
INTERNET-BASED EMBEDDED SYSTEM ARCHITECTURES 
End-User Development Support for Embedded System Applications 

Miroslav Sveda 
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic 

Radimir Vrba 
Faculty of Electrical Engineering & Communication, Brno University of Technology, Brno, Czech Republic  

Keywords: Smart sensors, IEEE 1451, Internet, Publish/subscribe messaging, IP multicast. 

Abstract: This paper presents an approach to industrial embedded system networking that offers a reusable design 
pattern for the class of Internet-based applications. It deals with an integrated networking framework 
stemming (1) from the IEEE 1451.1 smart transducer interface standard, which is an object-based 
networking model supporting among others publish-subscribe approach to group messaging, and (2) from 
the Internet Protocol (IP) multicast communication, mediating efficient and unified access to smart sensors 
through Internet. The kernel of this paper focuses on adaptations and tuning of those concepts and on their 
utilization for a gas pipes pressure measurement system as an application example. Furthermore, the 
contribution brings this scheme in form suitable not only for framework builders, but also for end-user 
developers. 

1 INTRODUCTION 

The design framework, presented in this paper as a 
flexible design environment stemming from meta-
design conception, is rooted in the IEEE 1451.1 
standard specifying smart transducer interface 
architecture. This framework enables to unify not 
only interconnecting smart sensors with various 
Fieldbuses but also their direct coupling to Ethernet-
based Intranets, which are currently replacing 
various special-purpose Field busses in industrial 
applications (Sveda, et al., 2005). That standard 
provides an object-oriented information model 
targeting software-based, network independent, 
transducer application environments.  

Two additional technologies, namely publisher-
subscriber messaging and IP multicasting, which 
offer scalable and traffic-saving solution important 
in the context of contemporary Internet, complement 
the framework providing design patterns reusable 
for various sensor-based networked systems. The 
schemes discussed can properly interplay with each 
other and can provide suitable support for Internet-
based sensor systems design. The kernel of this 
paper focuses on adaptations and tuning of 
introduced concepts and on their utilization for a 

network-based pressure measurement system as a 
real-world project. This pilot application implements 
a distributed, gas-pipe’s measurement arrangement. 
It comprises groups of smart pressure and 
temperature sensors that clients can access 
effectively through Internet. Each sensor group is 
supported by an active web page with Java applets 
that, after downloading, provide clients with 
transparent and efficient access to pressure 
measurement services over such geographically 
distributed objects as the large-scale systems of gas 
pipes or similar industrial applications. 

The paper discusses in the following section 
meta-design basic principles utilizable for creating 
flexible design environment reusable for various 
application domains of sensor systems. Next three 
sections introduce subsequently IEEE 1451 package 
of communication standards, client-server and 
publisher-subscriber communication concepts, and 
Internet Protocol (IP) multicasting as main abstract 
components of the design pattern forming the heart 
of the generic development environment. The 
section 6 presents in more detail an example of 
employment of this framework for designing 
networked distributed embedded systems for 
pressure measurement along gas pipes. The example 
covers design of network configuration, 

63
Sveda M. and Vrba R. (2006).
INTERNET-BASED EMBEDDED SYSTEM ARCHITECTURES - End-User Development Support for Embedded System Applications.
In Proceedings of the International Conference on e-Business, pages 63-68
DOI: 10.5220/0001424300630068
Copyright c© SciTePress



 

implementation concepts developed, node 
configuration, and smart sensor implementation. 

2 META-DESIGN 

Component-based development involves multiple 
roles (Morch, et al., 2004). Framework builders 
create the infrastructure for components to interact; 
developers identify suitable domains and develop 
new components for them; application assemblers 
select domain-specific components and assemble 
them into applications; and end users employ 
component-based applications to perform daily 
tasks. There is room for a fifth role in this pipe-line: 
end-user developers positioned between application 
assemblers and end users. These end-user developers 
are able to tailor applications at runtime because 
they have both domain expertise and technical 
know-how. They would interact with applications to 
adjust individual components, and modify existing 
assemblies of components to create new 
functionality. Furthermore, they can play a critical 
role when component-based systems have to be 
redesigned for new requirements. End-user 
development activities can range from customization 
to component configuration and programming. 

Meta-design characterizes objectives, techniques, 
and processes for creating new environments 
allowing end users to act as designers (Fischer, et 
al., 2004). In all design processes, two basic stages 
can be differentiated: design time and use time. At 
design time, system developers create environments 
and tools. In conventional design they create 
complete systems. Because the needs, objectives, 
and situational contexts of users can only be 
anticipated at design time, users often find the 
system unfit for their tasks at use time. Thus, they 
require adaptation of the existing environment and 
tools for new applications. Meta-design extends the 
traditional notion of system development to include 
users in an ongoing process as co-designers, not only 
at design time but throughout the entire life-cycle of 
the development system. Rather than presenting 
users with closed systems, meta-design provides 
them with concepts and tools to extend the system to 
fit their needs. Hence, meta-design promotes 
designing the design process. 
 This paper discusses a deployment of meta-
design principles for creating a flexible design 
environment focused on sensor systems 
interconnected by Internet aiming namely at 
industrial applications. Necessarily under-designed 
open source tools and techniques create design 
spaces for end-user developers in such application 
domains as pressure measurement along gas pipes, 

which is used as a case study demonstrating the 
principles of such environment exploitation. 

3 IEEE 1451 SET OF STANDARDS 

The IEEE 1451 package consists of the family of 
standards for a networked smart transducer interface 
that include namely (see Figure 1) (i) a smart 
transducer software architecture, 1451.1 (IEEE, 
2000), targeting software-based, network 
independent, transducer applications, and (ii) a 
standard digital interface and communication 
protocol, IEEE 1451.2, for accessing the transducer 
or the group of transducers via a microprocessor 
modeled by the 1451.1 standard. The next three 
standard proposals extend the original hard-wired 
parallel interface 1451.2 to serial multi-drop 1451.3, 
mixed-mode (i.e. both digital and analogue) 1451.4, 
and wireless 1451.5 interfaces. 

 NCAP
Smart Transducer 

Object Model (1451.1) Smart Transducer
Interface Model (STIM)

Network

Network hardware + drivers Transducer interface 
Specification (1451.2)

sensors and actuators

Transducer driver hardware

 
Figure 1: IEEE 1451 configuration example. 

The 1451.1 software architecture provides three 
models of the transducer device environment: (i) the 
object model of a network capable application 
processor (NCAP), which is the object-oriented 
embodiment of a smart networked device; (ii) the 
data model, which specifies information encoding 
rules for transmitting information across both local 
and remote object interfaces; and (iii) the network 
communication model, which supports client/server 
and publish/subscribe paradigms for communicating 
information between NCAPs. The standard defines a 
network and transducer hardware neutral 
environment in which a concrete sensor/actuator 
application can be developed.  

The object model definition encompasses the set 
of object classes, attributes, methods, and behaviors 
that specify a transducer and a network environment 
to which it may connect. This model uses block and 
base classes offering patterns for one Physical 
Block, one or more Transducer Blocks, Function 
Blocks, and Network Blocks. Each block class may 
include specific base classes from the model. The 
base classes include Parameters, Actions, Events, 
and Files, and provide component classes.  

All classes in the model have an abstract or root 
class from which they are derived. This abstract 

ICE-B 2006 - INTERNATIONAL CONFERENCE ON E-BUSINESS

64



 

class includes several attributes and methods that are 
common to all classes in the model and provide a 
definition facility for the instantiation and deletion 
of concrete classes including attributes.  

Block classes form the major blocks of 
functionality that can be plugged into an abstract 
card-cage to create various types of devices. One 
Physical Block is mandatory as it defines the card-
cage and abstracts the hardware and software 
resources that are used by the device. All other block 
and base classes can be referenced from the Physical 
Block.  

The Transducer Block abstracts all the 
capabilities of each transducer that is physically 
connected to the NCAP I/O system. During the 
device configuration phase, the description is read 
from the hardware device what kind of sensors and 
actuators are connected to the system. The 
Transducer Block includes an I/O device driver style 
interface for communication with the hardware. The 
I/O interface includes methods for reading and 
writing to the transducer from the application-based 
Function Block using a standardized interface. The 
I/O device driver provides both plug-and-play 
capability and hot-swap feature for transducers.  

The Function Block provides a skeletal area in 
which to place application-specific code. The 
interface does not specify any restrictions on how an 
application is developed. In addition to a State 
variable that all block classes maintain, the Function 
Block contains several lists of parameters that are 
typically used to access network-visible data or to 
make internal data available remotely.  

The Network Block abstracts all access to a 
network employing network-neutral, object-based 
programming interface supporting both client-server 
and publisher-subscriber patterns for configuration 
and data distribution. 

4 CLIENT-SERVER AND 
PUBLISHER-SUBSCRIBER 
PATTERNS 

The majority of communication protocols provide a 
client-server style of communication. In case of 
sensor communications, the client-server pattern 
covers both configuration of transducers and 
initialization actions. If the client wants to call some 
function on server side, it uses a command execute. 
On server side, this request is decoded and used by 
the function perform. That function evaluates the 
requested function with the given arguments and, 
after that, it returns the resulting values to the client. 

The client-server pattern corresponds to remote 
procedure call (RPC), which is the remote 
invocation of operations in a distributed context 
(Eugster, et al., 2003). To be more precise, the RPC 
interaction considered in this paper provides a 
synchronous client-server communication, i.e. the 
client is waiting for a server’s response before 
completion the RPC actions related to the current 
call. Evidently, the client-server communication 
style relates to point-to-point message passing called 
as unicast.  

The subscriber-publisher style of communication 
(Eugster, et al., 2003) can provide the efficient 
distribution of measured data. All clients, wishing to 
receive messages from a transducer, register 
themselves to the group of its subscribers using the 
function subscribe. After that, when this transducer 
generates a message using the function publish, this 
message is effectively delivered to all members of 
its subscribing group. Transducers in the role of 
publishers have also the ability to advertise the 
nature of their future events through an advertise 
function.  

The interaction publish-subscribe relates to point-
to-multipoint or multipoint-to-multipoint 
asynchronous message passing. Of course, it can be 
implemented using multiple unicast communication 
transactions. On the other hand, to satisfy the 
requirement of efficiency, it is necessary to utilize 
elaborate multicast techniques encompassing 
multicast addressing and, namely, multicast routing. 
The basic principles of the network layer multicast 
in the Internet environment are discussed in the 
following section.  

5 MULTICASTING 

Traditional network computing paradigm involves 
communication between two network nodes. 
However, emerging Internet applications require 
simultaneous group communication based on 
multipoint configuration propped e.g. by multicast 
IP, which saves bandwidth by forcing the network to 
replicate packets only when necessary. Multicast 
improves the efficiency of multipoint data 
distribution by building distribution trees from 
senders to sets of receivers (Miller, 1999). 

The functions that provide the Standard Internet 
Multicast Service can be separated into host and 
network components. The interface between these 
components is provided by IP multicast addressing 
and Internet Group Management Protocol (IGMP) 
group membership functions, as well as standard IP 
packet transmission and reception. The network 
functions are principally concerned with multicast 

INTERNET-BASED EMBEDDED SYSTEM ARCHITECTURES - End-User Development Support for Embedded System
Applications

65



 

routing, while host functions can also include 
higher-layer tasks such as the addition of reliability 
facilities in a transport-layer protocol. 

IP multicasting is the transmission of an IP 
datagram to a host group, a set of zero or more hosts 
identified by the single IP destination address of 
class D. Multicast groups are maintained by IGMP 
(IETF RFC 1112, RFC 2236). Multicast routing 
considers multicasting routers equipped with 
multicast routing protocols such as DVMRP (RFC 
1075), MOSPF (RFC 1584), CBT (RFC 2189), 
PIM-DM (RFC 2117), PIM-SM (RFC 2362), or 
MBGP (RFC 2283). For Ethernet-based Intranets, 
the Address Resolution Protocol provides the last-
hop routing by mapping class D addresses on 
multicast Ethernet addresses. 

6 CASE STUDY 

The presented case study, used to demonstrate the 
introduced concepts, includes several groups of 
smart pressure and temperature sensors that clients 
can access effectively through Internet. Each sensors 
group is supported by an active web page with Java 
applets that, after downloading, provide clients with 
transparent and efficient access to pressure 
measurement services over such geographically 
distributed objects as the considered large systems of 
gas pipes. The complete system comprises several 
groups of smart pressure sensors complemented by 
temperature sensors that enable computing of 
temperature corrections (Sveda and Vrba, 2003). 

6.1 Network Configuration 

Each sensor group is supported by an active web 
page with Java applets that, after downloading, 
provide clients with transparent and efficient access 
to pressure measurement services. This section 
demonstrates the above-introduced concepts and 
tools adapted and applied to the development of 
such a gas-pipes pressure analyzer 

In this case, clients communicate to transducers 
using a messaging protocol defined by client-server 
and subscriber-publisher patterns employing 1451.1 
Network Block functions. A typical configuration 
includes a set of smart pressure sensors generating 
pressure values for the users of those values. To 
register itself for a specified group of sensors, the 
user — playing the role of either subscriber or client 
— opens the related server’s web page with the 
relevant Java applet. This applet is, after uploading 
to the subscriber/client site, started on 
subscriber/client’s computer, which launches 
communications with a group of transducers 

allowing Java clients to connect and subscribe to the 
smart sensors. Java can directly support both client-
server and subscriber-publisher application 
architectures as the core Java specifications include 
TCP/IP and UDP/IP networking APIs. 

The developed Java applet uses the core java.net 
package to implement both client-server and 
subscriber-publisher application distribution 
allowing to access smart sensors and supporting 
nodes. The applet consists of a series of object 
classes, including multi-threaded applet 
environment, animation, and UDP/IP-based 
subscriber and TCP/IP-based client communications. 
The subscriber/client software implemented in Java 
enables applets to be included in a web server 
HTML page, and run under a regular web browser 
on subscriber/client side. The subscriber/client 
communicates with the transducer by standard 
UDP/TCP sockets employing IP multicast. 

The communication scheme applies multicast 
both for distributing measured values from a 
transducer to a group of subscribers/clients 
registered by the web server for this transducer, and 
for spreading commands of a client to a group of 
transducers registered for this client. 

6.2 Implementation Concepts 

In the transducer’s 1451.1 object model, basic 
Network Block functions initialize and cover 
communication between a client and the transducer, 
which are identified by unique unicast IP addresses. 
The client-server style communication, which in this 
application covers both the configurations of 
transducers and initialization actions, is provided by 
two basic Network Block functions: execute and 
perform. The standard defines a unique ID for every 
function and data item of each class. If the client 
wants to call some function on server side, it uses 
command execute with the following parameters: ID 
of requested function, enumerated arguments, and 
requested variables. On server side, this request is 
decoded and used by the function perform. That 
function evaluates the requested function with the 
given arguments and, in addition, it returns the 
resulting values to the client. Those data are 
delivered by requested variables in execute 
arguments. 

The subscriber-publisher style of communication, 
which in this application covers primarily 
distribution of measured data, but also distribution 
of group configuration commands, employs IP 
multicasting. All clients wishing to receive messages 
from a transducer, which is joined with an IP 
multicast address of class D, register themselves to 
this group using IGMP. After that, when this 

ICE-B 2006 - INTERNATIONAL CONFERENCE ON E-BUSINESS

66



 

transducer generates a message by Block function 
publish, this message is effectively delivered to all 
members of this class D group, without unnecessary 
replications and repeated transmissions. 

The Network Block abstracts all access to a 
network employing network-neutral, object-based 
programming interface. The network model provides 
an application interaction mechanism supporting 
both client-server and publisher-subscriber 
paradigms for event and message generation and 
distribution. 

6.3 Node Configuration 

The primary communication scheme, which is based 
on publish-subscribe application interface, applies 
multicast both for distributing measured values from 
a transducer to a group of clients registered by the 
www server for this transducer, and for spreading 
commands of a client to a group of transducers 
registered for this client. Those commands can 
specify e.g. individual subgroup’s sampling 
frequencies and/or events for launching irregular 
publishing such as a limit value crossing. 

A typical node, depicted on Figures 2 and 3, 
consists of STIM (Smart Transducer Interface 
Module) connected with PSD sensor for pressure 
measurements, and with auxiliary temperature 
sensor for signal conditioning. Of course, NCAP can 
be either embedded in a complex smart sensor, or 
shared among more simple smart sensors. On the 
other hand, from the viewpoint of Internet, only 
NCAP is directly addressable being equipped by its 
own IP address. Therefore, we can also denote as 
smart sensor the device consisting of an NCAP 
accessing one or more STIMs with connected 
sensors. To register itself for a specified group of 
sensors, the client opens a related server’s web page 
with the relevant Java applet. This applet is, after 
uploading to the client site, started on client’s 
computer, what launches communication with the 
dedicated group of transducers. 

6.4 Smart Sensor Implementation   

  

 -   

 WWW SERVER

10/100Mbps TCP/IP / Ethernet
INTRANET  

JAVA-APPLET  

CPU 

p[kPa]
 

  
 t 

   

Http  Http  backbone

NCAP   

This subsection discusses, as an example, the 
pressure sensors with reflected laser beam and 
diffractive lens. The sensitive pressure sensor is 
based on a nitride membrane and an optoelectronic 
read-out subsystem. Measured pressure values are 
transformed into related thick-layer nitride 
membrane deflections. The nitride membrane serves 
as a mirror for laser beam, and it can move the 
related reflected laser mark. The mark’s position is 
sensed using position-sensing device, which is a 
fotolateral diode. Diode double current signal is 
amplified and conditioned digitally by the ADuC812 
microcontroller. This single-chip microcontroller 
provides also the IEEE 1451.2 interface. 

Figure 2: Sensor node configuration example. 

The sensing subsystem combines two principles 
that provide both high precision and wide range 
pressure measurements. Large displacements are 
measured by the position of reflected focused laser 
beam. Small position changes are measured by one-
side layer diffractive lens principle. Sensor output 
signal is conditioned in digital by the ADuC812 
single-chip microcontroller, which provides the 

IEEE1451.2 interface as one of its communication 
ports. This microcontroller calculates the position of 
the light spot and converts that position on the 
measured pressure using an internal table. 

Figure 3: Sensor node implementation example. 

Figure 3 depicts principles of the implementation 
of that smart sensor. The STIM contains (1) a PSD 
sensor with two analog differential transducers 
(XDCR), (2) a microcontroller ADuC812 with 
nonvolatile memory containing a TEDS field 
(Transducer Electronic Data Sheet) that props IEEE 
1451.2 storing sensor specifications, (3) a TII 
(Transducer Independent Interface), (4) a 
temperature sensor necessary for signal 
conditioning, (5) an analogue-to-digital conversion 
units (ADC), and (6) a logic circuitry to facilitate 
communication between the STIM and the NCAP. 

INTERNET-BASED EMBEDDED SYSTEM ARCHITECTURES - End-User Development Support for Embedded System
Applications

67



 

The ADuC812 microcontroller, the basic building 
block of the smart pressure sensor electronics, 
includes on-chip high performance multiplexers, 
ADCs, DACs, FLASH program and data storage 
memory, an industrial standard 8052 microcontroller 
core, and supports several standard serial ports. The 
microcontroller may also utilize nonvolatile memory 
containing a TEDS field and ten-wire TII that prop 
IEEE 1451.2. 

7 CONCLUSIONS 

This contribution deals with industrial, sensor-based 
applications development support aiming at 
distributed components interconnected by Internet 
compatible intranets. The paper presents an 
approach to embedded system networking that offers 
a reusable design pattern for a class of Internet-
based applications. It aims at an integrated 
networking framework stemming (1) from the IEEE 
1451.1 smart transducer interface standard, which is 
an object-based networking model supporting client-
server and publish-subscribe communication 
patterns in group messaging, and (2) from the IP 
multicast communication, mediating efficient access 
to smart sensors through Internet. 

The pilot application demonstrates that clients 
can access groups of smart pressure and temperature 
sensors effectively through Internet. Each sensors 
group can be supported by an active web page with 
Java applets that, after downloading, can provide 
clients/subscribers with transparent and efficient 
access to measurement services flexible enough to 
satisfy various application requirements. 

The newly established application domain of 
industrial sensor networks brings special 
requirements not only on safety and security, but 
also on reuse of platforms developed originally for 
different domains. This paper deals with a concrete 
industrial embedded system networking design 
approach that employs meta-design principles for 
reuse IEEE 1451.1 smart transducer object model 
with publish-subscribe messaging over IP 
multicasting, which mediate efficient access from 
Internet to sensors and vice versa. Such solution can 
offer rapid tailoring of development environments 
aiming, among others, at sufficient response times 
also in frame of unpredictable Internet background 
traffic. 

This paper discusses a deployment of meta-
design principles for creating a flexible design 
environment focused on sensor systems 
interconnected by Internet aiming namely at 
industrial applications. Necessarily under-designed 
open source tools and techniques create design 

spaces for end-user developers in such application 
domains as pressure measurement along gas pipes, 
which is used as a case study demonstrating the 
principles of such environment exploitation. The 
sensor-based embedded systems accessible via 
standard Internet and based on the IEEE 1451.1 
standard as described in the paper can be simply 
reused, modified or redesigned to new systems not 
only for industrial, but also for scientific, medical, 
biological and other purposes. 

ACKNOWLEDGEMENTS 

This research has been partly funded by the Czech 
Ministry of Education in frame of the Research 
Intention No. MSM 0021630503 MIKROSYN: New 
Trends in Microelectronic Systems and 
Nanotechnologies; and by the Grant Agency of the 
Czech Republic through the grants GACR 
102/05/0723: A Framework for Formal 
Specifications and Prototyping of Information 
System's Network Applications, and GACR 
102/05/0467: Architectures of Embedded Systems 
Networks. 

REFERENCES 

Eugster, P.T., et al., 2003. The Many Faces of 
Publish/Subscribe. ACM Computing Surveys, Vol. 35, 
pp.114-131. 

Fischer, G. et. al., 2004. Meta-Design: A Manifesto for 
End-User Development. Communications of the ACM, 
Vol.47, No.9, pp.33-37. 

IEEE, 2000. IEEE 1451.1, Standard for a Smart 
Transducer Interface for Sensors and Actuators -- 
Network Capable Application Processor (NCAP) 
Information Model. 

Miller, C.K., 1999. Multicast Networking and 
Applications, Addison-Wesley, Reading, 
Massachusetts, USA. 

Morch, A.I., et. al., 2004. Component-Based Technologies 
for End-User Development. Communications of the 
ACM, Vol.47, No.9, pp.59-62. 

Sveda, M. and R. Vrba, 2003. An Integrated Framework 
for Internet-Based Applications of Smart Sensors. 
IEEE Sensors Journal, Vol.3, No. 5, pp.579-586. 

Sveda, M., et al., 2005. Introduction to Industrial Sensor 
Networking, A book chapter in: Ilyas, M., and I. 
Mahgoub, (Eds.), 2005. Handbook of Sensor 
Networks: Compact Wireless and Wired Sensing 
Systems, CRC Press LLC, Boca Raton, FL, USA. 

ICE-B 2006 - INTERNATIONAL CONFERENCE ON E-BUSINESS

68


