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Abstract: Modeling human dynamics responsible for the formation and evolution of the so-called social networks – 
structures comprised of individuals or organizations and indicating connectivities existing in a community – 
is a topic recently attracting a significant research interest. It has been claimed that these dynamics are 
scale-free in many practically important cases, such as impersonal and personal communication, auctioning 
in a market, accessing sites on the WWW, etc., and that human response times thus conform to the power 
law. While a certain amount of progress has recently been achieved in predicting the general response rate 
of a human population, existing formal theories of human behavior can hardly be found satisfactory to 
accommodate and comprehensively explain the scaling observed in social networks. In the presented study, 
a novel system-theoretic modeling approach is proposed and successfully applied to determine important 
characteristics of a communication network and to analyze consumer behavior on the WWW. 

1 INTRODUCTION 

Understanding the mechanisms underlying the 
formation and evolution of social (communication, 
entertainment, financial, and the like) networks is 
crucial in many fields of human activity, ranging 
from software development, to market analysis, 
resource distribution and deployment, and to 
catastrophe prognosis and prevention (see Newman, 
2005, for a comprehensive survey). Recently, there 
is an increasing number of reports that the dynamics 
of social networks reveal statistical properties 
conforming to the power law (Johansen, 2004; 
Barabasi, 2005; Oliveira and Barabasi, 2005; 
Adamic and Huberman, 2000; Scalas et al., 2006). 
Striving to find a universal model for the human 
behavior apparently responsible for the observed 
statistics, researchers have been quick to affiliate 
social networks with the familiar Zipfian phenomena 
(Newman, 2005; Barabasi and Albert, 1999). 

There exist a rich variety of stochastic processes 
leading to a power, heavy-tailed (e.g. Zipf, Zipf-
Mandelbrot, or Pareto) form of the probability 
distribution of an observed random variable 
(Mitzenmacher, 2003). Only a small fraction of 
these processes, however, would be considered 
relevant to discuss in a social, economic, or 
anthropological context peculiar to the development 
of social networks. Even fewer processes have 
actually been explored as possible generating 
mechanisms for the network dynamics and tested 
against real-world data. 

Adamic and Huberman (2000) gave an 
explanation for the power-law distribution of the 
consumer activities in a global e-market, such as the 
World-Wide Web (WWW). The proposed model 
exercises the well-studied multiplicative growth 
stochastic mechanism for the network expansion but 
carries no implication about the human behavior. 
Barabasi (2005) suggested a version of the 
preferential selection mechanism to describe the 
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dynamics observed in a university e-mail network. 
While he did propose a model for human 
communicative behavior, which is, effectively, 
choice based on priorities, this model requires 
making rather implausible assumptions (e.g. about 
uniformly distributed priorities) and yet 
demonstrates poor predictive results even for the 
data originally used in the study (see Figure 1; also 
Stouffer et al., 2005). Johansen (2004) derived an 
empirical formula, which provides a good 
approximation for the general response rate of a 
human population, working with the same data as 
the previous author (Figure 1). Another example of 
the empirically grounded approaches to modeling 
the dynamics of social networks is a modification of 
the Zipf-Mandelbrot law – the formula suggested by 
Krashakov et al. (2006) to characterize the 
popularity of Web-sites that apparently has a 
predictive power better than the classic (e.g. the 
“pure” power or Zipf law) models. The latter two 
studies, however natural, offer little insight on why 
the observed networks exhibit scale-free properties. 

In the absence of a sufficiently universal 
alternative to the power law (see Solow et al., 2003, 
for a relevant discussion), the above mini-survey is 
quite indicative of the current situation with the 
understanding and modeling of the dynamics of 
social networks. Whenever the true mechanism 
underlying the observations is not known, the most 
probable scenario is that any process generating 
heavy-tailed data is either “by default” (i.e. with a 
minimal, if any, attention to statistical hypothesis 
testing and model validation) attributed to (a version 
of) one of the well-studied power-law generating 
mechanisms, such as multiplicative growth, 
preferential attachment, optimal coding, etc. or 
simply approximated with an empirical “a la Zipf” 
formula having an arbitrary interpretation that can 
hardly be discussed in a context different from mere 
curve fitting. 

In the presented study, the authors aim to 
improve upon this, in essence theoretical, deficiency 
and focus on the development of a reasonably 
universal approach that would provide a distinct 
modeling perspective and have a potential to deliver 
a plausible and verifiable explanation of scale-free 
phenomena discovered in diverse social networks. 

The next section gives a general mathematical 
framework. It is applied to analyze possible reasons 
of the power law patterns in the observed behavior 
of complex systems. Two experiments are then 
conducted to determine the dynamic structure of 
social networks, based on the proposed theory, and 
their results are briefly discussed. The study’s 

conclusions are drawn, and plans for future research 
are outlined. 

2 SYSTEM-THEORETIC 
FRAMEWORK 

In this section, we will analyze the observed 
behavior of the so-called complex systems – the 
conglomerates (physical, social, cognitive, 
cybernetic, or the like) whose internal mechanisms 
and structure by some reason cannot be inspected in 
full. Power-law phenomena are very often associated 
with (produced by, observed in, etc.) such systems. 

Let us consider a system Ω  defined in a very 
general sense, i.e. as the object of investigation (not 
necessarily physically grounded). An observable O  
is a property of the system Ω  that can be 
investigated in a given context. We will assume that 
Ω  exists in different states and that different states 
of the system release themselves as different 
outcomes of observations (measurements, etc.) 
associated with observables O . The latter means 
that the system states (or behavior, seen as state 

Figure 1: Problems with explaining the heavy-tailed 
activity pattern in e-mail communications: While the 
empirical formula (solid line) derived by Johansen (2004) 
provides a better approximation for the distribution of τ , 
the time taken by an individual to reply to a received e-
mail, than Barabasi’s model (dashed line) based on an 
activity-prioritizing mechanism (Barabasi, 2005), it gives 
no clue about the generating process. (For details on the 
data, see Eckmann et al., 2004.). 
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change) are in principle conceivable through their 
representations resulting from observations of O . 

We will seek to determine the distribution of the 
occurrence number of different representations 
associated with a given observable across increasing 
expenditures of time. In so doing, we will assume 
that a) the same state can have different 
representations, and b) different states can have the 
same representation. The analysis will be in three 
steps. 

Step I: to characterize the occurrence number (or 
rate) of different representations of one (identical) 
state for the same observable 0O . 

Case 1: Let the process of system state 
representation implement an efficient encoding 
procedure so that consttk r =0 , where 0k  is the 
expectation of a discrete random variable 0K  
revealing the occurrence number of different 
representations, and rt  is the average time of state 
representation. 

To estimate )(
0

sfK  the probability mass 

function (PMF) of 0K , we will maximize its 
entropy )(ln)(

00
sfsfH KKsΣ−= , …,2,1=s , 

subject to constraints 1)(
0

=Σ sfKs  and 

0)(
0

ksfs Ks =Σ . This will give us “the least biased 
estimate possible on the given information” (Jaynes, 
1957). 

The optimization problem is solved using a 
Lagrangian approach. The Lagrangian function is 
defined as 

,))((
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where γ  and λ  are coefficients, with optimality 
conditions 0)(

0
=∂∂ sfKL/ , 0=∂∂ γL/ , and 

0=∂∂ λL/  (Cover and Thomas, 1991). From the 
first and second conditions, one can then derive 

 λλλ s
K eesKsf −−=== )1(]|Pr[)( 0

0
, (2) 

where …,2,1=s . Since == ∑
∞

=1
0 )(

0
s

K sfsk  

)1(/1)1/(
0Kfee =−λλ  and 10 >>k , 1)1(

0
<<Kf  

and 1<<λ , and therefore 0/1 k≈λ . 

Case 2: Let us now consider a different-type 
system and impose a conservation constraint for the 
representation (observation) time by requiring that at 
any time, only one but not necessarily the same 
property of the system is evaluated. In other words, 
we will assume that there are multiple competing 
observables for the same state. We will also assume 
that these observables are independent. (To simplify 
technicalities, the following discussion will mainly 
be built around the continuous case, i.e. for 0k  the 
continuous counterpart of 0K , yet with the 
customary abuse of the notation when the same 
symbol is used to refer to a random variable and to 
its value.) 

For θ  a period of time, 0w  the rate of the 
representation change is given as θ/00 kw = . 
Under the above assumptions, the dynamics of 0w  
can be modeled using a system of differential 
equations defined as follows: 

 i

N

n
ni

i wa
dt

dw ημρ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=0
 (3) 

where μ  is the investigated state rate (characterizes 
the “true,” as opposed to the observed, behavior of 
the system), N  is the number of competing 
observables, Ni ...,,1,0= ; )(tiη  is a Gaussian noise 
(e.g. due to measurement errors) with average zero, 
some 0)( >tai , and ρ  is a parameter to account for 
the efficiency of the representation process (i.e. the 
system state may principally be only to an extent 
available for observation). 

Equations (3) describe a diffusion process in the 
vicinity of a hyperplane nwnΣ=ρμ  formed by 

1+N  observables with nw  representation rates, 
whose values are (approximately) uniformly 
distributed in the interval ],0[ ρμ . Due to the 
hyperplane condition, there can be only N  mutually 
independent observables, say NOO ...,,1 . 

θρμθ =Σ=Σ nn wk nn  by definition. The probability 
that 0kkn ≥ , Nn ...,,1= , can be calculated as a 
product of the marginal distributions 

θρμ1)( =nkf , that then yields 
N

N kkkkk )1(]...,,Pr[ 0001 θρμ−=≥≥ . Probability 
theory defines the cumulative distribution function 
(CDF) for some 0x  taken from the set of all random 
variables that obey a given probabilistic law as 

],,Pr[)( 0010 xxxxxF N <<= … . In this context and 
for 1>>N , one can write: 
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 λθρμ 01)1(1)( 00
kN ekkF −−≈−−∝ , (4) 

where parameter 1)( −′= ρθλ rt  is, up to the constant 

θρ1 , determined by 1))1/(( −+=′ Ntr μ  the 
representation time averaged over the observables 
(note that generally, rt  of Case 1 is not equal to rt′ ). 
At this point, we would like to note that while there 
would be a number of modeling scenarios both, 
similar to and different from those of Case 1 and 2, 
which would produce an exponential form for the 
distribution sought, the approaches discussed above 
have two important implications. First, the models 
defined with Equations (2) and (4) both stipulate that 
under other similar conditions, more often met 
representations correspond, on average, to system 
states with a shorter representation time. Second, for 
an occurrence number significantly greater than 1, 
the parameter 1<<λ . 

Step 2: to characterize )(tk  the representation 
occurrence number of many different states for the 
same observable 0O . 

For the system Ω , the measured stochastic 
variable k  will be a sum of random variables 

...21 000 +++ kkk , where the summands are due to 
different states having identical representations. The 
statistical properties of k  will then depend on the 
parameter λ  that can naturally vary (e.g. as a result 
of a variation in the average representation time for 
different states). Let )(λg  be the probability density 
function (PDF) of λ . For a large number of states 
investigated by means of 0O , )(kf  the PDF of k  
is defined as a )(λg  parameter-mix of 

)|( λ=Λkf : 

 ∫
∞

Λ
==Λ= ∧

0
0 )()()()|()( λλλλ dkPggkfkf , (5) 

where )( 0kP  is the PDF of 0k  discussed in Step 1. 
Step 3: to generalize the result of Step 2. 
The random variable k  may reflect more than 

one (presumably associated with the observable 0O ) 
property of the system Ω , while the system 
mechanisms controlling the observable may be 
heterogeneous in time (e.g. owing to environmental 
perturbations). This can provoke the existence of 
more than one probability distributions for λ . When 
M  the number of statistically independent factors 
influencing the observation (or the system behavior) 

is finite, )(kP  the PDF of the occurrence number of 
system state representations can be estimated as 

 ∑
=

=
M

i
ii kfckP

1
)()( , (6) 

where weights ic  give the likelihood to observe the 
influence of the i-th factor on the random variable 
k , and each )(kfi  is specified with Equation (5) 

and is determined by the (sub)system parameters as 
it was discussed in Step 1. 

3 WHEN THE POWER LAW? 

The analytic framework formulated in the previous 
section is fairly general and can be applied to 
analyze the behavior of virtually any complex 
system. It should be emphasized however, that the 
focus of the developed model is on the frequency 
(count) of observed activities rather than on their 
durations. Most of the modeling approaches 
discussed in the introduction are therefore not 
directly comparable to the one proposed in this 
study. Given the fact that in social systems, there 
often exists a detectable (though not always easily 
formalizable) connection between the frequency of a 
certain activity and its duration, it appears 
interesting to explore under what conditions 
Equation (6) may produce a power form of the 
probability distribution. 

An acute reader would have already noticed that 
the substitution of the exponential PDF into 
Equation (5) yields a Laplace transform of the 
product )(λλ g : 

 ∫
∞

−=
0

)()( λλ λdGekf k , (7) 

where )(λG  is the CDF of λ . 
This is a very nice result since it, owing to 

Bernstein’s theorem (Bernstein, 1928), stipulates 
that if )(kf , the PDF of the observed variable, is 
completely monotone, i.e. all its derivatives exist 
and 0)()1( )( ≥− kf nn  for any integer 0>k  and 

1≥n , there can always be found some proper )(λG  
in effect describing the internal (i.e. not directly 
observed, “true”) dynamics of the system. There is a 
large class of probability distributions for λ  (e.g. 
originated from or simply approximated with the 
Beta of the Second Kind probability distribution 
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)(1 )1())()(/)(()( qppqpqpg +−− +ΓΓ+Γ= λλλ , 
where )(⋅Γ  denotes the Gamma function, 0>p  and 

0>q  are parameters, which encompasses many 
commonly used distributions, such as the Log-
Normal, Gamma, Weibull, etc. – see McDonald and 
Xu, 1995) that will cause “fat” tails of the observed 
data β−∝ kkf )(  for some 0>β  as ∞→k  (Abate 
and Whitt, 1999). This asymptotic property will, 
however, not necessarily be maintained for small k . 

Generally, the developed model dictates that in 
the case of a homogeneous (i.e. assuming the 
existence of one PDF )(λg ) system, candidate 
distribution functions for the description of the 
statistical properties of k  and λ  should satisfy 
Equation (7). In view of this, an interesting exercise 
would be to find a family of probability functions 
satisfying the Laplace transform (7). Unfortunately, 
no closed analytic forms for )(λg  exist in many 
cases of long-tailed )(kf . 

Equation (6) further stipulates that in order for 
β−∝ kkP )( , either all the summands should have 

an identical “heavy-tailed” form (that would indicate 
certain self-similarity existing in the system) or at 
least one of the summands should have a power 
form with an exponent iβ  small enough to 
dominate the asymptotic behavior of the other 
distributions. 

4 MODELING THE DYNAMICS 
OF SOCIAL NETWORKS 

To verify the proposed model against real-world 
data and explore its predictive and analytic 
capabilities, two experiments have been conducted. 

4.1 Experiment 1 

Data used in the experiment is a sample representing 
the timing of e-mails sent and received by a group of 
~10000 people at a university in Europe during a 
period of ~80 days. The corresponding server log-
file was obtained from the authors of Reference 
(Eckmann et al., 2004). Specifically, we have 
focused on the time taken by an individual to reply 
to a received message – the human response rate; 
there have been extracted ~24000 of reply times 
from the file. It was reported elsewhere (Eckmann et 
al., 2004; Johansen, 2004; Barabasi, 2005) that 
power-law generating mechanisms could be behind 

the formation of the distribution of this data, as it 
exposes the characteristic (yet noisy) heavy-tailed 
pattern (see Figure 1; also the inset in Figure 2). 

The discretization time interval for the delays 
with reply was set to 1 minute. No other 
preprocessing has been done. The investigated 
system in this case is the social system that existed 
at the university, and the observed property is the 
perturbed (by incoming e-mails) communication 
timing. It is expected that delays with reply to 
received e-mails reveal the rate of the system 
internal state change (e.g. in its simplest form, from 
“e-mail is not replied” to “e-mail replied”). 

The two-parameter Gamma distribution 
)(/)( 1 νλλ λνν Γ= −− bebg , where 0≥λ , 0>b , 

0>ν , and )(⋅Γ  denotes the Gamma function, was 
chosen to characterize the system’s hidden 
dynamics, because this is a simple form well 
describing cognitive processes and “mental” reaction 
time (Luce, 1986). This form can, and possibly 
should, be considered for )(λg  regardless what is 
the “true” mental architecture triggering one or 
another investigated human activity (van Zandt and 
Ratcliff, 1995). Taking into account the discrete 
nature of the observed variable value count and after 
substitution of the corresponding PMF and PDF into 
Equation (5), Equation (6) is specialized to 
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Figure 2: Estimation of the dynamic social structure based 
on an analysis of the traffic in a university e-mail network.
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that is thus the probability mass function of the 
occurrence of a human response rate. Note that each 
of the summands has the form of the discrete Lomax 
distribution. 

Figure 2 depicts the complementary cumulative 
sums calculated for the data and the model (8) with 
parameters ic , ib  and iν  obtained by a numerical 
maximum likelihood method and 3=M  as yielding 
the smallest value of Akaike’s Information Criterion, 

nxL 2))|ˆ(log(2AIC +−= φ , where ))|ˆ(log( xL φ  is 

the log-likelihood maximized with parameters φ̂  

(for the PMF (8), Mibc iii ...,,1},ˆ,ˆ,ˆ{ˆ
1 == ≠ νφ ) for a 

given sample x , and n  is the number of estimable 
parameters (for 3=M , 8=n ). AIC  is a 
fundamental measure assessing the relative 
Kullback-Leibler distance between the fitted model 
and the unknown true mechanism, which actually 
generated the observed data (Akaike, 1983). Taking 
into account the information known from the 
original report (Eckmann et al., 2004) about the 
structure of the social system in focus, models with 
M  the number of components ranging from 1 to 4 
have been tried in the experiment. The second-best 
model had 2=M , 5=n  and was therefore simpler, 
but with an AIC  value by 90 greater than in the case 
of 3=M  it had to be omitted from further 
consideration (Sakamoto et al., 1986). 

4.2 Experiment 2 

To explore the dynamic structure of an e-market on 
the World-Wide Web, a data sample representing 
the activity of America Online (AOL) users (acting 
as consumers of the services provided by Web sites) 
has been obtained from the authors of Reference 
(Adamic and Huberman, 2000). The sample covers 
approximately 120000 sites accessed by 60000 users 
during one day. 

Figure 3 shows the results of the modeling of the 
consumer activity dynamics with formula (8). It is 
assumed that a hit to a particular site corresponds to 
a specific mental or “goal” state, and that these 
states are common (i.e. shared) within the population 
(from a generic anthropological viewpoint, this 
seems a natural assumption). As no a priori 
information was available on the structure of the 
social system examined, four prediction models have 
been probed by varying the value of M  from 1 to 4. 
The two models displayed in the figure are 
statistically justified by the data and perform 
practically equally well. 

5 DISCUSSION 

It is quite illustrative that while a “pure” form of the 
power law would fail to reasonably accurately 
predict probabilities for the entire ranges of the data 
used in the experiments, as the corresponding 
complementary cumulative sums visibly do not form 
single straight lines on the double-logarithmic plots, 
the model specified with Equation (8) produces 
sound fits. 

For the university e-mail network, Pearson’s 2χ  
test does not reject the model with a significance 
level 001.0=α  that might be considered good 
enough in the case of noisy data. An objection 
would, however, be made that the proposed model 
overfits the data: the large number of its parameters 
creates a situation when the fit may be driven by the 
random fluctuations rather than by the “true” 
statistical properties of the data. 

The values of ic  the parameters obtained in the 
first experiment suggest that the examined social 
system has an internal structure: there are two 
subsystems with different dynamics responsible for 
the generation of approximately 81 and 18% of the 
observed variety in delays with reply to an e-mail; 
about 1% of the occurrences – for the most typical 
and shortest delays – are probably caused by factors 
other than social (e.g. owing to an auto-reply 

Figure 3: Modeling the Web site (server) visiting rate 
(hits) observed on December 1, 1997, in a segment of the 
WWW. (For details on the data, see Adamic and 
Huberman, 2000.). 
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function of the e-mail clients or the processing of 
long mailing lists) and may be excluded from 
consideration. 

The larger, “static” subsystem – A in the inset of 
Figure 2, where the distributions are built for the 
data, the model, and the model’s 3 components – 
produces on average longer yet unique delays (for a 
gamma-distributed λ , the estimate of its mean 

bv /ˆ =λ ). The second subsystem – B – is 
approximately 4 times smaller (or 4 times 
observationally less influential) and 6 times more 
dynamic (and hence, as it could be speculated, is 
more constrained and/or has stronger social ties). 
These size estimates principally conform to the ones 
reported in the original work (Eckmann et al., 2004) 
and independently obtained through somewhat 
intricate analysis of the individual communications 
present in the sample. This, along with the fact that 
the obtained parameters behave just as it is implied 
by the model (back to Section 2), can be considered 
as strong evidence in support of the hypothesis that 
Equation (8) does describe the system behavior but 
not merely approximates the data. 

In the second experiment, the models with two 
and three Lomax-distributed components are not 
rejected by Pearson’s test with 1.0=α . The 
difference in AIC  calculated for these models 
implies that neither should be favored in the absence 
of information other than obtained from the data. 
Nevertheless, both of them suggest that 
approximately 10% of the observed variety in the 
site popularity is due to mental states (and 
corresponding activities) most often experienced 
(pursued) by the consumers at the e-market. The 
latter does not appear implausible in the light of the 
Internet demographic survey for 1997 by Nielson 
Media Research (http://www.nielsenmedia.com) 
stating that 73% of the consumers used the WWW to 
search for information about products and services 
by means of accessing a small number of Web 
portals and search engines, such as Yahoo®, etc. 

It is understood that for any “complete” 
validation of the proposed model, many more 
experiments are required but are beyond the limits of 
this paper. Additional cross-checking and 
verification are, however, still indispensable because 
technically, derivation of the Lomax (Pareto Second 
Kind or General Pareto) distribution as a gamma 
mix of exponentials was first reported several 
decades ago (Harris, 1968) but did not receive due 
attention in complex system research. 

One supportive argument for the proposed 
approach is that it does not contradict the findings 
about the dynamics of social networks reported in 

the literature, but instead generalizes them. The 
widely held form of the power law 

1/)( += ννν kbkP  can be obtained from Equation (8) 
for bk >>  by Taylor series expansion (the minuend 
– by small kb /)1( − , and the subtrahend – by small 

kb / ) under the assumption that the investigated 
system is homogeneous (i.e. by setting 1=M ). 

Let us now consider an asymptotic 
approximation of the model, which is also the 
continuous counterpart of Equation (8): 

 1)()( −−+= νν bkbkP v
c . (9) 

From 

 ∫
∞

−+==
x

c xbbldkkPlxR νν )()()( , (10) 

where )(xR  gives r  the rank of a unit of size x , 

)()()2()1( lr xxxx ≥≥≥≥≥ "" , in a set of l  
objects, one can easily obtain 

 1/1/11 −−+− −= lbrlbfr
νν , (11) 

where rf  is the relative occurrence frequency of the 
r-th popular unit. When ur >> , this result coincides 
with the empirical formula α−++= )( ruqdfr , d, 
q, and u are some constants, obtained by the authors 
of Reference (Krashakov et al., 2006). Moreover, 
the negative values of d empirically calculated in the 
latter study are generally in agreement with what 
would be estimated based on the sample size by 
applying formula (11), where 0, >lb  by definition. 

As a final remark, let us mention that a 
lognormal distribution is often discussed as an 
alternative to the power law when describing the 
dynamics of complex systems (Mitzenmacher, 2003; 
Stouffer et al., 2005). Given bk >>  and some m, 

km ln2 >> , Equation (8) can be approximated as 

 ν

ν
νν /2

2)(ln2

)( m
mk

m

e
k
ebkP

+−
=  (12) 

that gives its lognormal asymptotic form. 

6 CONCLUSIONS 

Having defined the overall goal as to deliver a 
universal but simple and accurate theoretical model 
for the observed behavior of a large class of complex 
systems, in this particular paper we focused on the 
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formation of the dynamics of social networks and on 
methods for the network structure analysis. A 
mathematical model correctly describing these 
phenomena would help optimize resource and 
service allocation as well as economic and 
management policies for companies in both the 
traditional and electronic business sectors, and also 
for organizations involved in collaborative activities, 
such as distribution of funds, innovation and know-
how exchange, and so on. 

We have applied the apparatus of statistical 
physics to describe the emergence of social 
networks. The network dynamics was defined in 
terms of its structure (i.e. how many subsystems are 
there and what is, as observed, their influence on the 
overall dynamics) as well as parameters of its 
elementary constituents (these parameters are the 
mental reaction time and, possibly, response times of 
external systems coupled with or simply affecting 
the social network). In the presented experiments, 
the proposed model has demonstrated a prognostic 
potential far superior to any of the classical 
modeling approaches. At the same time, the model 
proved to be quite encompassing but natural and 
thus easy to interpret and validate. 

In our prior research reported elsewhere, the 
system-theoretic framework was successfully 
applied to capture the structure of different 
languages and to compare the efficiencies of text- 
and hypermedia- based communication (Kuleshov et 
al., 2005; Kryssanov et al., 2005). In future studies, 
we plan to explore various authorship networks. 
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