) extracted from the multi-mosaic in
fig. 5. Details are only visible in high resolution, however,
there are usually only few sections of a scene where such
details need to be represented for scene analysis anyway.

then building some kind of map to be subsequently
used in navigation. However, maps are most of the
time not based on visual input and vision-based ap-
proaches have only been used in a few publications
(e.g. (Ishiguro and Tsuji, 1996)). This is mainly due
to the fact that pure navigation and localization tasks
can often be better solved relying on more robust
range data. However, if a mobile robot is supposed to
perform some tasks of scene analysis as well, visual
information is indispensable. Moreover it is essen-
tial that the visual data is adequately represented and
easily accessible, ruling out rather indirect representa-
tions like, e.g., wavelets or mipmaps. One large field
of application for such kind of representations is intu-
itive human-machine-interaction where visual data is
one of the most important sources of information.

As a prototypical example for such an application
the visual memory has been integrated into the ar-
chitecture of a mobile robot (Möller et al., 2005).
The robot is supposed to support a human user in his
everyday life at home by performing tasks like, e.g.,
searching and fetching objects (home tour scenario).
Due to the fact that tasks the robot has to perform are
highly user-dependent and may exhibit a large vari-
ance one key capability of the robot is autonomous
learning of new tasks by instruction. Therefore the
robot provides the human user with intuitive multi-
modal communication facilities like speech and ges-
ture recognition as well as processing of visual in-
formation for efficiently analyzing and understanding
human instructions. Besides, another important in-
gredient in multi-modal learning is object recognition
and learning since nearly all tasks more or less deal
with objects. The robot solves this task following an
appearance-based object recognition strategy.

In appearance-based object recognition objects are
recognized by matching current images of the ob-
ject against formerly acquired views of different ob-
jects as stored in the scene model, e.g., using appro-
priate measures of image correlation. The more of
such views are available, the better in principal the
final recognition results will be. However, acquir-

ing different views of an object is sometimes quite
time-consuming and sophisticated for a mobile robot.
In worst case it has to manoeuver around the object
completely to get these views which on the one hand
might be difficult, e.g., due to obstacles on the ground,
and on the other hand limits the robot’s interactivity
during this period of time boring the human user.

To come up with these problems of view acquisi-
tion we adopt the multi-mosaic images as some kind
of visual memory in the robot’s architecture. This idea
originates from the observation that the robot some-
times just idles around while waiting for a commu-
nication partner. During this time the robot already
gathers visual information about the scene and espe-
cially about objects included. However, at the time
of acquisition this visual information is irrelevant to
the robot and, hence, is usually discarded raising the
need for later on rescanning the scene when the data
is actually needed. This can be avoided by having the
robot building up an iconic mosaic-based visual map
of the environment in idle periods of time. In this
way all visual data ever acquired is kept in a compact
and space-efficient way allowing the robot to refer to
it afterwards in concrete communication and learn-
ing situations. At the same time expensive hardware-
based re-explorations of a scene are avoided. Figures
7 and 8 show an example for such a representation,
extracted object views of an object to learn and, fi-
nally, results from a post-processing step.

Figure 7: An exemplary multi-mosaic image from the scene
memory as generated from a 60o camera pan.

(a) (b) (c) (d)

Figure 8: (a), (c) Subimages as extracted from various
multi-mosaics during object learning; (b), (d) exemplary re-
sults of a subsequent color segmentation step.

The memory representation itself consists of a set
of various multi-mosaic images each acquired at a
specific position in the world. Since the concept of the
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multi-mosaics enforces the robot to remain at a single
position during image acquisition it is not possible to
gather visual information while moving. Neverthe-
less, this is not a serious drawback. Most of the time
a scene can even better be represented by scanning
it from some key positions within the scene than by
monitoring all the different pathways the robot pur-
suits. Besides, building mosaics while the robot is
moving bears different problems. On the one hand no
closed-form solution for modelling the camera mo-
tion is available since homographies do not hold in
such situations, and on the other hand appropriate mo-
saic images, like, e.g., manifold mosaics (Peleg et al.,
2000), often exhibit (perspective) distortions of the
scene data hampering easy analysis and scene under-
standing. The multi-mosaics are currently primarily
used to extract additional views of an object in object
learning and recognition. However, they could also
be used for extracting 3D data of the scene provided
that the mosaic 3D world positions are given as, e.g.,
proposed in (Teller, 1998).

6 SUMMARY AND
CONCLUSIONS

Active scene analysis and exploration gains increas-
ing importance in computer vision. Since analyz-
ing image sequences of active cameras has proven a
suitable base for extracting useful information from
a scene, interactive and mobile systems are nowa-
days often equipped with active sensing devices. The
visual scene memory based on multi-mosaics pre-
sented in this paper perfectly fits into this framework
as an additional module between active data acqui-
sition on the one hand and its analysis on the other.
The memory is based on a polytopial reference coor-
dinate system. In contrast to spheres and cylinders the
polytopes provide an euclidean reference frame and,
hence, allow the direct application of standard image
analysis techniques. This is important for interactive
systems since they can work on the memorized data as
on the originally acquired input images. Further on,
based on this euclidean mosaic representation and the
chosen data processing strategy, the data within the
memory is easily updated in an online fashion. Incre-
mental parameter estimation and integration heuris-
tics are used in combination with the focus image
plane. The latter masks the underlying polytope struc-
ture of the memory and thus allows efficient data ac-
cess despite present discontinuities on the memory it-
self. Given these techniques the memory works quite
stable in practice, nevertheless, future work has to be
carried out on investigating more robust online para-
meter estimation techniques and mechanisms for au-
tomatically detecting registration errors.

The memory is ideally suited to be used with inter-
active and mobile systems that have to store and after-
wards access image sequences. Especially systems in
human-machine interaction significantly benefit from
the memory as it provides an improved and more ef-
ficient exploition of available visual data and yields a
higher flexibility as it is necessary to act in dynam-
ically changing environments as well as to perform
intuitive communication with human beings.
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