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Abstract: This paper proposes an efficient HDL library of processing units for generic and DVB-S2 LDPC decoders 
following a modular and automatic design approach. General purpose, low complexity and high throughput 
bit node and check node functional models are developed. Both full serial and parallel architecture versions 
are considered. Also, a dedicated functional unit for an array processor LDPC decoder architecture to the 
DVB-S2 standard is considered. Additionally, it is described an automatic HDL code generator tool for 
arbitrary decoder architectures and LDPC codes, based on the proposed processing units and Matlab scripts. 

1 INTRODUCTION 

Low Density Parity-Check (LDPC) codes (Gallager 
1962; MacKay & Neal 1996) are among the most pow-
erful forward error correction codes known and can be 
applied in a vast number of applications, from data 
storage to telecommunications. The existence of effi-
cient coding and decoding algorithms combined with 
their good decoding performance called the attention of 
the scientific community and led already to their inclu-
sion in the recent digital video satellite broadcasting 
standard (DVB-S2) (ETSI 2005). Although simple, the 
decoding algorithm presents a significant challenge 
from the hardware implementation point of view. 

LDPC codes are a sub-set of linear block codes, 
defined by sparse parity check matrix H, to which a 
Tanner graph (Tanner 1981) can be coupled as for any 
linear block code. This bipartite graph is formed by two 
types of nodes, Check Nodes (CN), one per each code 
constraint (H rows), and Bit Nodes (BN), one per each 
bit of the codeword (H columns), with the connections 
between them given by H.  

The importance of the Tanner graph is reinforced 
by the fact that best known LDPC decoding algorithms, 
namely the Sum Product Algorithm (SPA) (Gallager 
1962; Chen & Fossorier 2002), are all derived from the 
Tanner Graph structure. The iterative procedure is 
based on an exchange of messages between the BN’s 
and CN’s of the Tanner graph, containing believes 
about the value of each codeword bit with these mes-
sages (probabilities) being represented rigorously in 

their domain or, more compactly, using logarithm like-
lihood ratios (LLR). The iterative procedure stops 
when a valid codeword is achieved or the maximum 
number of iterations is attained (in this case a decoder 
failure is declared). A simple iterative decoder can thus 
be constructed by considering each CN and BN of the 
Tanner graph as processing units, and the connections 
between them as bidirectional communication channels 
through which the processed information is sent. In this 
paper we propose a generic hardware implementation 
for the CN and BN processing units. 

A full parallel decoder is impracticable when con-
sidering codes of length 64800, as the ones that are 
proposed for the DVB-S2 standard, because of the 
large silicon area that would be needed for an imple-
mentation of this type, imposed not only by the high 
number of processing units, but also by the huge num-
ber of connections between them (which imposes 
severe routing problems).  

Following this line of thought Kienle et al. (2005) 
have proposed a partial parallel architecture with proc-
essing units being shared by groups of nodes, which 
allows a drastic reduction of the used silicon area. 
Another advantage of their proposed implementation is 
the fact that it explores the particular characteristics, 
namely, the periodicities, of the sub-set of LDPC codes 
adopted by the DVB-S2 standard (ETSI 2005), known 
as LDPC-IRA (LDPC - Irregular Repeat and 
Accumulate Codes). This allows the decoder to work in 
a reconfigurable way. 
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The fact that LDPC decoders can be constructed 
taking a modular approach allows the usage of auxil-
iary tools/libraries in their development. It is possible 
to design Matlab© application scripts, that according to 
certain parameters, are capable of creating and con-
necting the full set of module units needed for each 
decoder, according to the target architecture. 
Furthermore, these application scripts will be able to 
automatically generate HDL code, since the number of 
module units and respective interconnections depend 
only on the given parity test matrix H of the code. 

In the following sections we will describe with 
further detail the proposed HDL models for each 
processing unit. In Section 2 we present a short de-
scription of the LDPC-IRA codes and the special char-
acteristics of the ones adopted by the DVB-S2 stan-
dard. Section 3 presents a brief review of the sum 
product algorithm in the logarithmic domain (LSPA) 
following the traditional flooding schedule approach. 
Alternative scheduling methods that speed up the con-
vergence of LSPA algorithm are also referred in this 
section. In section 4, generic hardware modules are 
proposed for the basic processing units of a LDPC 
decoder. Section 5 describes the particular characteris-
tics of a generic processing unit for an array processor 
DVB-S2 LDPC decoder. Finally, in section 6, we 
describe the procedure of automatically generating 
Verilog/VHDL code for an LDPC decoder based on 
simple Matlab© application scripts and previously 
developed libraries.  

2 LDPC-IRA CODES 

The new Satellite Digital Video Broadcasting standard 
(DVB-S2) adopted a special class of LDPC codes 
known by IRA codes (Eroz, Sun & Lee 2004) as the 
main solution for the FEC system. LDPC-IRA codes 
ally to the powerful error correction capabilities of the 
LDPC codes, a linear encoding complexity. In fact, 
although the parity check matrix, H, of a LDPC code is 
sparse, the generator matrix needed for encoding, 
which is obtained from H through the Gaussian 
elimination method, is, in general, not sparse, leading 
to storage and encoding complexity problems. 

By restricting the H matrix to be of the form 
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where A is a random sparse matrix and B a staircase 
lower triangular one, we can obtain a LDPC code with 
almost the same performance (less than 0.1dB loss) as 
the best known LDPC codes for the same code 
dimensions, with linear encoding complexity. The 
obtained code is systematic, = ⎡ ⎤⎣ ⎦c i p , with the 
message/information bits, 0 1 1ki i i −= ⎡ ⎤⎣ ⎦i " , being 
associated to the A matrix, and the parity check bits, 

0 1 1n kp p p − −= ⎡ ⎤⎣ ⎦p " , to the B matrix. The corresponding 
BN’s of the Tanner Graph are known by Information 
Nodes (IN) and Parity Nodes (PN) respectively. 

The parity bits can be recursively calculated as: 
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2.1 H Periodicity 

The H matrices of the DVB-S2 LDPC codes have other 
properties beyond being of IRA type. Some periodicity 
constraints were put on the pseudo-random 
construction of the A matrices, which allows a 
significant reduction on the storage requirement of their 
descriptions, and also, the design of efficient decoding 
architectures (Kienle et al. 2005). 

The matrix A construction technique is based on 
dividing the IN’s in groups of M consecutives ones. All 
the IN’s of a group, say group l , should have the same 
weight, lw , and it is only necessary to choose the CN’s 
that connect to the first IN of the group in order to 
specify the CN’s that connect to each one of the 
remaining 1M −  IN’s of that group. The choice of the 

lw  CN’s that are connected to the first IN of group l , 
is random with the restriction that the resulting LDPC 
code is cycle-4 free and the number of length 6 cycles 
is the shortest possible. 

Denoting by 1 2, , ,
lwc c c…  the indices of the CN’s 

that connect to the first IN of group l , the indices of 
the CN’s that connect to the i-th IN of that group (with 
i M≤ ) can be obtained by: 
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with ( )q n k M= −  and 360M =  (a common factor for 
all DVB-S2 supported codes). 

 

SIGMAP 2006 - INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA
APPLICATIONS

18



 

3 SOFT-DECODING 

Best known LDPC decoding algorithms (Gallager 
1962) are based on an iterative message-passing 
between the BN’s and CN’s of the Tanner graph, 
containing believes about the value of each codeword 
bit. 

Given a ( ),n k  LDPC code, we assume BPSK 
modulation which maps a codeword ( )1 2, , , nc c c=    c " , 
onto the sequence ( )1 2, , , nx x x=    x " , according to 

( )1 ic
ix = − . Then, the modulated vector x  is transmitted 

through an additive white Gaussian noise (AWGN) 
channel. The received sequence is ( )1 2, , , ny y y=    y " , 
with i i iy x n= + , where in  is a random gaussian 
variable with zero mean and variance 0 2N . We denote 
the set of bits that participate in check m  by ( )N m  
and, similarly, we define the set of checks in which bit 
n  participates as ( )M n . We also denote ( ) \N m n  as 
the set ( )N m  with bit n  excluded and ( ) \M n m  as the 
set ( )M n  with check m  excluded. 

Denoting the log-likelihood ratio (LLR) of a 
random variable x  as ( ) ( )ln ( 0) ( 1)L x p x p x= = = , we 
designate: 
 

• nLP  - The a priori LLR of BN n, derived from 
the received value ny . 

• mnLr  - The message that is sent from CN m to 
BN n, computed based on all received messages 
from BN’s ( ) \N m n . It is the LLR of BN n, 
assuming that the CN m restriction is satisfied. 

• nmLq  - The LLR of BN n, which is sent to CN 
m, and is calculated, based on all received 
messages from CN’s ( ) \M n m  and the channel 
information, nLP . 

• nLQ  - The a posteriori LLR of BN n. 

3.1 Traditional Flooding-Schedule 

Traditionally, the LDPC iterative decoding procedure 
follows the so-called flooding schedule approach which 
consists in: all messages sent by BN’s are updated all-
together before being sent to CN’s processing units and 
vice-versa. The Sum Product Algorithm (SPA), 
proposed by Gallager, is carried out in the logarithmic 
domain as follows: 
 
- For each node pair (BNn, CNm), corresponding to 

1mnh =  in the parity check matrix H of the code do: 
 

Initialization:  2

2 n
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σ

= = , (4) 

 
Iterative body: 

A.  Calculate the log-likelihood ratio of message sent 
from CNm to BNn,: 
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The iterative procedure is stopped if the decoded 
word ĉ  verifies all parity check equations of the code 
( ˆ T =cH 0 ) or the maximum number of iterations is 
reached. 

3.2 Alternative Scheduling Methods 

It is well known that SPA, following the traditional 
flooding-schedule message updating rule, is an 
optimum a posteriori probability (APP) decoding 
method when applied to codes described by TG’s 
without cycles (Kschischang et al. 2001). However, 
good codes always have cycles and the short ones tend 
to degrade the performance of the iterative 
message-passing algorithms (results far from optimal). 
Motivated by the referred problem and the speed up 
convergence goal, new message-passing schedules 
have been proposed (Zhang & Fossorier 2002; Sharon 
et al. 2004; Xiao & Banihashemi 2004). 

Considering flooding-schedule, the messages sent 
by BN’s are updated all together (in a serial or parallel 
manner) before CN’s messages could be updated and, 
vice-versa. At each step, the messages used in the 
computation of a new message, are all from the 
previous iteration. A different approach is to use new 
information as soon as it is available, so that the next 
node to be updated could use more up-to-date (fresh) 
information. This can be done, for example, following 
two different strategies known by horizontal and 
vertical scheduling with a considerable processing gain 
in the number of iterations to reach a valid codeword 
(Sharon et al. 2004). 

Vertical-schedule operates along the BN’s that are 
processed in a serial manner. After a BN, says n, be 
processed, the messages, 'mnLr , sent by each CN 

( )m M n∈ , to all the other BN’s ( )' \n N m n∈ , are 
updated according to (5) taking in account the fresh 
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received information, nmLq , from BN n. This way, the 
next received BN to be processed receives information 
more updated. 

Horizontal-schedule strategy is similar to vertical-
schedule, with the only difference that it operates along 
the CN’s. 

4 PROCESSING UNITS FOR A 
GENERIC LDPC DECODER 

As already mentioned, a simple iterative decoder can 
be constructed by considering each CN and BN of the 
Tanner graph as processing units, and the connections 
between them as bidirectional communication channels 
through which the processed information is sent. Yet, 
this approach presents some disadvantages (principally 
for long and unstructured LDPC codes) from the 
hardware implementation point of view, as the high 
number of processing units required, but also the huge 
number of connections between them which impose 
severe routing problems. However, even for best 
known hardware structured and efficient LDPC codes, 
such as the one recently proposed for DVB-S2 standard 
(ETSI 2005; Kienle et al. 2005) or for LDPC decoders 
following different schedule approaches, the updating 
procedure of a single BN or a single CN remains 
unchanged which means that elementary hardware 
processing units can be developed for both CN and BN 
and, thus, LDPC decoders can be constructed under a 
modular approach. 

4.1 BN Processing Unit 

A BN processor should calculate the log-likelihood 
ratio messages sent from the assigned BN to its CN’s 
neighbours, the a posteriori pseudo-probability 
associated to the current BN and perform hard 
decoding taking a decision about its bit value. 
Considering a BN of weight w , the BN processor can 
be seen as a black box with 1w +  inputs, from where it 
receives the channel information plus w  CN messages, 

mnLr , sent from the CN’s connected to it, and with 
1w +  outputs, through where it communicates the hard 

decoding decision and sends the w  messages, nmLq , to 
the CN’s connected to it. 

Observing equations (6) and (7) we note that the 
message sent from BNn to CNm, can easily be obtained 
by 

 nm n mnLq LQ Lr= − . (9) 
 
The computation procedure can thus be optimized 

and done in serial or parallel mode. 
In a parallel version the inputs are added all 

together, producing the value of the a posteriori 

pseudo-probability, nLQ . The message outputs can 
then be computed simultaneously by just subtracting all 
entries from the output of the referred adder. This type 
of implementation requires an adder capable of adding 

1w +  inputs of x bits, as well as, w  output x bits adders 
in order to be able to perform the w  subtractions. This 
means that a high number of gates is required to 
implement just a single processing unit, but has the 
great advantage of a minimum delay system (high 
throughput), allowing us to lower the clock frequency 
which implies a reduction in the power consumption. 

...

...

 

Figure 1: High level HDL model for a BN processor unit - 
parallel configuration. 

Alternatively, in a serial version, the inputs are 
added on a recursive manner as shown in figure 2. The 
Reg_Sum register is initialized with the received 
channel information. The output messages can be 
obtained in a parallel manner as in figure 1, or using a 
full serial approach as shown in figure 2, with a new 
message being obtained at each clock cycle. 

This implementation minimizes the hardware 
complexity (measured in terms of number of logic 
gates) at the cost of a significant increase in processing 
time (time restrictions could require an increase in the 
clock frequency). The serial implementation has also 
the advantage of supporting the processing of a BN of 
any weight, at the expense of little additional control. 
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Figure 2: High level HDL model for a BN processor unit - 
serial configuration. 
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4.2 CN Processing Unit 

A similar approach to the one used in the previous 
section, can be followed in the computation of the mnLr  
messages, sent by a CN. In fact, the boxplus operation 
defined in (5) can be reversed as: 

 x y z x z y  = ⇔ =   ¢ ¯ ,  (10) 
where the boxminus operation is defined as: 

 ( )2LUT ,a b a b b −�¯ ,  
and  

 ( ) ( ) ( )2LUT , log 1 log 1a b a ba b e e+ − = − − − . 
 
Also, Equation (5) can be rewritten in the following 

way 

 
( )

'
'

mn n m nm
n N m

Lr Lq Lq
∈

⎛ ⎞
=  ⎜ ⎟⎜ ⎟

⎝ ⎠
¯¢ . (11) 

However, ( )1LUT  and ( )2LUT  functions contain 
logarithmic operators whose hardware implementation 
consumes a significant number of resources. Their 
implementation can be significantly simplified by 
approximating them by fixed point piece-wise linear 
functions, namely, with powers of two based 
multiplying factors (shifts and adders) (Hu et al. 2001; 
Masera et al. 2005). 

Boxplus and boxminus operations can both be 
implemented at the cost of four additions, one 
comparison and two corrections, each involving a shift 
and a constant addition, as shown in figure 3 and figure 
4.  

 

Figure 3: Block diagram of the Boxplus unit. 

 

Figure 4: Block diagram of the Boxminus unit. 

Sometimes the boxplus operation is even more 
simplified, with a small decrease in performance, by 

considering a void correction factor. This simplification 
of the SPA algorithm is known by Min-Sum (Chen & 
Fossorier 2002; Hu et al. 2001). 

Based on the proposed boxplus and boxminus 
hardware modules, it is possible to adopt a serial or 
parallel configuration for the CN processor (similar to 
the ones described for the BN processor unit). 
Nevertheless, the complexity of the boxplus operation 
on a parallel implementation requires a boxplus-sum 
chain of all inputs according to figure 5. 

 
Figure 5: High level HDL model for a CN processor unit - 
parallel configuration. 

The advantages of one configuration compared with 
the other are similar to the ones that were mentioned 
for the BN processor. However, it should be noted that 
the proportion of silicon area, occupied by a parallel 
implementation with respect to a serial implementation, 
is in this case significantly higher than the one for the 
BN processor, due to the number of operations 
involved in the boxplus and boxminus processing. In 
fact, the number of gates required by the boxplus and 
boxminus processing units is superior to the common 
add and subtract arithmetic operations. 
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Figure 6: High level HDL model for a CN processor unit - 
serial configuration. 

5 PROCESSING UNIT FOR A 
DVB-S2 LDPC DECODER 

The particular characteristics of LDPC-IRA codes 
adopted by the DVB-S2 standard turn possible to think 
in more efficient decoder solutions that surpass the 
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evident limitations of a full parallel architecture. In 
figure 7 is presented the basic architecture of a partial 
parallel array processor decoder solution for LDPC 
DVB-S2 (Kienle et al. 2005). This efficient architecture 
not only explores the periodicities of the adopted 
LDPC-IRA codes, but also has the great advantage of 
supporting all code rates and code lengths defined by 
the DVB-S2 standard, through a simple reconfigurable 
mechanism. 

In this section we suggest a possible 
implementation for each processor or functional 
processing unit (FU) that merges both the functions 
performed by the BN and CN units 

 

Shuffling Network

FU FU FU

...

...

 
Figure 7: Array processor architecture for a DVB-S2 
LDPC decoder. 

Since the IN’s are divided in groups of 360 
consecutives ones, with the properties of all the IN’s of 
a group (i.e. their weight and the indices of the CN’s to 
which each one connects) being characterized in terms 
of just the 1st IN of that group, it turns possible the 
simultaneous processing of each IN’s set, which 
appreciably simplifies the decoder control. At the other 
hand, considering the fact that there are BN’s and CN’s 
with different weights, in order to have a processing 
unit shared by different BN’s and CN’s, the serial 
implementation shown in figures 2 and 6 must be 
adopted. Thus, all messages are serially loaded to the 
functional units, with the control being based on the 
BN’s and CN’s weights. 

Attending to the fact that messages sent from CN’s 
to BN’s are computed based on the previous messages 
received from BN’s, and vice-versa, it means that a 
message value once used can be discarded, and the 
memory place that it occupies be re-used to store the 
new computed message. The shuffling network is 
responsible for the correct exchange of the messages 
between the CN’s and BN’s emulating the Tanner 
Graph. 

Considering the zigzag connectivity between PN’s 
and CN’s, the PN’s and IN’s are updated following 
different schedule methods. The traditional flooding 
schedule is carried on the IN’s, while PN’s are updated 
jointly with CN’s following the horizontal schedule 
approach. This fact requires some modifications on the 

CN processing unit from figure 6 in order to construct 
the basic functional unit. 

As referred, a single FU unit is shared by a constant 
number of IN’s, CN’s and PN’s (CN’s and PN’s are 
processed jointly), depending on the code length and 
rate. More precisely, for a ( ),n k  DVB-S2 LDPC-IRA 
code, the FUi, with 0, , 359i = " , in BN mode updates 
in a serial manner the following IN’s: 

( ){ }, 360, 2 360, , 1 360i i i i α +  + ×   + − ×" , with 360kα = . 
In CN mode, the same FU updates the CN’s and PN’s: 
{ }, 1, , 1j j j q +   + −" , with j i q= ×  and ( ) 360q n k= − . 
The used 360 FU’s operate in parallel and share all the 
control signals. They are sufficient to process in real 
time all the n  BN’s and n k−  CN’s of the code. 

In BN mode, only IN’s are processed and the FU 
layout is similar to figure 2. 
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Figure 8: FU in CN mode and zigzag connectivity 
between PN’s and CN’s. 

In CN mode, each FU updates not only the 
associated CN’s but also the corresponding PN’s (note 
that per each CN restriction exists a PN bit). Attending 
to the zigzag connectivity between PN’s and CN’s, 
when updating a PN, say m , according to (6), it works 
as a simple passing node because the message that it 
sends to the CNm+1 is simply the message received 
from CNm added to the channel information, and vice-
versa (see figure 8). Since each FU processes q  
consecutive CN’s, the PN’s updating can follow a 
horizontal schedule approach (both PN’s and CN’s 
processed simultaneously). This way, the message that 
travels through CN m , PN m  and CN 1m +  is kept in 
the FU and only the backward message that is sent 
from CN m  to PN 1m − , 

1mm PNLr
−→ , is saved in the 

external memory. The equations that describe the 
operation of the FU in CN mode are: 
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'
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where ( )IN m  means the set of IN connected to CN m , 
and Mem the internal memory of the FU. 

A problem arises when CN’s m  and 1m +  are not 
processed by the same FU. This situation occurs 
cyclically whenever ( 1) mod 0m q+ = , which means that 
if CN m  is processed by the FUi, then, CN 1m +  will 
be processed by the FUi+1. This situation was solved by 
transferring the contents of memory FUi to FUi+1, with 

0, , 358i = " , and FU0 initialized with  the ¢  neutral 
element (maximum admissible LLR value). This 
significantly simplifies the system control. 

Figure 9 presents the architecture of a FU in CN 
mode. 
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Figure 9: High level HDL model for the FU architecture in 
CN mode. 

The FU system control guaranties that equations 
(12) to (15) are computed according to that order. 

6 AUTOMATIC HDL CODE 
GENERATION WITH A 
MATLAB PRE-PROCESSOR 

As mentioned, a LDPC is a linear code described by a 
sparse parity check matrix. Also, LDPC codes with 
good error correcting capabilities have normally long 
codeword widths (> 10000 bits per codeword) which 
means that the hand design of the Verilog/VHDL 
decoder may seem almost impossible. Besides that, 
minor changes on the H matrix always have 
considerable repercussions on the structure of the 
correspondent LDPC decoder, even when the 
architecture principles remain unchanged. Those 
simple modifications may represent a considerable 
amount of time in the development of the 
Verilog/VHDL code of the decoder. 

Considering the fact that LDPC decoders can be 
constructed taking a modular approach and the basic 
LDPC decoding operations, such as boxplus and 
boxminus, are hardware translated by independent 
modules that can be assembled accordingly to the 

decoder architecture, it allows the usage of auxiliary 
tools/libraries in their development.  

Following these considerations, it is possible to 
design Matlab© libraries containing the basic building 
LDPC decoder blocks. Those simple blocks (for ex. 
BN processing unit – parallel configuration), are fully 
configurable (number of inputs, message precision, 
etc.). The design of a LDPC decoder for a particular 
code according to a previously defined architecture is, 
thus, achieved. A simple Matlab© application script 
receives the parity check matrix of the code, interprets 
it and, accordingly, creates and connects a full set of 
module units needed to implement the required 
decoder. The procedure is described in figure 10. 

 

Algorithm Tests

Algorithm Implementation

HDL Module Generation

MATLAB

Synthesis

Simulation

FPGA Implementation

HDL

HDL 
Library

H matrix Architecture
Type Resolution

 
Figure 10: Automatic HDL decoder design flowchart. 

7 CONCLUSIONS 

In this paper we have proposed an efficient and generic 
HDL library of processing units which combined with 
Matlab© scripting for automatic HDL code generation, 
allows a flexible approach to the construction of 
generic and DVB-S2 LDPC decoders. This technique 
considerably reduces the design development time, 
especially for long codes such as the ones adopted to 
the DVB-S2 standard. 
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