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Abstract: In this paper, we present adaptation strategies for low-delay video streams over Additive-Increase 
Multiplicative- Decrease (AIMD) transport protocols, where we switch among several versions of the coded 
video to match the available network bandwidth accurately, and meet client delay constraints. By 
monitoring the application buffer at the server, we estimate the current and future server buffer drain delay, 
and derive the transmission rate to minimize client buffer starvation. We also show that the adaptation 
accuracy can be significantly improved by a simple scaling to transport protocol send-buffer size. The 
proposed mechanisms were implemented over Stream Control Transmission Protocol (SCTP) and evaluated 
through simulation and real Internet traces. Performance results show that the adaptation mechanism is 
responsive to bandwidth fluctuations, while ensuring that the client buffer does not underflow, and that the 
quality adaptation is smooth so that the impact on the perceptual quality at the client is minimal. 

1 INTRODUCTION 

While the majority of traffic on the Internet today is 
comprised of TCP flows, conventional wisdom 
holds that TCP is unsuitable for “low-delay” traffic 
due to its lack of throughput guarantees and 
insistence on reliability (Krasic, 2001). For these 
reasons, there have been many proposals for new 
transport protocols for the purpose of solving the 
video transport problem over the Internet. These 
protocols need to be TCP-friendly to ensure that 
they will not cause network collapse. However, 
proving a new transport protocol to be TCP-friendly 
can be difficult, because the dynamics of TCP 
congestion control is extremely complex (Hsiao, 
2000).  

AIMD-based transport protocols experience rate 
variations for two distinct reasons -- the first being 
the protocol’s own congestion control behavior, i.e., 
the window-based congestion control algorithm, 
implemented by most of the AIMD-transport 
protocols, introduces saw-tooth fluctuation in the 

streaming rate, and the second being competing 
traffic in the network. Client-side buffers can be 
used for smoothing out the saw-tooth fluctuation of 
a flow (Krasic, 2001). However, despite any amount 
of buffering, competing traffic can have persistent 
effects on the streaming rate, and consequently on 
the viewing quality. The problem is more 
challenging in the case of low-delay video since 
client buffering is limited by end-to-end latency 
limit, and also data cannot be prefetched into the 
client buffer when extra bandwidth is available. 
Thus streaming video applications must deal with 
persistent rate changes, before the client-side buffers 
are overwhelmed. The usual way is to employ 
quality-adaptation control, adjusting the basic 
quality-rate trade off of the video.   

The primary design goal of quality-adaptation 
control mechanisms is to adapt the outgoing video 
stream so that, in times of network congestion, less 
video data is sent into the network and consequently 
fewer packets are lost and fewer frames are 
discarded. This rests on the underlying assumption 
that the smooth and timely play out of consecutive 
frames is central to a human observer’s perception 
of video quality. Although a decrease in the video 
bitrate noticeably produces images of coarser 
resolution, it is not nearly as detrimental to the 
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perceived video quality as inconsistent, start-stop 
play out. By switching between different quality levels 
during the stream, the mechanism makes a 
fundamental trade-off by increasing the video 
compression in an effort to preserve a consistent 
frame rate at the client. 

In this paper we focus on sender-driven quality 
adaptation, for low-delay video streams, to minimize 
any overheads at the client. In particular, we focus 
on quality adaptation using stream switching, as it 
has been shown to provide better viewing quality 
than adding/dropping layers, due to the layering 
overhead (Cuetos, 2001). First, we introduce an 
adaptive stream switching mechanism for low-delay 
video that does not require either modifications to 
the network transport protocol at the sender or at the 
receiver, or support from the network infrastructure. 
By monitoring the application buffer occupancy, the 
mechanism detects the network bandwidth variations 
and estimates the current and future server buffer 
drain delay, and accordingly it adapts the video 
transmission rate to minimize the client buffer 
starvation while ensuring that the adaptation affects 
the perceptual quality at the client minimally. Then, 
we show that by scaling the transport protocol send-
buffer according to the available bandwidth-delay 
product, the adaptation accuracy can be improved 
significantly.   

Although the presented mechanisms are suitable 
for video transport over AIMD-based transport 
protocols in general, we chose to implement them 
over Stream Control Transmission Protocol (SCTP) 
(Stewart, 2000). SCTP is an AIMD-based transport 
protocol, with many attractive features for video 
transport than TCP.  The most attractive features are 
multi-streaming and multi-homing support. Multi-
streaming allows data to be partitioned into multiple 
streams that have the property of being 
independently delivered to the application at the 
receiver. This means that the loss of a data chunk 
that belongs to a certain stream will only affect the 
delivery within that stream, without affecting the 
delivery of other streams. This feature prevents 
head-of-line blocking problem that can occur in 
TCP, as TCP supports only a single data stream. 
Multi-homing allows a single SCTP endpoint to 
support multiple IP addresses. In its current form, 
SCTP multi-homing support is only for redundancy.  
In addition, SCTP provides different reliability 
levels, which are more suitable for video transport 
than the strict reliability provided by TCP (Blak, 
2002). SCTP congestion control is similar to TCP, 
thus ensured to be friendly to other TCP flows 
sharing the same network (Brennan, 2001). 
This paper is organized as follows. In section 2, we 
present related work in video rate and quality 
adaptation mechanisms. In Section 3, we describe 

our system architecture. Section 4 describes the 
adaptation mechanisms and the SCTP send-buffer 
scaling. In Section 5, we evaluate the performance 
for our proposed mechanisms. Section 6 concludes 
the paper. 

2 RELATED WORK 

Multimedia adaptation has been studied for Internet 
applications, and the adaptive control schemes can 
be classified into receiver-driven and sender-driven. 
Receiver driven schemes allow receivers 
individually to tune the received transmission 
according to their needs and capabilities. Mehra and 
Zakhor (Mehra, 2003) modify the TCP protocol at 
the receiver end to provide video streams a nearly 
CBR connection over a bandwidth limited access 
link. Hsiao et al (Hsiao, 2001) present Receiver-
based Delay Control (RDC) in which receivers delay 
TCP ACK packets based on router feedback to 
provide constant bit rate for streaming. While 
receiver buffers can be used for smoothing out rate 
fluctuations, buffering is limited by the end-to-end 
latency limit.  

A majority of the sender-driven algorithms may 
be grouped under quality adaptation schemes. 
Quality adaptation techniques can further be 
classified into on-the-fly encoding, adding/dropping 
layers, and switching among multiple encoded 
versions. Kanakia et al (Kanakia, 1993) estimate the 
buffer occupancy and the service rate received by 
the connection at the bottleneck queue through 
periodic feedback messages from the network. These 
estimates are used to control the transmission rate of 
each video frame on-the-fly by adjusting the encoder 
quantization factor. However, in general, on-the-fly 
encoding is CPU intensive and thus regarded as 
unsuitable for streaming real-time video. In the 
adding/dropping layers scheme, the video stream is 
partitioned into several layers using scalable coding 
schemes such as MPEG-4 FGS or interframe 
wavelet video encoding. Video streaming 
applications can add or drop enhancement layers to 
adjust the transmission rate to the available 
bandwidth. In the switching-versions scheme, the 
video is encoded at different rates, and therefore 
different quality levels, and each of these versions is 
made available to the streaming server as an 
independent stream. The server detects changes in 
available bandwidth and switches among the input 
streams, in order to adapt the transmission rate to the 
available bandwidth. Quality adaptation that is based 
on multiple encoded versions has been shown to 
provide better viewing quality than adding/dropping 
layers, due to the layering overhead (Cuetos, 2001).  
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Besides quality adaptation, scheduling algorithms 
may also be used to improve the multimedia 
streaming adaptation. Saparilla and Ross (Saparilla, 
2000) prefetch future portions of the stored video 
into the client buffer as bandwidth is available. For 
low-delay video prefetching is not possible, and the 
server application transmits the video stream at the 
consumption rate, unless the available bandwidth is 
less than the consumption, at which time the stream 
is transmitted at the available bandwidth rate. 

3 SYSTEM ARCHITERCURE 

In our architecture, shown in Figure 1, low-delay 
media is encoded into multiple quality streams, 
which are fed to the adaptive media server. The 
server selects one of these streams Rin(t) and injects 
it into the server buffer. The server buffer is drained 
as fast as the network connection permits, i.e. Rout(t). 
The network output is fed into the client buffer. To 
smooth out short time scale bandwidth variations 
and to remove jitter, D units of time of the stream 
are allowed to build up in the client prefetch buffer 
before playback begins. The size of this buffer is 
limited by the maximum end-to-end latency 
constraints of the system. In addition, without loss of 
generality, we assume that the streams are CBR 
encoded.  
In this paper, we present adaptation algorithms that 
enable the server to stream the media across varying 
network bandwidth conditions while maximizing the 
video quality at the client. 

4 STREAM SWITCHING 
STRATEGIES 

Estimation of network bandwidth in the case of 
SCTP-based streaming is not straightforward since 
SCTP hides the network congestion status from the 
application. A somewhat delayed effect can, 
however, be seen in the application buffer. 
If the server is streaming at a certain rate and the 
network capacity goes below this rate, this will be 
reflected as increase in the server buffer occupancy. 
Similarly, if the server is streaming with a rate lower 
than the current network capacity, the server buffer 
will start to empty.    

The proposed mechanism monitors the 
application buffer at the server in order to estimate 
the current available bandwidth in the network, and 
accordingly it adapts the streaming rate. It reacts to 
the network congestion state so as to prevent client 

buffer underflow (the client prefetch buffer and the 
server buffer are mirror images of each other), in 
addition it tries to keep the number of quality 
changes at the client to a minimum so as to have 
minimal effect on the user perceived quality. We 
introduce below the criteria used for stepping up or 
down the streaming rate. The algorithm is described 
in the context of a low-delay stream, which the 
server receives from a live-source and forwards to 
the client over a SCTP connection.  

Consider that we have N available video streams 
(different encodings or derived sub-streams) with 
corresponding bit-rates jV  ( Nj ,,2,1 …= ) and we 
make the decision to switch at discrete time 
instances kt . Follows, we present the strategies to 
make this decision. 
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Figure 1: Streaming system architecture. 

4.1 Switching Down Strategy 

The minimum delay that any incoming packet (at 
time +

kt ) experiences with the server buffer at 
measured fullness ( )ktB  is the time required to 

drain the buffer. This delay min
+Δ k  may be estimated 

as
( )
( )k

out
k

k tR
tB

=Δ +
min , where ( )k

out tR  is the output 

rate estimated at time instant kt . ( )k
out tR  can be 

obtained using a Weighted Exponential Moving 
Average (WEMA) of the past and current bandwidth 
observations at the server. In order to satisfy the 
client delay constraints and prevent the client buffer 
from underflowing (server buffer from overflowing), 
we should have Dk <Δ +

min . Hence, whenever we 

observe Dk α>Δ +
min , we reduce the input rate to the 

largest available rate smaller than ( )k
out tR , so that 

we drain the server buffer build-up and preempt any 
overflow. The conservative factor α  ( 10 <<α ), is 
introduced in order to account for possible variations 
in the input and output rates during sampling 
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interval [ )1, +kk tt . Hence, for this interval, we select 

the input rate in
kR  as: 

                   
( )

{ }j
tRV

Nj

in
k VR

k
out

j <
=

=
,,1

max
…

,                            (1) 

where jV  are the N available video bit-rates. The 
factor α   should be selected based on the expected 
variations in the rates.  

This decision strategy aggressively reduces the 
input rate whenever it estimates buffer drain time as 
being greater than the computed threshold. Although 
such strategy follows any reductions in the available 
output bandwidth rapidly, it does not take into 
consideration the rate of change of the buffer, thus it 
can lead to unnecessary reductions in the input rate. 
For instance, even if the buffer fullness was being 
steadily reduced (based on a previous switching 
decision), this strategy could further reduce the input 
rate. This can lead to under-utilization of available 
bandwidth, and undesirable quality for the user. 
Thus we combined the instantaneous decision 
strategy with a look-ahead strategy that takes into 
consideration the rate of change of the buffer, 
through estimating the buffer fullness one sampling 
interval in the future. The look-ahead strategy 
estimates the server buffer at sampling instant 1+kt  
as: 
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where ( )uRin  and ( )uRout  are the instantaneous 
input and output rates. If the sampling intervals are 
chosen small enough, we can assume that the input 
and output rates are constant over the entire interval. 
Hence we may rewrite equation (2) as  
 
    ( ) ( ) ( )( )[ ]{ }0,maxˆ

11 kk
out
k

in
kkk ttRRtBtB −−+= ++        (3) 

 
where in

kR  and ( )( )k
outout

k tRR =  are the constant 
input and output rates interval [ )1, +kk tt . We then 

estimate the delay ( )
min

1 −+
Δ k  that would be experienced 

at the end of this interval (before time instant 1+kt ) 

as ( )
( )

out
k

k
k R

tB 1min
1

ˆ
+

+
=Δ − . Since during this sampling 

interval we want to avoid server buffer overflow, we 
would like to constrain ( ) Dk β≤Δ −+

min
1 , where β  

( 10 << β ) is another conservative factor 
introduced to account for possible variations in the 
input and output rates. Combining with equation (3) 
we can easily determine that: 
 

        
( )

( )
out
k

kk

k
out
kin

k R
tt

tBRD
R +

−
−

≤
+1

β
                       (4) 

We may thus use equation (4) to determine what 
input rate to switch to such that we avoid server 
buffer overflow, at the end of the current interval, as 
a result of the decision. The look-ahead strategy can 
avoid unnecessarily aggressive reductions and 
stream switches (thereby improving the visual 
quality) in the input rate by sometimes borrowing 
from, and sometimes provisioning for the future. 
However, it also makes assumptions that the output 
rate does not change significantly over the 
interval [ )1, +kk tt . Hence, when the timescale of 
network variations is smaller than the sampling 
interval (i.e. the network conditions change rapidly) 
the instantaneous decision is likely to outperform the 
look-ahead decision, and conversely if the sampling 
interval is smaller than the timescale of network 
variations, the look-ahead decision is likely to 
outperform the instantaneous decision. 
The combined decision strategy, shown in Figure 2, 
combines the benefits of these instantaneous and 
look-ahead decision strategies to minimize the 
number of stream switches (for better visual quality) 
while following the available bandwidth accurately, 
and satisfying the user delay constraints.  

4.2 Switching Up Decision Strategy 

While we attempt to switch down the server 
streaming rate as soon as we observe a low network 
bandwidth, we cannot similarly switch up the 
streaming rate.  This is because switching up too 
rapidly can actually create congestion in the network 
and thereby lead to oscillations between switching 
up and switching down, adversely affecting the 
video quality. Hence, it might be suitable for the 
server to attempt to stream at a higher rate, only after 
a certain duration during which the server does not 
observe a congestion event. The problem is that 
there is no explicit signal indicating when the server 
should switch up. For this reason, our mechanism 
carries out active experiments by probing the 
network to ensure that there is enough capacity for 
the next higher streaming rate. We call these 
experiments, switch-experiments. The switch 
experiment is triggered whenever the server does not 
experience a congestion event for an interval i

ET  
referred to as the Inter-Experiment timer. 
The experiment is performed by switching to the 
next higher available streaming rate, such that: 
 
                   { }j

RV
Nj

in
k VR

in
kj 1

,,1
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−>
=

=
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                          (5) 
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Figure 2: Combined switching down decision strategy. 

and each experiment lasts for a maximum duration 
of ST . During the switching experiments, the 
congestion monitor in the server continues to 
monitor the network and if no congestion is caused 
due to the experiment, this is considered an 
indication that the network can support the next 
higher bit rate stream. In this case, the server stays at 
the higher stream. However, if congestion is 
detected, as indicated in Step 3 of the combined 
switch down algorithm, the sender reverts to the 
lower rate. The sender also learns from the failed 
switch experiment, by exponentially backing off the 
Inter-Experiment timer i

ET  for this rate, before 
retrying the experiment. Backing off the timer is 
likely to reduce the number of rate switches at a time 
when the available bandwidth in the network cannot 
support higher streaming rate. The exponential back-
off is performed as follows: 
                ( )max1 ,min E

i
E

i
E TTT γ=+                  (6) 

where max
ET  is the maximum Inter-Experiment 

timer, and γ is the back-off factor. We clamp the 
back-off at a maximum to guarantee the sender will 
periodically probe for spare bandwidth. The Inter-
Experiment timer of the new stream is rested to 
initial value init

ET , when the switch experiment to 
this stream succeeds. The switching experiment 
duration ST  starts with an initial value init

ST and is 
updated using an exponential moving average of the 
time difference between starting a switching 
experiment to the failure detection time. If no 

congestion is detected for a duration of ST  seconds, 
then the server decides to stay at this higher 
bandwidth. Otherwise the switching experiment is 
terminated by switching down. 

4.3 Determining the Adaptation 
Parameters 

The performance of our adaptation strategies is 
controlled by a set of different parameters that 
include the sampling interval, the buffer drain time 
parameters α and β, the switch up times init

ST  and 
init
ET , and the exponential back-off parameter γ. 

We should keep our sampling interval small so that 
we can effectively track the network bandwidth 
variations. However, a small sampling interval leads 
to larger overheads in system complexity and 
transmitted bandwidth. In order to tradeoff these 
conflicting goals, we select the sampling interval 
based on the available network bandwidth; sample at 
small intervals when the network bandwidth is high 
(and the variations are likely to be more rapid), and 
sample at larger intervals when the network 
bandwidth is low (and the variations are likely to be 
less frequent). We can do this by sampling every 
time we transmit a fixed number of bytes. 
Empirically, we have determined that sampling 
every time we transmit ~16000 bytes (since we 
transmit complete packets) provides a good tradeoff 
for the adaptation. The other adaptation parameters 
have been tuned empirically to provide a good visual 
quality, however we can derive analytical bounds on 
their values based on the statistical properties of the 
network and video bit-rates. This is a direction of 
future research. 

4.4 SCTP Send-Buffer Scaling 

Based on the network congestion feedback, the 
SCTP sender uses the variable CWND to estimate 
the appropriate congestion window size, which 
determines the maximum number of 
unacknowledged packets in flight in the network at 
any time (Cuetos, 2001). In addition, SCTP uses a 
fixed size send-buffer to store application data 
before the data is transmitted. This buffer has two 
functions. First, it handles rate mismatches between 
the application sending rate and SCTP’s 
transmission rate. Second, it is used to keep copies 
of the packets in flight so they can be retransmitted 
when needed. Since the CWND determines the 
number of in-flight packets from the send-buffer, 
setting the send-buffer to be smaller than the CWND 
would reduce the throughput of the flow. On the 
other hand, setting the send-buffer much larger than 
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    Else 
          Test whether we can switch up 
4. Wait until next sampling interval. Goto Step 1. 
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the CWND, will cause more packets to be delayed in 
the send-buffer until they get chance to be sent in the 
network when acknowledgments have been received 
for the previous packets in the buffer. This will lead 
the application to lose control over quality 
adaptation, as it has to wait longer before making its 
quality adaptation decisions. In addition, fixed 
buffer size can introduce significant latency into the 
SCTP stream, as the packets have to sit in the send-
buffer until they get chance to be sent in the network 
(Goel, 2002).  

We propose to dynamically adapt the send-buffer 
size to be at least CWND packets. However, if the 
send-buffer size is limited to CWND, then 1) SCTP 
must inform the application when it has available 
space for more packet(s), as well as when it 
increases the CWND, and the application must write 
the next packet(s) before SCTP can send it. Thus, 
system timing and scheduling behavior can affect 
SCTP throughput. 2) Back-to-back acknowledgment 
arrivals exacerbate this problem. These adverse 
effects throughput, and can be reduced by adjusting 
the buffer size so that it is larger than CWND. We 
selected to set the send-buffer size to be 2 * CWND, 
as shown in equation (7), which ensures that the 
SCTP has a window worth of unsent data to keep the 
self-clock of acknowledgments flowing (Semke, 
1998).  
      SCTP send-buffer(t) =  2 * CWND(t)              (7) 
The sending application uses non-blocking write 
calls to ensure that the application is not blocked 
while there is no space in the SCTP buffer to accept 
more data, and the data stays in the application 
buffer. Thus the application buffer size will 
accurately reflect the current network conditions. 

5 PERFORMANCE ANALYSIS 

In order to examine our proposed adaptation 
strategies, we implemented them in Opnet network 
simulation tool (Opnet). We used the topology 
shown in Figure 4, where we assume that source S1 
is representing the video server, while receiver R1 
represents the video client, and S1 is using SCTP for 
streaming the video to the R1. Sources S2 – Sn are 
generating traffic that share the bottleneck A-B with 
the video stream. Unless specified otherwise, we 
assume that the bottleneck bandwidth is 5 Mbps and 
the Round Trip time (RTT) is 10 ms.  

1 Mbs, 10 ms 1 Mbs, 10 ms

1 Mbs, 10 ms 1 Mbs, 10 ms

5 Mbs, 10 ms
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Figure 4: Simulation topology. 

For the source S1, we use a XviD video codec 
(Xvid) to encode a 320×240 - 15 frames per second 
(fps) video sequence at different bit-rates, jV  (512, 
420, 335, 255, 210, 170 Kbps). The adaptation 
mechanism parameters are:  N = 6, D = 3 sec , γ = 2, 

10=init
ET  sec, 60max =ET sec, 10=init

ST sec. 
Additionally, we select the parameters α = 0.4, and 
β = 0.5. We measure the video quality in terms of 
the achieved average bit-rate, variations in the 
quality at the client, and data loss due to prefetch 
buffer starvation which can result in frame drops or 
pauses in the video to allow for rebuffering. Hence, 
we want to track the available bandwidth faithfully, 
while minimizing prefetch buffer underflow and 
maintaining a relatively constant quality by 
minimizing the number of stream switches. 

5.1 Bandwidth Adaptation 

We examined the adaptation mechanisms by real 
network trace, obtained from the PlanetLab 
(Planetlab), between two nodes one in the US east 
coast and the other in the west coast. The traces were 
collected over 70 minutes with 50 competing TCP 
connections and the bandwidth varied between 700 
Kbps and 120 Kbps. We show the adaptation 
performance over 3000 seconds in Figure 5. As 
expected the instantaneous decision leads to over-
aggressive switching down, thereby not following 
the network trace accurately, unlike the combined 
decision strategy. However, as we have mentioned 
before, bandwidth fidelity is not the only 
performance metric we evaluate. We also measure 
the number of stream switches and the number of 
dropped packets (due to server buffer overflow).  

5.2 Effect of SCTP Send-Buffer 
Scaling 

To examine the combined adaptation mechanism 
with the SCTP send-buffer scaling, we compared the 
adaptation mechanism, with and without the send-
buffer scaling. To vary the bandwidth between 
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sender S1 and receiver R1, we varied the number of 
active SCTP connections, as shown in Table 1. 
Figure 6 shows the bandwidth available to the SCTP 
connection between S1-R1, as well as the video 
stream rate received at the client R1. The graph 
shows that although the adaptation mechanism 
without the buffer scaling is able to track the 
available bandwidth, using the buffer scaling will 
We assumed that the SCTP connections will always 
have data to send. For each set of SCTP streams we 
run the experiment with and without the SCTP send-
buffer scaling. We calculated the normalized SCTP 
allow the application to track the available 
bandwidth more accurately, as the server buffer will 
be more reflective to the SCTP available bandwidth 
than the using a fixed size for the SCTP send-buffer. 
To ensure that the SCTP send-buffer scaling will not 
affect the SCTP throughput We run different number 
of SCTP streams through the bottleneck A-B, and 
we set all the connections to last for 200 seconds. 
throughput as the average throughput of a SCTP 
connection with the buffer scaling option to that 
without the buffer scaling.  

Figure 7 shows the normalized SCTP throughout, 
with 90% confidence interval, versus the number of 
active SCTP connections. The figure shows that the 
SCTP buffer scaling will not have an adverse effect 
on the SCTP throughput.  

Table 1: Number of active SCTP connections. 

Simulation Time 
(Sec.) 

Number of SCTP 
Connections 

0 25 
15 20 
30 40 
70 20 
 
In Figure 8, we examined the video stream 

goodput as a function of the RTT. We define the 
goodput as the percent of video packets that arrive 

before the display time of their video frame at the 
client to the total number of video packets sent from 
the server. 

In all the experiments we set the client pre-
buffering to 3 seconds. Results show that without 
quality adaptation 24% to 62% of the non-adaptive 
stream packets will miss their deadlines at the client. 
The reason behind this that the video sender is not 
adapting its rate to the available bandwidth, which 
leads many packets to be delayed at the sender and 
to miss their deadlines. This is reflected at the client 
as buffer underflow events, that leads the displayed 
video to continually freezes. 

6 CONCLUSIONS 

We proposed server adaptation mechanism, for low-
delay video over AIMD transport protocols. The 
server estimates information about the available 
network bandwidth by monitoring the application 
buffer and performs stream switching to meet 
bandwidth and delay constraints. We investigate a 
strategy that combined instantaneous and look-ahead 
strategies for switching down the transmission rate, 
and switch up the rate in a controlled manner after 
observing periods of no congestion.  We estimate the 
current and future server buffer drain delay, and 
derive the transmission rate to minimize client buffer 
starvation. In addition, we presented a simple scaling 
mechanism to the transport protocol send-buffer that 
allows the adaptation mechanism to follow 
accurately the network bandwidth and reduce the 
adaptation decision time. We implemented these 
algorithms over SCTP. The strategy with combined 
look-ahead and instantaneous decisions can follow 
the network bandwidth accurately.  In addition, the 
proposed SCTP send-buffer scaling does not affect 
the SCTP throughput, compared to SCTP with a 
fixed buffer size, while it improves the accuracy of 
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Figure 6: Received rate vs. available bandwidth. 
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the quality adaptation. 
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Figure 5: Adaptation performance for real trace. trace. 
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Figure 7: Normalized SCTP throughput versus number of 
connections. 
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Figure 8: Video stream goodput vs. round trip time. 

Disclaimer 

The views and conclusions in this document are 
those of the authors and should not be interpreted as 
representing the official policies, either expressed or 
implied, of the Army Research laboratory or the 
U.S. Government. 
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