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Abstract:  The 3D Cell Structure Code (3D-CSC) is a fast region growing technique. However, directly adapted for 
segmentation of magnetic resonance (MR) brain images it has some limitations due to the variability of 
brain anatomical structure and the degradation of MR images by intensity inhomogeneities and noise. In this 
paper an improved approach is proposed.  It starts with a preprocessing step which contains a 3D Kuwahara 
filter to reduce noise and a bias correction method to compensate intensity inhomogeneities. Next the 3D- 
CSC is applied, where a required similarity threshold is chosen automatically. In order to recognize gray 
and white matter, a histogram-based classification is applied. Morphological operations are used to break 
small bridges connecting gray value similar non-brain tissues with the gray matter. 8 real and 10 simulated 
T1-weighted MR images were evaluated to validate the performance of our method. 

1 INTRODUCTION 

Segmentation of 3D MR brain images is an 
important procedure for 3D visualization of brain 
structures and quantitative analysis of differences 
between normal and abnormal brain tissues. Up to 
now many segmentation techniques have been 
developed (Suzuk 1991, MacDonald 2000, Zhang 
2001, Stokking 2000, Schnack 2001). However, 
most intensity-based schemes fail to segment MR 
brain images into gray and white matter 
satisfactorily due to the effect of intensity 
inhomogeneities (also referred as bias field) 
(Rajapakse 1998, Wells III 1996, Sled 1998) 
resulting from irregularities of the scanner magnetic 
fields, radio frequency, etc. The deformable-based 
techniques sometimes do not converge well to the 
boundary of interest due to the complicated 
deformations in the anatomy (Pham 2000).  
Furthermore  existing fully automatic segmentation 
techniques have to make a compromise between 
speed and accuracy of processes in practice. 
Therefore, an automatic robust and fast 3D brain 
segmentation method is needed that is able to detect 
gray and white matter. 

 
 

*This work was supported by the BMBF under grant 
01/IRC01B (research project 3D-RETISEG)  

A 3D hierarchical inherently parallel region 
growing method, called 3D-CSC, has recently been 
developed in our group and at Research Centre 
Juelich. It  is an effective 3D generalization of the 
2D-CSC (Priese 2005). In comparison with 
traditional region growing techniques it does not 
depend on the selection of seed points. It is  very fast  
due to its hierarchical structure. The advantages of 
the technique are local simplicity and global 
robustness. Therefore, we adapt the 3D-CSC for 
segmentation of 3D MR brain images. In the 3D- 
CSC, region growing is steered by a hierarchical 
structure of overlapping cells. Overlapping and gray-
similar regions in one hierarchy level are merged to 
a new region of the next level. Unfortunately some 
known difficulties  in  MR brain images, such as 
intensity inhomogeneities and the effect of noise, 
degrade the performance of 3D-CSC segmentation.  
This results in an over-segmentation.  In order to 
overcome these difficulties, a preprocessing step 
which includes a 3D Kuwahara filter to reduce 
random noise and a correction of intensity 
inhomogeneities is applied. In addition, a 
postprocessing step based on histogram-based 
classification of CSC segments and morphology-
based shape constraints  is integrated in our scheme.  
All processing steps are fully automatic.  

The paper is organized as follows: Section 2 
briefly introduces 3D-CSC segmentation. Section 3 
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describes the improved segmentation scheme for 
brain images. Experimental results and conclusion 
are given in Section 4 and Section 5 respectively. 

2 3D CELL STRUCTURE CODE  

The 3D-CSC steers a hierarchical region growing on 
a special 3D topology. In order to understand  this 
hierarchy we first introduce the hierarchical 
hexagonal topology (see Figure 1(a)) of the 2D–CSC 
(Rehrmann 1998). The topology is formed by so 
called islands in different levels. An island of level 0 
consists of a center pixel and its six neighboring 
pixels. An island of level n+1 consists of a center 
island of level n and its six neighboring islands of 
level n. Two neighboring islands of level n overlap 
in a common island of level n-1. This is repeated 
until one big island covers the whole image. In order 
to apply the hierarchical topology in a real image, 
the hexagonal island structure is transformed 
logically to an orthogonal grid as shown in Figure 
1(b). 

Generalizing the 2D hierarchical hexagonal 
topology to 3D forms the 3D hierarchical cell 
topology. It is constructed by the densest sphere 
packing (see Figure 2(a)). Here we just focus on the 
S15 cell structure (see Figure 2(b) and 2(c) where 
2(c) is a transformation into the orthogonal 3D 
grid.). In S15 a cell of level 0 consists of 15 voxels (1 
center voxel and its 14 neighboring voxels).  

 The S15 cell structure possesses the following 
properties: 
y 14-neighborhood: each cell of level n overlaps 

with 14 cells of level n. 
y Plainness: two cells of level n+1 overlap each 

other in at most one cell of level n. 
y Coverability: each cell (except the topmost one) of 

level n is a sub-cell of a parent cell of level n+1. 
y Strong Saturation: all sub-cells (except the center 

cell) of a cell of level n+1 are sub-cells of exactly 
two different cells of level n+1. Each center cell 
has exactly one parent cell. 

These properties lead to a nice and efficient 
implementation. Also the information about location 
and neighborhood of each cell  can be derived 
quickly. In the 3D-CSC, region growing is done 
independently in each cell of each level. 
Neighboring and similar segments in lower levels 
will be merged  to bigger segments in a higher level. 
If two neighboring segments are  dissimilar  they 
will be split. For a deeper discussion see (Sturm 
2004).   Here ‘similar’ means the difference of the 
mean intensity of two neighboring segments is 

below a certain threshold T. The threshold T will be 
chosen automatically.  

 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 

 
      (b) 

Figure 1: The hierarchical hexagonal island structure and 
its deformation on the orthogonal grid. 

 
 

 
              (a)                              (b)                          (c) 
Figure 2: 3D hierarchical cell topology and S15 cell 
structure. 

3 ADAPTION TO BRAIN IMAGES 

The segmentation procedure for 3D MR brain 
images consists of three parts: 
y Preprocessing: noise suppression and bias field 

correction. (Described in section 3.1) 
y 3D-CSC segmentation. (General case described in 

section 2, adaption to MR brain images described 
in section 3.3) 
y Postprocessing: classifying the primitive CSC 

segments into brain and non–brain tissues, then  
breaking  small connections between them and 
separating brain tissue into gray and white matter. 
(Described in section 3.4) 
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3.1 Preprocessing: Filter and Bias 
Field Correction 

To reduce noise, we apply a 3D generalization of the 
Kuwahara filter  as it gives a very good tradeoff 
between performance and speed and has been 
proved to be an ideal nonlinear filter for smoothing 
regions and preserving edges (Kuwahara 1976).  

Recently a successful method for dealing with 
the bias field problem has been proposed (Vovk 
2004). The idea behind it is to iteratively sharpen 
probability distributions of image features along 
intensity features by an intensity correction force. 
Then the bias correction estimation is calculated.  
This correction method combines intensity and 
spatial information and estimates the intensity 
inhomogeneity on each image point.  

The following notations are given: 
y V is the number of voxels in an image 
y x  is the three dimensional location of a voxel 
y )(xu is the measured gray value at the location  x  

in a MR image 
y )(xv is the ideal gray value in the absence of any 

bias field 
y )(xn is noise at location x  
y )(xf is the bias field at x  
y )(uLdu =  is the Laplacian (2nd derivative) of u  
y uP  is the probability distribution (2 dim. 

histogram) of u and ud , where nbaPu =),(  tells 
that exactly n voxels x1…,xn have the values 

axu i =)(  and bxd iu =)(  
y Fµ is the mean value of the set of the absolute 

force F  
(Vovk 2004) considers the usual model of image 

formation in MR as: 
                 )()()()( xnxfxvxu +⋅=                  (1) 
)(xn is neglectable as we have already applied a 

Kuwahara filter to reduce noise. First set uu =:1  , 
then apply the following iteration (2)-(4): 
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iF are the correction forces and are derived by the 
weighted partial derivate of logarithm of 

iuP along 

the intensity value a  (the first coordinate of 
iuP ), 

then are mapped to the points with corresponding 
features in the image.  
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where G is a three dimensional Gaussian filter and  
carries out  a convolution with iF , k is a pre-chosen 
parameter.  

In the principle, the corrected image iv at iteration 
i   and the input image 1+iu  at iteration 1+i  are 
expressed as: 
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However in practice, preserving the brightness of 
the original input image u  must be taken into 
account in each iterative correction (More details are 
described in (Vovk 2004)). No automatic 
termination criterion for the iterations is proposed in 
(Vovk 2004). Hence we focus on this and consider 
the mean of absolute variation iD  (see equation (6)) 
which reflects the changes between the overall 
estimated bias correction 1ˆ −

if  after iteration i and 

the initial correction 1ˆ 1
0 =−f .   
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In (5), 1ˆ −
if  will be used to correct the original 

input image u ,  then  the corrected image iv is 

derived, µ  is the mean value, *
iu  is expressed by: 

                     11
1
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− ⋅⋅= iii ffuu                                (7) 

Figure 3: iD
fD(

 curves for several tested images. 
 
Figure 3 shows several typical curves of iD  for 

tested images. iD  increases and tends to roughly 
converge, although some small vibrations exist 
locally. Images with low inhomogeneities converge 
faster than those with high inhomogeneities.   This  
means images with low inhomogeneities need  less 
iterations for the correction. Thus a termination 
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criterion will be derived, i.e. in each 5 iterations we 
compute the regressive straight line of iD , if the 
slope coefficient of the regressive straight line is 
below a termination threshold E the iteration will 
stop otherwise continue. The purpose of the 
regressive straight line is to eliminate the effect of 
small local  vibrations of iD .  This has been proved 
to be robust in our tested images. With the same 
constraint E the iterative corrections of all tested 
images will stop after 10-25 steps according to their 
degree of inhomogeneity . 

To reduce computational cost for the Gaussian 
convolution in equation (3), the MR data is down-
sampled by factor 3 in each dimension. The 
degradation of performance is neglectable, because 
the bias field varies just slowly across an image. 

As the background is not degraded by the bias 
field and could interfere with the estimation, it is 
removed prior to our correction method 
automatically. 

3.2 Histogram Analysis 

Histogram analysis plays an important role in our 
method: We use it to detect the similarity threshold 
for 3D-CSC segmentation and for classification after 
the CSC. Image histograms contain information 
about intensity distributions of tissues in MR 
images. We here only consider T1 weighted MR 
brain images. The histograms of those images 
normally contain five modes, listed from dark to 
bright: background, cerebrospinal fluid (CSF), gray 
matter (GM), white matter (WM) and fat. The 
spatial variations of the same tissue class and the 
effect of bias field make them overlap each other. 
After bias field correction the overlapping between 
classes is reduced. This enables us to recognize them 
in intensity space, i.e. to find thresholds that separate 
those classes by their intensities. 

First we consider the intensity histogram h  of 
the preprocessed image as a Gaussian mixture model 
(GMM) (see (8)-(9)), where each Gaussian 
represents the intensity distribution of each tissue 
class in an MR image. The approximated normalized 
histogram ĥ  is expressed by: 
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C is the number of Gaussians, iâ , iµ̂ and iσ̂  are the 
estimated mixing weight, mean and standard 
deviation of the i-th Gaussian which is given by:              

      
                                                                          (9) 

where g  is a gray level. 

Figure 4: The result of histogram analysis. 
 
To obtain the parameters of the Gaussian mixture 

model we follow the scale space filtering method of 
(Carlotto 1987). This gives us a good initialization 
for iâ , iµ̂ , and iσ̂ . With the Expectation-Maxi-
mization (EM) algorithm (Duda 2001), those 
parameters are further refined. 

The result of the GMM estimation for a sample 
image and the thresholds separating the five classes 
for later classification are shown in Figure 4 where 
each Gaussian contains the mixing weight. We refer 
to the threshold between background and CSF as t1, 
between CSF and gray matter as t2, between gray 
and white matter as t3 and between white matter and 
fat as t4. 

3.3 Adaption of the 3D-CSC for MR 
Brain Images 

As mentioned in section 2, the 3D-CSC requires a 
similarity threshold T. As there is no constant value 
for T applicable for all MR images, we developed an 
automatic method for finding a reasonable value 
based on the histogram analysis method described in 
section 3.2. T is derived by computing the shortest 
distance Ds between the centers of two estimated 
Gaussians in the histogram of the corrected image. T 
is equal to Ds divided by 4 which proved to result in 
near-optimal values for MR brain images from 
various sources. 

3.4 Postprocessing 

The 3D-CSC segmentation does not result in a 
single segment for gray resp. white matter. Instead 
gray and white matter are oversegmented and ⎥
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sometimes parts of gray matter and non-brain tissues 
are merged to one segment due to narrow gray value 
bridges. Therefore some postprocessing steps are 
needed: First the CSC segments are preliminary 
classified in brain and non-brain by their mean gray 
value (see 3.4.1). As only the mean gray value is 
considered segments containing non-brain tissues 
with an intensity similar to gray or white matter are 
classified always as brain. This problem is solved by 
morphological operations (see 3.4.2). Finally the 
brain is separated into gray and white matter. 

3.4.1 Preliminary Classification 

We obtain a preliminary brain mask by doing a 
classification of CSC segments in which we use the 
intensity thresholds (see section 3.2) to select all 
segments which could belong to the brain. I.e. if the 
mean intensity of a segment belongs to the range [t2, 
t4] the segment should be kept in the preliminary 
brain mask otherwise discarded. However, even if 
optimal thresholds are used, connections between 
the brain and surrounding non-brain tissues still 
occur. In order to break these connections and 
reduce misclassification, morphological operations  
are applied. 

3.4.2 Morphological Operations and Final 
Classification 

We apply the following morphological operations to 
break up bridges between brain and non-brain 
tissues: 
y Select the largest connected component (LCC1)  in 

the preliminary brain mask and perform an erosion  
with a  ball structuring element with radius of 3-5 
voxels (depending on the size of the input image).   
This breaks connections between the brain and  
non-brain  tissues. 
y Select the largest connected component (LCC2) 

after the erosion and perform a dilation  with the 
same size structuring element to get LCC3.  This 
reconstructs the eroded brain segment. 
y Compute the geodesic distances to LCC3 from  all 

points which only belong to LCC1 but not to 
LCC3 using a 1 voxel radius ball structuring 
element. Then assign all points whose distances 
are <= 4 voxels to LCC3 as the final segmented 
brain. In this step some more detailed structures of 
the segmented brain are recovered  

At last, we remove all voxels not belonging to 
the brain mask from the CSC segments. The 
threshold t3 is then applied to classify the remaining 
segments into  gray matter (GM) and white matter 
(WM). 

4 EXPERIMENTS AND RESULTS 

To assess the performance of the proposed method, 
we applied it to 18 T1-weighted MR brain images 
(10 simulated images and 8 real images).  The 
simulated images were downloaded from the 
Brainweb site (http://www.bic.mni.mcgill.ca/ 
brainweb).  These images  consist of 181x217x181 
voxels sized 1x1x1mm  with a gray value depth of 8 
bits.  1%, 3%, 5%, 7% resp. 9% noise levels have 
been added and intensity inhomogeneity levels 
(“RF”) are 20% and 40%.  The real images were 
acquired at 1.5 Tesla with an AVANTO SIEMENS 
scanner from the BWZK hospital in Koblenz, 
Germany. They  consist of 384x512x192 voxels 
with 12 bits gray value depth. The voxels are sized 
0.45x0.45x0.9mm.  

All processes were performed on an Intel P4 
3GHz-based system. The execution time of the 
complete algorithm is about 24 seconds for a 
181x217x181 image. 

Some parameters need to be set for the bias field 
correction: The factor k in equation (3) which 
controls the speed of iterative correction, was set to 
0.05. The standard deviation of the Gaussian filter 
determines the smoothness of correction. For the 
simulated images it was set to 30 for each 
dimension, but for the real images due to the 
anisotropic voxel resolution to 60x60x30. The 
termination threshold E of the bias field correction 
was set to 0.001 which automatically determines the 
iterations according to the degree of inhomogeneity 
and ensures the accuracy of correction. Figure 5 
shows a correction example of a simulated image. 
The intensities of voxels belonging to the same 
tissue become relatively homogeneous in the 
corrected image (see Figure 5(b)). The misclassified 
part of the white matter (see Figure 5(e)) in the 
segmentation without bias field correction is 
recovered in the segmentation with bias field 
correction (see Figure 5(f)). 

 The Brainweb site provides the “ground truth” 
for the simulated images that enables us to evaluate 
the proposed method quantitatively. We use the 
following evaluation measures: 
y Coverability Rate (CR) is the number of voxels in 

the segmented object (S) that belong to the same 
object (O) in the ”ground truth”, divided by the 
number of voxels in O. 
y Error Rate (ER) is the number of voxels in S that 

do not belong to O, divided by the number of 
voxels in S. 
y Similarity Index (SI) (Stokking 2000) is two times 

the number of voxels in the segmented object (S) 
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that belong to the same object (O) in the ”ground 
truth”, divided by the number of voxels both in S 
and O. SI is 1 for a perfect segmentation. 

       (a) uncorrected                     (b) corrected 

    (c) real bias field                (d) estimated bias field 

(e) uncorrected segmentation (f) corrected segmentation 
 
Figure 5: Comparison of the results of uncorrected and 
corrected simulated images (noise level=3%, RF=40%, 
filtered). 

The evaluations of the uncorrected (UNC) and 
corrected (COR) simulated images with RF=20% 
and with RF=40% are shown in Figure 6, where CR, 
ER and SI are the average of GM and WM 
respectively. They show that the bias correction 
improved the performance of segmentation. After 
bias correction the intensity inhomogeneities in the 
images are compensated effectively both in RF=20% 
and RF=40%. In addition, the results of our method 
are compared with those from a popular brain 
analysis technique called Statistical Parametric 
Mapping (SPM) (Ashburner 2000). The software 
package SPM2 was released in 2003 
(http://www.fil.ion.ucl.ac.uk /spm/)  and a procedure  
for bias correction has been included. The 
comparison (see Figure 7) indicates that our method 
is comparable with SPM2. SPM2 uses an anatomical 
atlas. Our method does not depend on such an atlas 
and overcomes SPM2 for the noise levels 1%, 7% 
and 9%. For the noise levels 3% and 5% SPM2 
shows only slightly better results.     

Unfortunately  for real images the ‘ground truth’ 
is not available, so the same quantitative 
measurement can not be conducted on them. 
Therefore we only visually evaluated them. The 
results with bias correction and without bias 
correction are compared. There are no big 
differences between them except for detailed 
structures which can be detected by using bias 
correction. In this paper we provide a segmentation 
example of a real image with and without bias 
correction (see Figure 8). The result with bias 
correction seems to be appreciably better on some 
detailed structures which are sketched out by circles. 
Its 3D visualization result is also shown  in Figure 8. 

 
 

                                        
                                             (a) RF=20%                                                                         (b) RF=40% 

Figure 6: Quantitive evaluation for the segmentation results of uncorrected and corrected simulated images. 
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                                           (a) RF=20%                                                                         (b)  RF=40% 
Figure 7: Quantitative evaluation for the segmentation results of simulated images comparing the proposed method with 
SPM2. 
 

 
Figure 8: Comparison of the segmentation results of a real image with bias correction and without bias correction and its 3D 
visualization. The original slices are in the first row. The segmentation results without bias correction are shown in the 
second row. The third row shows the results with bias correction. Its 3D visualization is in the right column where the gray 
matter is partially removed. 
 
5 CONCLUSION 

A fully automated, improved segmentation based on 
the 3D-CSC for MR brain images is proposed in this 
paper. In contrast to most existing methods, it is fast 
with a satisfactory accuracy. It takes advantage of 
the region- and intensity-based 3D-CSC and 
combines it with further information from intensity 
histograms to robustly segment MR brain images. A 
bias correction is integrated into the method to 
improve its performance. However, the results for 
some images still indicate some problems: On the 
one hand some detailed structures of the brain are 
lost especially in the cerebellum, on the other hand 
we sometimes are not able to remove all non-brain 
tissues, i.e. sometimes small parts of non-brain 

tissue around the eyes is still included. Those 
problems depend on the size of the structuring 
element of the morphological operations. A big 
structuring element can avoid including more non-
brain tissues but some detailed structures of brain 
may be lost and vice versa.  

In the future we have to cope with the above 
problems and want to segment and recognize  other 
significant structures in 3D MR brain images. 
Furthermore, we want to compare our method with 
other state of art brain segmentation techniques, i.e. 
the Hidden Markov Random Field (HMRF)-based 
method (Zhang 2001), and the fuzzy C-means 
clustering (FCM)-based adaptive method (Liew 
2003). 
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