
MOCKETS: A NOVEL MESSAGE-ORIENTED
COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS

INTERNET

Mauro Tortonesi, Cesare Stefanelli
Department of Engineering, University of Ferrara, Via Saragat 1, 44030 Ferrara, Italy

Niranjan Suri, Marco Arguedas, Maggie Breedy
Institute for Human & Machine Cognition, 40 S. Alcaniz, 32502 Pensacola, FL, USA

Keywords: Novel Network Programming Model, Application-level Middleware, Endpoint Mobility, TCP Replacement.

Abstract: Wireless networking is becoming increasingly important for ubiquitous access to the Internet and the Web.
However, wireless networks exhibit significant reliability and performance problems, with frequent
disconnections, congestions, and packet losses. For these reasons, the traditional TCP/IP suite, designed for
wired networks, offers poor performance and inadequate communication semantics in this scenario. There
are several research efforts in both protocols and communication infrastructures aimed at producing
solutions better suited to wireless network characteristics. This paper presents Mockets, a novel
communications middleware specifically designed for wireless networking scenarios. The Mockets
middleware permits a communication endpoint to be moved from one node to another without interrupting
the communication session. In addition, Mockets provides several delivery services with different
communication semantics, semantic classification of data, cancellation/replacement of enqueued data, and
priority/lifetime assignment to messages. Initial experimental results in a wireless network scenario show
that the Mockets middleware achieves better performance levels than traditional TCP-based infrastructure.

1 INTRODUCTION

Wireless networks are quickly becoming prevalent
and their popularity is expected to grow even more,
as they permit to easily extend the wired Internet
infrastructure thus facilitating the ubiquitous access
of mobile users/terminals to the Internet and the
Web (Stallings, 2005). In this paper, we refer to the
above mentioned environment with the term
wireless Internet.

However, the radio frequency medium of
wireless networks induces some peculiar operating
condition characteristics, such as low reliability
levels, network disconnections, severe fluctuations
in network resources availability, and a dynamic
topology. These characteristics deteriorate the
performance of traditional communication protocols
so much (Altman et al., 2000) (Abouzeid et al.,
2003) that several research studies have tried to
modify the inner workings of traditional protocols to
better suit the wireless Internet scenario (Tian et al.,

2005). Although this approach would allow existing
applications to remain unchanged, the performance
results are not satisfactory. In addition, traditional
protocols and communication infrastructures do not
provide support for the mobility of users and
terminals (Fu et al., 2006).

The peculiar characteristics of the wireless
Internet scenario suggest that the programming
model offered by traditional communication
protocols and infrastructures is not adequate.
Researchers have proposed different programming
model approaches aimed at making it possible for
distributed applications to adapt their behavior
dynamically to current network conditions (Gross et
al., 1999) (Kim and Noble, 2001). To this end, there
is a need for a novel communications middleware
that, on the one hand, can offer applications the
needed network level information and, on the other
hand, can handle peculiar wireless Internet
characteristics such as user/terminal mobility
(Snoeren and Balakrishnan, 2000). This permits the

258

Tortonesi M., Suri N., Arguedas M., Stefanelli C. and Breedy M. (2006).
MOCKETS: A NOVEL MESSAGE-ORIENTED COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS INTERNET.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 258-268
Copyright c© SciTePress

realization of distributed applications that can cope
with packet losses, network disconnections, highly
dynamic channel conditions, and also user/terminal
mobility (Cheng and Marsic, 2002) (Sun et al.,
2003) (Chang et al., 2001).

In this context, the paper presents a novel
communications middleware, called Mockets,
specifically designed to address the peculiar
challenges of the wireless Internet scenario. A
mocket (mobile socket) is a communication
endpoint that can move from one node to another
without interrupting the communication session.

Mockets-based applications can exploit several
delivery services with different communication
semantics for different types of information. The
Mockets middleware also provides the semantic
classification of messages to permit applications to
perform group operations on specific types of
messages, such as cancellation/replacement of some
kind of enqueued messages. In addition, Mockets
permits fine-tuning the performance of applications
by setting the transmission priority and the
maximum lifetime of messages.

Finally, the Mockets middleware permits the
design of applications that can exploit information
about network resources availability in order to
adapt to the unreliability of the wireless Internet and
the intrinsic mobility of terminals and users.

We have decided to implement Mockets as an
application layer middleware in order to achieve
portability and ease of integration, and to facilitate
its deployment in all platforms supporting the
TCP/IP protocol suite, regardless of the underlying
hardware and operating system.

The experimental results show that applications
in the wireless Internet scenario achieve better
performance with the Mockets transport than with
TCP. In fact, in our tests Mockets outperformed
TCP in terms of throughput and latency on both a
real IEEE 802.11b wireless network and a simulated
environment with random network disconnection
intervals.

2 APPLICATIONS IN THE
WIRELESS INTERNET

The wireless Internet is significantly different from
the wired networking environment and presents
peculiar challenges to the development of distributed
applications. In fact, wireless communications
exhibit lower reliability levels and severe
fluctuations in network resource availability. This
stems from the inherent characteristics of radio
communication systems, which present channel
degradation due to fading and interferences,

resulting in highly variable bandwidth with time and
spatial dependencies. In addition, mobility causes
additional problems because the communication
path can change significantly as mobile
terminals/users roam from one network to another.

The unreliability of wireless communications
and the mobility of terminals/users have a significant
impact on the development and deployment of
distributed applications. In fact, to perform
continuous service provisioning in the wireless
Internet, applications must be capable of
withstanding abrupt disconnections and changes in
both network topology and resource availability.
However, this requirement clashes with the
traditional programming model for distributed
applications that is network transparent and makes
use of an abstraction of the network as a reliable
stream-oriented communication channel.
Applications simply hand over their data to the
transport protocol and rely completely on the
protocol implementation to perform reliable and
sequenced information delivery. Unfortunately, this
simple interaction model makes it impossible to
design applications that can adapt to current network
conditions and resource availability. This limits both
performance and robustness of applications when
deployed in the wireless Internet scenario (Gross et
al., 1999) (Kim and Noble, 2001).

As a result, researchers in several areas have
proposed novel programming models that do not
masquerade communication channel characteristics
but instead expose network conditions to
applications (Cheng and Marsic, 2002). This allows
applications to react to changes in the underlying
network in a timely manner by choosing the proper
adaptation strategy according to service logic, user
preferences, and network status. For instance, a
video streaming application could decide to
downscale its service level, e.g., the video resolution
or the frame rate, in order to adapt to reduced
bandwidth availability.

A programming model that can exploit the
significant information about the network conditions
in order to permit application adaptation requires
specific support in terms of communication
protocols and/or middleware (Sun et al., 2003). In
particular, the paper focuses on the middleware
approach because a solution at the application level
facilitates portability and ease of integration. In
addition, the middleware solution allows the
deployment in all platforms supporting the TCP/IP
protocol suite, regardless of the underlying hardware
and operating system.

Middleware solutions for the support of
applications in the wireless Internet should provide
several important characteristics.

MOCKETS: A NOVEL MESSAGE-ORIENTED COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS
INTERNET

259

First of all they should provide the mechanisms
to monitor network conditions and to detect the
mobility of users/terminals. In fact, it is crucial for
applications to have precise and up-to-date
knowledge of the network conditions in order to
perform correct decisions about service adaptation.
The middleware should also support user/terminal
mobility by maintaining the current service session
in the presence of temporary network
disconnections. The mobility of the service session,
that requires detecting changes and
binding/rebinding connections transparently to
applications is still an active area of research (Fu et
al., 2006) (Snoeren and Balakrishnan, 2000) (Hsieh
et al., 2004).

In addition, a middleware in the wireless Internet
has to provide several delivery services with
different communication semantics. This would
allow applications to choose the best suited message
delivery service depending on application logic,
network conditions, and user preferences. For
instance, applications could assign a higher
transmission priority and a shorter lifetime to time-
sensitive information, and use reliable delivery only
for critical data.

The unreliability of wireless communications
suggests the introduction of specific mechanisms at
the middleware level to support applications with
critical response time requirements. For instance, a
remote control application needs to convey time-
sensitive data, such as the commands for the
movement of a robot working in a hazardous
environment and needs to send periodic update
messages that change the application status. These
updates invalidate all previous messages and must
be delivered and processed with the utmost
precedence, for example to immediately stop the
robot in an emergency situation.

Applications could benefit from a novel
middleware that enables a more effective fit to the
wireless Internet environment. For instance, let us
consider a MPEG video streaming application that
transmits only a small amount of reference video
frames (key frames) entirely, adopting differential
encoding for all the other frames (delta frames). A
distributed application could then exploit both
sequential and time-bound message delivery for
MPEG video frames. In addition, it could select
reliable delivery and longer lifetime for messages
containing key frames and unreliable delivery and
short lifetime for messages carrying delta frames. In
the case of channel condition degradation, the
application might choose to reduce frame rate or
stream resolution, according to service logic and
user preferences. In case the client becomes
unreachable (or when sending a new key frame), the
server invalidates all previously enqueued messages,

thus replacing old frames with up-to-date
information.

3 THE MOCKETS
MIDDLEWARE

Mockets is a middleware that supports the mobility
of communication endpoints, with the goal of
facilitating user/terminal/code mobility. It provides
applications with several types of communication
semantics, permits message differentiation, and
offers advanced fine-grained configurability to
achieve best performance tuning. The Mockets
middleware offers application level control and
monitoring of the connection status and network
conditions.

Mockets adopts the traditional client/server
programming paradigm of Sockets (Mockets stands
for Mobile Sockets) and provides a message-
oriented communication API with advanced
functionalities to manage endpoint mobility and
monitor network conditions. Mockets also offers a
second, stream-oriented API compatible with TCP
Sockets to facilitate the task of porting legacy
applications to the new middleware. However,
applications using the stream-oriented API will not
benefit from the advanced functionalities of
Mockets. The TCP-like stream-oriented API of
Mockets has been presented in a previous paper
(Suri et al., 2005) and hence this paper focuses on
the message-oriented API only.

3.1 Support for Mobility

One of the main goals of the Mockets middleware is
the support for mobility. Therefore, one of the
design guidelines for the middleware is the
introduction of the mocket as a communication
endpoint that can move from one host to another. A
mocket can move when receiving either an
application level event or a network one.

In the first case, the application explicitly
commands the middleware to move the mocket
endpoint. Note that the migration is completely
transparent to the remote application (apart from a
temporary increase in message arrival latency). The
second case refers to a situation where a host moves
from a network locality to a different one. The
network layer notifies the Mockets middleware
about the host migration, which then performs the
migration of all the active mockets in the moved
host, transparently to the application.

The importance of the application driven
mobility is clear in mobile code systems. For

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

260

instance, in the case of mobile agent applications,
one of the main research areas deals with the
problem of the bindings of the agent itself with its
current context of execution. The Mockets
middleware permits a mobile agent to easily move
all its network connections. This solution is
currently being tested in the NOMADS platform,
which supports strong agent mobility.

The Mockets network driven migration is
fundamental to permit applications to continue the
execution even in presence of device mobility. In
fact, the Mockets middleware detects the changes in
the network layer address and consequently moves
all the mockets without forcing the application to
shut down and to reopen the network connections.

3.2 Communication Semantics

Mockets allows applications to establish message-
based and connection-oriented communications and
supports a wide range of message delivery services.
Applications can exploit one or more delivery
services by choosing orthogonally between
reliable/unreliable and sequenced/unsequenced
message delivery on a per-message basis.

The sequenced reliable delivery service provides
semantics similar to TCP and incurs the same
performance penalties. It is best suited to the
delivery of important but time insensitive data such
as critical notifications of application state change.
The sequenced unreliable delivery service is best
suited to convey time sensitive data such as
multimedia information, as it provides the same
communication semantics of the Real-Time Protocol
(RTP). The reliable unsequenced message delivery
service allows applications to transmit important but
unrelated messages such as signalling information.
Finally, unreliable unsequenced delivery service is
useful for less important report messages.

Notice that the constraint on sequential delivery
of messages is usually applied only to messages
belonging to the same (sequenced) delivery service.
However, a connection can optionally be configured
to perform sequencing across both reliable and
unreliable sequenced delivery services. In this case,
sequenced messages will be delivered to the peer
application after all previously sent sequenced
messages, regardless of their reliability.

If an unreliable sequenced message with
sequence number N is lost, when the next message
with a sequence number greater than N arrives, the
Mockets middleware waits for a small amount of
time in case the first message was transmitted on a
route that was slower. If the message with sequence
number N is not received when the timeout expires,

Mockets considers it lost and delivers the next
message in the sequence.

3.3 Semantic Differentiation of
Application-Level Traffic

Mockets supports the classification of messages into
different group types. Applications can perform
group operations on messages of a specific type,
e.g., to enforce a maximum transmission bandwidth,
to assign a specific lifetime, or a transmission
priority value. For instance, an application can
decide to either cancel all previously enqueued
messages of a specific type, or replace them with a
new message of the same type.

Message cancellation and replacement is a very
useful feature in situations where applications are
sending periodic updates and a new update
invalidates previous ones. For instance, when using
a reliable flow, the Mockets middleware will buffer
messages until they have been successfully
acknowledged by the remote endpoint. If the
network is congested or the peer is unreachable,
messages can accumulate. Using the message
replacement feature, applications will be able to
remove stale information that is still in the queue
and replace it with up-to-date data. This reduces
transmission of obsolete information and therefore
minimizes network bandwidth consumption.

It is worth noticing that the message
classification and replacement features implemented
by Mockets have been especially designed to
support applications that use multiple but
interrelated data types such as MPEG. For instance,
an MPEG video streaming application might use two
different message types, one for key frames and a
second for delta frames. Upon the generation of a
new key frame, the application could choose to
discard all enqueued MPEG frames by first
cancelling all of the enqueued delta frames and then
replacing all the enqueued key frames with the new
one.

3.4 Network Conditions Monitoring

An important design guideline for the Mockets
middleware is to monitor network conditions and to
pass the gathered information up to the application
level. In this way, applications can make informed
decisions about how to tailor services according to
both service logic and user preferences.

Applications can either directly interrogate the
Mockets monitoring or request to be notified when a
specific event occurs by registering callback
functions. For instance, one of the events that the
Mockets monitoring facility can notify applications

MOCKETS: A NOVEL MESSAGE-ORIENTED COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS
INTERNET

261

about is peer unreachability, which is detected by a
keep-alive mechanism that allows quick discovery
of problems at the link and network layers.

Let us note that the adoption of the subscribe-
notify paradigm is rather unusual in network
programming, as historically transport protocols
have always been designed to masquerade varying
network conditions to applications. However, the
need for a richer model of interaction between
applications and transport protocols emerges also in
other recently proposed transport protocols such as
the Datagram Congestion Control Protocol (DCCP)
(Kohler et al., 2003).

3.5 Advanced Low-Level
Communication Features

The Mockets middleware provides advanced
communication features to allow fine-grained
performance tuning in the case of time-sensitive data
exchange, e.g., multimedia and control applications.
For this purpose, applications can choose several
transmission parameters on a per-message basis, like
message priority, maximum lifetime, and a timeout
for the insertion of messages in the
transmission/pending message queue.

Applications can reorder the transmission of
messages by assigning them priority values. The
Mockets middleware schedules messages with
higher priority before lower ones. This priority
differentiation provides applications with a low-
latency message delivery service that can be used for
important application status updates.

Applications can also assign a maximum lifetime
to outgoing messages in order to automatically
discard outdated information. The Mockets
middleware enforces a timeout for the transmission
of every message with an associated lifetime. If this
timeout expires before the message is sent, then the
message is silently discarded. On the other hand, if
the timeout of reliable message expires after the
message is transmitted but before an
acknowledgement is received, the message is
discarded and a notification of the message lifetime
expiration is sent to the destination endpoint.

Finally, applications can set a time limit for the
insertion of a message into the transmission queue.
If the timeout expires, the message is not scheduled
for transmission and an error is returned to inform
the application. This feature allows applications to
discard information with a short lifetime in case the
transmission queue is full, minimizing latency in
information delivery.

4 MOCKETS ARCHITECTURE

Mockets operates at the application layer on top of
the traditional TCP/IP protocol suite. This design
guideline supports portability and ease of integration
and facilitates the deployment of Mockets in all
available platforms and scenarios, regardless of the
underlying hardware and operating system.

Figure 1 shows the architecture of the Mockets
middleware. The main components supporting
applications are the Session Management, Message
Management, Connection Status Monitor, and
Traffic Differentiation modules.

The Session Management module implements
control operations such as session suspension and
resumption. It performs the migration of a mocket
communication endpoint upon application requests,
by following the procedures described in section 5.1.
It also interacts with the underlying operating system
to detect changes in the network layer address of the
host, which are triggered by device movements. In
this case, the Session Management module
reconfigures all the existing mocket endpoints to use
the new address, transparently to the applications.

The Message Management module handles the
delivery of application messages. In particular, it is
in charge of dividing large messages into several
packets and reassembling them before application
delivery. It also guarantees the ordering of messages
when required by the chosen delivery service.

The Connection Status Monitor receives
information about connection status and network
conditions from the underlying layer. It provides
upper layers with monitoring functions by both
permitting explicit queries from the application and
performing notifications when a subscribed event
occurs.

The Traffic Differentiation module is in charge
of scheduling application messages for transmission
by applying the specified traffic differentiation
policies, such as message priority, delivery services,
etc.

Underneath the components directly interacting
with the application, the Transmitter and Receiver
modules take care of message transmission and
reception, by interfacing with the underlying
network via UDP. The Receiver module
continuously listens for incoming messages,
dispatching data messages to the Message
Management module, information on
communication status and network conditions to the
Connection Status Monitor, and control messages to
the Session Management module. The Transmitter
module performs message transmission operations,
interacting with the Receiver module to implement
ACK management.

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

262

Figure 1: Architecture of the Mockets middleware.

4.1 The Mockets API

In order to facilitate the porting of existing
applications, the Mockets middleware exports an
object-oriented API designed to be as similar as
possible to the traditional Java Sockets API. In
particular, Mockets offers a core set of API that is
exactly the same as connected Java datagram
sockets. All the advanced Mockets functionalities
are available through a novel set of API.

The core set of the API manages the mocket, the
fundamental communication entity of the
middleware that represents a connection endpoint
and is identified by a network layer address/port
couple. Similar to a socket, the mocket can be either
active (the MessageMocket class) or passive (the
MessageServerMocket class). The communication is
established by connecting an active mocket to a
passive one listening on a remote endpoint. The
connect method of a MessageMocket is used for
connection establishment. On the server side, the
accept method processes incoming connection
requests. accept returns an instance of
MessageMocket which represents a new connection.

Applications send and retrieve messages by
calling the send and receive methods respectively on
the MessageMocket instance. Connection teardown
is performed by calling the close method of the
MessageMocket class on either side of the
connection.

The advanced Mockets API permits applications
to exploit all the advanced functionality of the
Mockets middleware. In particular, the getSender
method of the MessageMocket class selects the
delivery service for messages. getSender returns an
object that represents the selected flow and provides
the send method for message transmission.

The enableCrossSequencing method enables
cross sequencing on the current mocket.

The replace method permits applications to
replace previously enqueued messages with a new
message. Messages to be replaced are identified by a

specific message tag. Applications can also use the
cancel method to cancel previous messages.

Applications can also retrieve information on the
current status of the communication with the remote
endpoint, via the getStatistics method. The statistics
reported are the number of bytes and packets sent
and received, the number of packets retransmitted,
and the number of discarded packets. If these
parameters fall below the desired QoS level,
applications can adapt their behavior according to
the network conditions and user preferences. For
instance, in the case of heavy packet loss,
applications may choose to downscale the data
stream.

Applications use the subscribe method of a
MessageMocket instance to register for a specific
event among those supported by the Mockets
middleware. In particular, applications provide
Mockets with callback functions, which are used by
the framework to notify the applications when the
registered events occur.

Finally, applications can suspend the operation
of a Mocket endpoint and retrieve its serialized state
via the static suspend method of the MessageMocket
class. A mocket can then be resumed by calling the
static resume method of the MessageMocket class.
Mockets only provides mechanisms for connection
suspension/ resumption and serialization of a
communication endpoint. The middleware does not
enforce any security policy on these operations and
leaves the task of transferring the mocket status to
the new host to the application.

5 IMPLEMENTATION

With implementations in both Java, C++, and C#
programming languages, Mockets achieves
significant portability, and is available for most
existing operating systems and development
platforms. This section describes the most
significant implementation details of the Mockets
middleware.

5.1 Endpoint Mobility

The mobility of a mocket is a distinguished feature
that requires the middleware to perform several
operations. When the migration procedure initiates,
the mocket connection is suspended and the remote
endpoint enters a standby state. The local endpoint is
then migrated to a different host where it reconnects
transparently with the remote endpoint. The mocket
on the remote endpoint is notified of the address
change in the communication endpoint and resumes
normal operations.

MOCKETS: A NOVEL MESSAGE-ORIENTED COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS
INTERNET

263

Figure 2 shows the process of a mocket
migrating from one host to another. The initial state
is Process 1 running on Host A with an open
connection to Process 2 on Host C. When Process 1
needs to move to Host B, the mocket in Process 1
sends a SUSPEND control message to the mocket in
Process 2. Once the SUSPEND has been
acknowledge with a SUSPEND_ACK, the process is
allowed to migrate along with the mocket endpoint.
Once the process reaches Host B and restarts, the
mocket in Process 2 sends a RESUME control
message. The state of both mockets returns to
ESTABLISHED after Process 2 receives the
RESUME_ACK control message.

Host A

Process 1

Host C

Host B

Mocket

Process 1

Mocket

Process 2

Mocket

SUSPEND
SUSPEND_ACK

RESUME

RESUME_ACK

Figure 2: Migration of a Mocket endpoint.

Endpoint mobility is currently supported only by
the Java implementation of the Mockets middleware,
which complements the Agile Computing
middleware and the NOMADS mobile agent system.
In this environment, migration is realized by
serializing all the object instances representing the
current state of the mocket connection in use by the
local endpoint and transferring them over a network
link.

5.2 Message Management

The Transmitter, the Receiver, and the Message
Management are the main components of the
Mockets middleware in charge of
transmitting/receiving application messages.

The Message Management is in charge of
fragmenting a message into several packets when
needed. Resulting packets are enqueued into a
pending packet queue. The packet insertion
algorithm uses a dynamic priority scheme to favor
the transmission of high-priority packets while
preventing starvation of low-priority packets. If the
remote window allows the transmission of a new
packet, the transmitter then retrieves the first packet

from the pending packet queue and transmits it to
the remote endpoint via UDP packets.

To support reliability, after the transmission the
Transmitter puts reliable and control packets into the
appropriate unacknowledged packet queue from
where they will be periodically retransmitted until
they are acknowledged. For efficiency reasons, we
have implemented the unacknowledged packet
queues as data structures composed by two double-
linked lists, one sorted by the retransmission timeout
(for efficient retransmission) and one sorted by the
sequence number (for efficient processing of
acknowledgements). The Transmitter also handles
acknowledgements and sends keep-alive messages
in case of inactivity.

The Receiver component continuously listens for
incoming packets on the UDP socket associated with
the mocket. It reports peer unreachability problems
to the application, handles acknowledgements and
control messages (e.g., cancelled packets
information), and dispatches incoming messages
according to their reliability and sequencing values.

Unsequenced packets are passed to the Message
Management module for the defragmentation (if
needed) and for their final arrival into the received
data queue.

Sequenced messages are enqueued into one of
three sequenced packet queues (one for control
messages, one for reliable sequenced packets, and
one for unreliable sequenced packets). After each
insertion into the sequenced packet queue, the
Message Management module examines the queue
and delivers all messages whose sequencing
requirements are satisfied. In the case of unreliable
sequenced messages, the Packet Processor also
applies a timeout to stop waiting for missing
messages.

5.3 Mockets Transport Protocol

The Mockets transport protocol relies on the
exchange of UDP packets between endpoints. The
connection establishment procedure of the Mockets
transport protocol is based on a 4-way handshake
like SCTP. The exchange of a cryptographically-
protected cookie between peers makes the protocol
resistant to SYN flooding attacks (Stewart and Xie,
2001).

To allow the multiplexing of data and metadata
on UDP packets transmitted between two mocket
endpoints, the Mockets transport protocol divides
packets into chunks. Every chunk is identified by a
unique type identifier and has a specific purpose. For
example, data chunks carry application level data,
while SACK chunks contain acknowledgement
information.

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

264

Mockets performs selective ACKs. This
acknowledgment strategy provides significant
improvements in throughput when compared with
the traditional cumulative acknowledgement scheme
of TCP. SACK is done mainly via piggybacking, but
in case no piggybacking can be done, a message
containing SACK information is sent periodically or
when duplicate packets are received (indicating that
previously sent SACK information was lost).

Message cancellation and replacement is
implemented by removing the corresponding packets
from the pending packet queue and the
unacknowledged packet queue. A control message is
also sent to the peer endpoint about the cancellation
and/or replacement of messages. To avoid stacking
of control messages related to message cancellation
and replacement, Mockets checks if there is already
such a control message in the pending packet queue,
which might occur because the peer is temporarily
unreachable. In this case the old control message is
replaced by a new one containing information about
the whole set of cancelled messages.

Mockets allows applications to take full control
of most of the internal behaviors (e.g. changing the
default timeouts) of the transport layer. For instance,
applications can change MTU, default connection
timeout, pending packet queue size, keepalive
timeout, maximum window size, and receive
timeout.

6 EXPERIMENTAL RESULTS

We have measured the performance of the Mockets
middleware in several scenarios with different
working conditions. This section reports two
separate experiments that compare Mockets-based
with TCP-based message delivery.

The first experiment measured the raw
throughput of the Mockets reliable sequenced
delivery service compared to TCP sockets. The
testbed is an 802.11b wireless environment where
the wireless cards are configured to use an unused
channel to ensure that there is no interference or
other traffic on the wireless link. Table 1 shows the
average time to transfer 2 MB of data using both
Mockets and TCP Sockets. The results show that
Mockets performs better than TCP in raw transfers
of data.

The second experiment shows the benefit of the
message replacement capability of the Mockets
middleware in the presence of an unreliable
network. The experimental setup is composed of two
laptop computers interconnected via a wired
network through a third computer running the
NISTNet software (Nist NET). NISTNet provides

control over parameters such as latency and packet
loss and can simulate an unreliable link with
periodic loss in network connectivity. To simulate
disconnections, NISTNet is configured to drop all
packets for a series of exponentially distributed
random intervals of time with an average of 1
second. The intervals themselves are separated by an
exponentially distributed random length of time with
an average of 20 seconds. The client application
generates an update message at a frequency of 1 Hz
and transmits it to the server application.

Table 1: Throughput comparison over 802.11b.

 Mean Transfer
Time (ms)

Standard
Deviation (ms)

TCP Sockets 2151 121
Mockets 1836 80

Table 2 shows the average and worst-case latency of
messages in the case of Mockets- and TCP- based
communication. The results show that Mockets
outperforms TCP Sockets. This is due to the fact that
in TCP update messages are buffered on the client
side and retransmitted when connectivity is restored.
In Mockets, instead, update messages replaces
previously enqueued messages. Old and outdated
messages are simply discarded, thus reducing the
consumption of network and computational
resources on the both the client and server hosts.

Table 2: Latency Comparison.

 Average
Latency (ms)

Maximum Latency
(ms)

TCP Sockets 132.90 6228
Mockets 13.44 922

7 RELATED WORK

Many research efforts investigate how to allow the
realization of efficient and robust distributed
applications in the wireless Internet. In particular,
there are solutions at both network and application
layers with different trade-offs between performance
and flexibility.

Researchers have proposed to modify the
behavior of TCP in order to improve its performance
in the new scenario (Tian et al., 2005). In fact, TCP
is still the most widely adopted transport protocol in
the wireless Internet and is also often proposed for
time-sensitive applications such as multimedia
streaming (Wong et al., 2005). However, the
performance of TCP is severely affected by terminal
mobility and lossy channels (Bakshi et al., 1997)
(Altman et al., 2000) (Abouzeid et al., 2003). In fact,

MOCKETS: A NOVEL MESSAGE-ORIENTED COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS
INTERNET

265

TCP interprets every packet loss as a symptom of
network congestion and therefore reduces the
congestion window size in the sending host, with
very slow throughput recovery. Recent proposals
addressed this problem by employing cross-layer
techniques to get feedback on the network
conditions and using this information to tune the
congestion control procedure (Singh and Iyer, 2002).

The proposed modifications allow a limited
performance improvement for TCP-based
communications in the wireless Internet without
changing existing applications. However, let us note
that the modification of a communication protocol
raises backward compatibility problems with
existing protocol implementations, which limits the
benefits of this approach.

Researchers have also proposed the Stream
Control Transport Protocol (SCTP) as an alternative
to TCP on the wireless Internet (Stewart and Xie,
2001). SCTP provides applications with several
message delivery semantics (reliable/best-effort and
sequential/out-of-order). SCTP also allows
applications to define conditions (typically a time
limit) upon which reliable messages are considered
stale and thus discarded. In addition, SCTP can
maintain multiple streams of messages inside a
single connection, mitigating the head of line
blocking problem of TCP (Atiquzzaman, 2003).
Finally, the recent introduction of dynamic address
reconfiguration for SCTP connection endpoints
allows partial support of device mobility. However,
SCTP still suffers from the same congestion-related
performance problems of TCP and does not provide
applications with any feedback on network
conditions.

Other research approaches developed novel
communications middlewares on top of existing
network stacks. I-TCP (Bakre and Badrinath, 1995),
Mobile-TCP (Haas, 1995), and the Remote Sockets
Architecture (Schlager et al., 2001) address both the
performance and the mobility issues in TCP by
proposing proxy-based architectures. In these
proposals, connections are routed through proxies
deployed at the edge of the wireless and wired
portion of the network. This improves the
performance of communications on the wireless
portion of the communications, but it requires the
deployment of dedicated proxies with a modified
network stack.

Other proposals focus on providing a network-
aware programming model to applications but do not
offer support for user/terminal mobility (Sun et al.,
2003), or supporting mobile computing applications
by adding endpoint mobility functionality to
traditional communication protocols (Snoeren and
Balakrishnan, 2000) (Hsieh et al., 2004).

Mockets goes beyond the above mentioned
proposals by providing applications with a wide
range of communication semantics and a richer
programming model, which are better suited to the
wireless Internet. In addition, Mockets implements
mechanisms to effectively support user/terminal
mobility and allows applications to monitor current
network conditions. Finally, Mockets does not
require the deployment of dedicated devices with a
modified network stack or any other entity which
breaks the traditional end-to-end communication
semantics.

8 CONCLUSIONS AND FUTURE
WORK

The Mockets middleware is a comprehensive
solution for the development of robust and efficient
distributed applications suited to the wireless
Internet scenario. In particular, Mockets-based
applications can cope with packet losses and
network disconnections and can handle the mobility
of terminals and users. The first experimental results
show that the Mockets middleware performs better
than TCP in wireless networking environments.

Although the results are encouraging, we are
working to improve the performance and the
features of the Mockets middleware. For instance,
we are evaluating a new architecture for advanced
I/O operations and internal buffer management and
the adoption of cross layer techniques in order to
provide applications with more information on
network conditions.

We are also planning to integrate Mockets with
the Agile Computing Middleware to take advantage
of proactive resource manipulation and with the
KAoS policy management system to allow policy-
based control over utilization of network resources.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. Army
Research Laboratory under contract W911NF-04-2-
0013, by the U.S. Army Research Laboratory under
the Collaborative Technology Alliance Program,
Cooperative Agreement DAAD19-01-2-0009, by the
Air Force Research Laboratory under grant FA8750-
06-2-0064, and by the Italian MIUR in the
framework of the Project “MOMA: a middleware
approach to MObile MultimodAl web services”.

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

266

REFERENCES

Abouzeid, A., Roy, S., Azizoglu, M., 2003.
Comprehensive Performance Analysis of a TCP
Session Over a Wireless Fading Link With Queueing,
IEEE Transactions on Wireless Communications, Vol.
2, N. 2, pp. 344-356, March 2003.

Altman, E., Avrachenkov, K., Barakat, C., 2000. TCP in
presence of bursty losses, ACM SIGMETRICS
Performance Evaluation Review (Special issue on
proceedings of ACM SIGMETRICS 2000), Vol. 28, N.
1, pp. 124-133, June 2000.

Atiquzzaman, M., Ivancic, W., 2003. Evaluation of SCTP
Multistreaming over Satellite Links, in: Proceedings
of 12th International Conference on Computer
Communications and Networks, Dallas, TX, USA,
October 2003.

Bakre, A., Badrinath, B., 1995. I-TCP: Indirect TCP for
Mobile Hosts, in: Proc. of 15th IEEE International
Conference on Distributed Computing Systems
(ICDCS '95).

Bakshi, B., Krishna, P., Vaidya, N., Pradhan, D., 1997.
Improving Performance of TCP over Wireless
Networks, in: Proceedings of 17th International
Conference on Distributed Computing Systems,
Baltimore, MD, USA, May 1997.

Chang, F., Karamcheti, V., 2001. A Framework for
Automatic Adaptation of Tunable Distributed
Applications, Cluster Computing, Vol. 4, N. 1, pp.
49-62, March 2001.

Cheng, L., Marsic, I, 2002. Piecewise Network
Awareness Service for Wireless/Mobile Pervasive
Computing, Mobile Networks and Applications, Vol.
7, N. 4, pp. 269-278, August 2002.

Fu, X., Hogrefe, D., Le, D., 2006. A Review of Mobility
Support Paradigms for the Internet, IEEE
Communications Surveys and Tutorials, Vol. 8, N. 1,
pp. 38-51, 1st Quarter 2006.

Gross, T., Steenkiste, P., Subhlok, J., 1999. Adaptive
Distributed Applications on Heterogeneous Networks,
in: Proceedings of the 8th Heterogeneous Computing
Workshop.

Haas, Z., 1995. “Mobile-TCP: An Asymmetric Transport
Protocol Design for Mobile Systems”, in: Proc. of 3rd
International Workshop on Mobile Multimedia
Communications.

Hsieh, H., Kim, K., Sivakumar, R., 2004. An End-to-End
Approach for Transparent Mobility across
Heterogeneous Wireless Networks, Mobile Networks
and Applications Vol. 9, N. 4, pp. 363–378, August
2004.

Kim, M., and Noble, B., 2001. Mobile Network
Estimation in: Proceedings of the 7th annual
international conference on Mobile computing and
networking (MOBICOM 2001), Rome, Italy.

Kohler, E., Handley, M., Floyd, S., 2003. Designing
DCCP: Congestion Control Without Reliability. ICIR
Technical Report.

Nist NET. The Nist NET network emulator. Available at:
http://snad.ncsl.nist.gov/nistnet/

Schlager, M., Rathke, B., Bodenstein, S., Wolisz, A.,
2001. “Advocating a Remote Socket Architecture for
Internet Access Using Wireless LANs”, Mobile
Networks and Applications, Vol. 6, N. 1, pp. 23-42,
Jan./Feb. 2001.

Singh, A., Iyer, S., 2002. ATCP: Improving TCP
performance over mobile wireless environments, in:
Proceedings of 4th IEEE Conference on Mobile and
Wireless Communications Networks, Stockholm,
Sweden.

Snoeren, A., Balakrishnan, H., 2000. An End-to-End
Approach to Host Mobility, in: Proceedings of 6th
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom ’00), Boston,
MA, USA.

Stallings, W., 2005. Wireless Communications &
Networks, Prentice-Hall. 2nd edition.

Stewart, R., Xie, Q., 2001. Stream Control Transmission
Protocol (SCTP). Addison-Wesley.

Sun, J., Tenhunen, J., Sauvola, J., 2003. CME: A
Middleware Architecture for Network-Aware
Adaptive Applications, in: Proceedings 14th IEEE
International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC 2003),
Beijing, China.

Suri, N., Tortonesi, M., Arguedas, M., Breedy, M.,
Carvalho, M., Winkler, R., 2005. “Mockets: A
Comprehensive Application-Level Communications
Library”, in: Proc of Military Communications
Conference (MilCom 2005), Atlantic City, NJ, USA.

Tian, Y., Xu, K., Ansaru, N., 2005. TCP in Wireless
Environments: Problems and Solutions, in: IEEE
Radio Communications, Vol. 43, N. 3, pp. S32-S47,
March 2005.

Wong, C., Tang, C., Fung, W., Chan, G., 2005. Using
TCP for Video Streaming Over Wireless Channel, in:
Proc. of 2nd International Conference on Quality of
Service in Heterogeneous Wired/Wireless Networks
(QShine‘05), Orlando, FL, USA.

MOCKETS: A NOVEL MESSAGE-ORIENTED COMMUNICATIONS MIDDLEWARE FOR THE WIRELESS
INTERNET

267

