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Abstract: In this paper we explore a matrix representation of binary fieldsF2n defined by an irreducible trinomial
P = X

n + X
k + 1. We obtain a multiplier with time complexity ofTA + (⌈log2(n)⌉)TX and space

complexity of(2n − 1)n AND and(2n − 1)(n − 1) XOR . This multiplier reaches the lower bound on time
complexity. Until now this was possible only for binary field defined by AOP (Silverman, 1999), which are
quite few. The interest of this multiplier remains theoretical since the size of the architecture is roughly two
times bigger than usual polynomial basis multiplier (Mastrovito, 1991; Koc and Sunar, 1999).

1 INTRODUCTION

A binary field F2n = F2[X]/(P ) is a set of2n ele-
ments in which we can do all the basic arithmetic op-
eration like addition, subtraction, multiplication and
inversion modulo an irreducible binary polynomialP .
Finite field arithmetic is widely used in cryptographic
applications (Miller, 1985) and error-correcting code
(Berlekamp, 1982). For these applications, the most
important finite field operation is the multiplication.

The representation of binary field elements have a
big influence on the efficiency of field arithmetic. Un-
til now, field elements were represented as sum of ba-
sis elements: the basis is composed byn elements
B1, . . . , Bn ∈ F2n , in this situation an elementU
in F2n is written asU = u1B1,+ · · · + unBn with
ui ∈ {0, 1}.

The most used bases are polynomial bases (Mas-
trovito, 1991; Koc and Sunar, 1999; Chang et al.,
2005) and normal bases (Wu and Hasan, 1998; Koc
and Sunar, 2001).

Our purpose here is to investigate a new represen-
tation: the matrix representation. We will focus on
field defined by a trinomialF2n = F2[X]/(P ) with
P = Xn + Xk + 1. In the matrix representation an
elementU of F2n is represented by then2 coefficients
of an×n matrixMU . The additions of two elements
U andV simply consists to add the two matricesMU

andMV and to multiplyU andV it consists to multi-
ply the matrix productMU ·MV .

This gives a faster multiplication than multiplica-
tion using basis representation: a parallel multiplier
associated to a matrix representation has a time com-
plexity of TA +(⌈log2(n)⌉)TX , whereas in basis rep-
resentation, for field defined by a trinomial (Koc and
Sunar, 1999; Mastrovito, 1991), the time complexity
is generally equal toTA + (2 + ⌈log2(n)⌉)TX . The
major drawback of this method is due to the length of
the representation which requiresn2 coefficients, and
provides parallel multiplier with a cubic space com-
plexity in n. But if we carefully select a subset of the
matrix coefficients, the number of distinct coefficients
in each matrixMU becomes small: in our situation it
is equal to(2n− 1). In other words we condense the
matrix representation in(2n− 1) distinct coefficients
to decrease the space complexity.

The paper is organized as follows : in the first sec-
tion we recall the method of Koc and Sunar (Koc and
Sunar, 1999) for finite field multiplication modulo tri-
nomial. They perform the reduction modulo the trino-
mial on a matrix and then compute a matrix-vector to
get the product of two elements. In the second section
we study the possibility to use the matrix constructed
with Koc and Sunar’s method to represent finite field
elements. After that we evaluate the complexity of a
parallel multiplier in this matrix representation. Next,
we study a condensed matrix representation and the
associated multiplier. We finally give a small exam-
ple of our matrix multiplier and finish by a complexity
comparison and a brief conclusion.
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2 MATRIX REPRESENTATION IN
POLYNOMIAL BASIS

Let P = Xn + Xk + 1 be an irreducible polynomial
in F2[X]. Without loss of generality we can assume
k ≤ n

2 since whenXn + Xk + 1 is irreducible, the
reciprocal polynomialXn + Xn−k + 1 is also irre-
ducible. Furthermore, in this paper we will always
suppose for simplicityk ≥ 2.

An elementU ∈ F2n = F2[X]/(P ) is a polyno-
mial of degreen− 1. To compute the product of two
elementsU andV in F2n we first compute the product
of polynomial

W = UV =

(

n−1
∑

i=0

uiX
i

)(

n−1
∑

i=0

viX
i

)

. (1)

This product can be done by a matrix vector prod-
uctNU · V whereNU is given below

1 →

X →

...
Xn−2

→

Xn−1
→

Xn
→

Xn−1
→

...
X2n−2

→

X2n−1
→

266666666666666666664
u0 0 · · · 0 0

u1 u0 · · · 0 0

...
...

...
...

...
un−2 un−3 · · · u0 0

un−1 un−2 · · · u1 u0

0 un−1 · · · u2 u1

0 0 · · · u3 u2

...
...

...
0 0 · · · 0 un−1

0 0 · · · 0 0

377777777777777777775 .

The productW = UV contains monomialsXi

with larger degree thann, i.e., withn ≤ i ≤ 2n − 2.
These monomials must be reduced moduloP =
Xn + Xk + 1. To perform this reduction we will
use the following identity moduloP for eachi ≥ n

Xi = Xi−(n−k) + Xi−n mod P. (2)

For example ifP = X5 +X2 +1 then we haveX5 =
X2 + 1 mod P and in the same wayX6 = X3 + X
mod P and so on.

Koc and Sunar in (Koc and Sunar, 1999) have pro-
posed to perform the reduction moduloP on the line
of the matrixNU instead of performing the reduction
on the polynomialW = UV .

To describe this reducing process we need to state
some notations. IfM is an × 2n matrix, we denote
by (M)t the top part of the matrixM constituted by
then first lines. We will denote also(M)l the matrix
constituted by then last lines. And finally, we will
denoteM [↑ s] the matrix shifted up bys rows from
M , andM [↓ s] the matrix shifted down bys rows.

From equation (2) the line corresponding toXi for
i ≥ n are pushed up to the lines corresponding to

Xi−n andXi−n+k. Using the previous notation, this
procedure modifies the matrixNU as follows

(NU )t ← (NU )t + (NU )l + (NU )l[↓ k] (3)

(NU )l ← (NU )l[↑ (n− k)] (4)

If we denote byS the low part ofNU , and byT the
top part ofNU

S =













0un−1 un−2 · · · u1

0 0 un−1 · · · u2

...
...

...
. ..

...
0 0 0 · · ·un−1

0 0 0 0 0













, T =









u0 0 · · · 0
u1 u0 · · · 0
...

. . .
...

un−1 un−2 · · ·u0









,

we can rewrite equation (3) and (4) as

(NU )t = T + S + S[↓ k],

(NU )l = S[↑ (n− k)].
(5)

Now, since we assumedk ≥ 2, in the
new expression ofNU , the lines corresponding
to Xn, . . . ,Xn+k−2 contains non-zero coefficients.
Thus, we have to reduce a second timeNU with the
same method. We setS′ = S[↑ (n − k)] = (NU )l

and the second reduction provides

(NU )t = T + S + S′ + (S + S′)[↓ k]
(NU )l = 0.

(6)

We finally have the expression ofMU = (NU )t the
reduced form ofNU

MU=

2666666666666666666664
u0 un−1 · · · · · · · · · uk u′

k−1 . . . . . . u′

1

u1 u0 un−1· · · · · · · · · uk u′

k−1 . . . u′

2

...
...

...
...

...
...

uk−2 · · · · · · u0un−1 · · · · · · · · · uk u′

k−1

uk−1uk−2 · · · · · · u0 un−1 · · · · · · · · · uk

uk u′

k−1u′

k−2 · · · · · · u′

0 u′′

n−1 · · · · · ·u′′

k+1

uk+1 uk u′

k−1 · · · · · · · · · u′

0 u′′

n−1· · ·u
′′

k+2

...
...

...
...

...
...

un−2 · · · · · · uk u′

k−1 · · · · · · · · · u′

0u′′

n−1

un−1 · · · · · · · · · uk u′

k−1 · · · · · · · · · u′

0

3777777777777777777775 ,

(7)
where

u′

i = ui + ui+(n−k) for 0 ≤ i < k,

u′′

i =

{

ui + ui−k + ui+n−2k for k ≤ i < 2k,
ui + ui−k for 2k ≤ i < n.

The method of Koc and Sunar (Koc and Sunar,
1999) to compute the productUV mod P , first con-
sists to compute the coefficientsu′

i andu′′

i of MU and
after that to perform the matrix-vector productMU ·V
to obtainUV mod P . This multiplier computes the
product in timeTA + (⌈log2(n)⌉+ 2)TX using a par-
allel architecture.

If we know the coefficientsui, u
′

i andu′′

i we avoid
the delay to compute these coefficients. In this sit-
uation the product could be done in timeTA +
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⌈log2(n)⌉TX . This remark pushed us to try to keep
the field elementsU ∈ F2n expressed by the matrix
MU (i.e., in this case we always know the coefficients
ui, u

′

i andu′′

i , and we don’t have to compute it before
the multiplication) and try to use this representation
to implement finite field arithmetic.

Definition (Matrix Representation). Let F2n =
F2[X]/(P ) whereP = Xn + Xk + 1 with 2 ≤
k ≤ n

2 . The matrix representation of an element

U =
∑n−1

i=0 uiX
i of the fieldF2n is the matrix given

in equation(7) expressed in term of the coefficients
ui, u

′

i andu′′

i .

The next section is devoted to explain how to add
and multiply field elements in matrix representation.

3 FIELD ARITHMETIC IN
MATRIX REPRESENTATION

Let F2n = F2[X]/(P ) whereP is an irreducible tri-
nomialP = Xn + Xk + 1 with 2 ≤ k ≤ n

2 .
The following Theorem shows that, if the elements

U ∈ F2n are represented by their associated matrix
MU , finite field arithmetic corresponds to classical
n× n matrix arithmetic.

Theorem 1. Let F2n = F2[X]/(P ) whereP is an
irreducible trinomialP = Xn + Xk + 1 with 2 ≤
k ≤ n

2 . LetU =
∑n−1

i=0 uiX
i andV =

∑n−1
i=0 viX

i

be two elements inF2n and MU and MV their cor-
responding matrix defined in(7). If W1 = U + V
mod P andW2 = UV mod P we have

MW1
= MU + MV , (8)

MW2
= MU ·MV . (9)

Proof. Using equation 7, it is clear that to show the
assertion forW1, it is sufficient to show that

wi = ui + vi,
w′

i = u′

i + v′

i,
w′′

i = u′′

i + v′′

i .

The identity onwi is trivial sinceW1 = U + V
mod P . Forw′

i we have

w
′

i = wi+wi+(n−k) = (ui+vi)+(ui+(n−k)+vi+(n−k)).

By rearranging this expression, we get

w′

i = (ui + ui+(n−k)) + (vi + vi+(n−k)) = u′

i + v′

i.

A similar proof can be done to show thatw′′

i = u′′

i +
v′′

i .

For the assertion onMW2
it is a little bit more dif-

ficult. We remark that from the result of section 2, for
every elementsZ ∈ F2n the productV Z in F2n is
given byMV · Z and the productW2Z by MW2

· Z.
Thus we get for everyZ ∈ F2n that

MW2
· Z = W2Z = UV Z

= MU · (V Z) = MU · (MV · Z)
= (MU ·MV ) · Z

This implies that(MW −MUMV ) ·Z = 0 for each
Z in F2n , but this means that(MW −MUMV ) is the
zero matrix. In other words we haveMW = MU ·MV

as required.

For a more general proof see (Lidl and Niederreiter,
1986). The following example illustrates the Theo-
rem 1.
Example 1. We consider the field F27 =

F2[X]/(X7 + X3 + 1) and letU =
∑n−1

i=0 uiX
i be

an element ofF27 . From equation (7) we get the fol-
lowing expression ofMU

MU =

















u0 u6 u5 u4 u3 u′

2 u′

1
u1 u0 u6 u5 u4 u3 u′

2
u2 u1 u0 u6 u5 u4 u3

u3 u′

2 u′

1 u′

0 u′′

6 u′′

5 u′′

4
u4 u3 u′

2 u′′

1 u′

0 u′′

6 u′′

5
u5 u4 u3 u′

2 u′

1 u′

0 u′′

6
u6 u5 u4 u3 u′

2 u′

1 u′

0

















with u′

0 = u0 + u4, u
′

1 = u1 + u5, u
′

2 = u2 + u6 and
u′′

4 = u′

4+u1+u5, u
′′

5 = u5+u2+u6, u
′′

6 = u6+u3.
ForU = 1+X +X4 andV = X2 +X3 +X5 we

obtain the following matrices

MU =

















1 0 0 1 0 0 1
1 1 0 0 1 0 0
0 1 1 0 0 1 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0

















, MV =

















0 0 1 0 1 1 1
0 0 0 1 0 1 1
1 0 0 0 1 0 1
1 1 1 0 1 0 1
0 1 1 1 0 1 0
1 0 1 1 1 0 1
0 1 0 1 1 1 0

















.

Now we addMU andMV to get the matrixMW1
=

MU + MV of W1 = U + V = X5 + X4 + X3 +
X3 + X + 1 mod P and we multiplyMU andMV

to get the matrixMW2
= MU ·MV of W2 = UV =

X4 + X3 + 1 mod P

MW1
=

















1 0 1 1 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
1 1 1 1 0 0 1
0 1 1 1 1 0 0

















,MW2
=

















1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 0 0 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
0 0 1 1 0 0 0

















.

4 PARALLEL MULTIPLICATION
IN MATRIX REPRESENTATION

Let us now study the architecture of the multiplier as-
sociated to the matrix representation. We fixU, V ∈
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F2n and MU and MV their associated matrix. Let
W = UV be the product ofU and V in F2n and
MW its associated matrix . We will noteLi(MU ) for
i = 0, . . . , n − 1 the line ofMU andCj(MV ) for
j = 0, . . . , n− 1 the columns ofMV .

The coefficient Coeffi,j(MW ) of index (i, j) of
MW is then computed as a line-column matrix prod-
uct (in the sequel we will call this operation ascalar
product)

Coeffi,j(MW ) = Li(MU ) · Cj(MV )

=
∑n−1

ℓ=0 Coeffi,ℓ(MU )Coeffℓ,j(MV )
(10)

A scalar product (10) can be done in timeTA +
⌈log2(n)⌉TX , whereTA is the delay for an AND gate
andTX for an XOR gate, using parallel AND gates
and a binary tree of XOR.

Consequently, if all these scalar products are done
in parallel, one can compute the productMW of MU

andMV in time TA + ⌈log2(n)⌉TX . So at this point
we reach the lower bound on time complexity in bi-
nary field multiplication.

The major drawback of this approach is that
we have to computen2 coefficients Coeffi,j(MW ).
The space complexity is thus roughlyn3 AND and
n3 XOR which is widely too big and not practical.

But in fact, we did not use the fact that the number
of distinct coefficients in each matrixMU ,MV and
MW is quite small. A lot of scalar products can be
avoided, this motivates the use of a condensed matrix
representation.

5 CONDENSED MATRIX
REPRESENTATION

The set of coefficients of the matrixMU for a givenU
is quite small: it consists of then bitsui, thek bitsu′

i

and the(n−k−1) bitsu′′

i . The matrix representation
MU can be condensed in this three set of coefficients.

Definition (Condensed Matrix Representation). We
consider the fieldF2n = F2[X]/(P ) whereP is an
irreducible trinomial, and letU =

∑n−1
i=0 uiX

i be an
element ofF2n . The condensed matrix representation
of U is CMR(U) = (U,U ′′, U ′′′) such that

U = (u0, . . . , un−1),

U ′ = (u′

0, . . . , u
′

k−1), whereu′

i = ui + ui+(n−k),

U ′′ = (u′′

i , . . . , u′′

j ), where

• u′′

i = ui + ui−k + ui+n−2k for i = k +
1, . . . , 2k − 1,

• u′′

i = ui + ui−k for i = 2k, . . . , n− 1.

The condensed matrix representation ofU contains
all the distinct coefficients of the matrixMU . We can

thus reconstruct each line and each column of matrix
MU .

Construction of the lines ofMU . We noteLi(MU )
the line ofMU for i = 0, . . . , n − 1. Using the
expression ofMU of equation (7), we get the fol-
lowing expression of these lines ofMU in term of
the CMR ofU in the Table 1.

Table 1: Lines ofMU .

i=0,...,k−2 Li(MU )=[uiui−1···u0un−1···uku′

k−1...u′

i+1]
i=k−1 Lk−1,A=[uk−1uk−2···u0un−1···uk]

i=k,...n−2 Li(MU )=[ui...uku′

k−1...u′

0u′′

n−1...u′′

i+1]
i=n−1 Li(MU )=[un−1...uku′

k−1...u′

0]

Construction of the columns ofMU . We note
Cj(MU ) the columns ofMU for j = 0, . . . , n− 1.
From (7) we get the Table 2 of the columns ofMU

where the expression ofCj(MU ) are given in term
of the CM representation ofU .

Now using these descriptions of the lines and the
columns of the matrixMU we can easily express the
multiplication in the condensed matrix representation.

5.1 Multiplication in Condensed
Matrix Representation

Let U and V be two elements ofF2n given
by their respective condensed matrix representa-
tion CMR(U) = (U,U ′, U ′′) and CMR(V ) =
(V, V ′, V ′′). As stated in the previous section, with
the CMR representation ofU and V we can easily
construct the lines and columns ofMU andMV . We
want to compute the coefficients of the condensed
matrix representation of the productW = UV in
F2n = F2[X]/(Xn + Xk + 1). To do this first re-
call that, from Theorem 1, for each0 ≤ i, j ≤ n − 1
we have

Coeffi,j(MW ) = Li(MU ) · Cj(MV ). (11)

To get the CMR ofW we need only to compute the
coefficientsW,W ′,W ′′ of MW .

• Computing the coefficients ofW . The coefficients
wi of CMR(W ) are in the first column ofMW .
This means that

wj = Coeff0,j(MW ) = L0(MU ) · Cj(MV ).

• Computing the coefficients ofW ′ and W ′′. If we
look at equation (7) we can see thatW ′ andW ′′

appears in the lineLk(MW ), i.e.,

w′

j = Coeffk,j(MW ) for 1 ≤ j ≤ k,

w′′

j = Coeffk,j(MW ) for k + 1 ≤ j ≤ n− k.
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Table 2: The columns ofMU .

j = 0 C0(MU ) = t [u0· · ·· · ·· · ·un−1]
j = 1, . . . , k − 1 Cj(MU ) = t

[

un−j · · ·un−1u0· · ·uk−j−1u
′

k−j · · ·u
′

k−1uk· · ·un−j−1

]

j = k, . . . , n− k Cj(MU ) = t
[

un−j · · ·un−j+k−1u
′′

n−j+k· · ·u
′′

n−1u
′

0· · ·u
′

kuk+1· · ·un−j−1

]

j = n− k + 1, . . . , n− 1 Cj(MU ) = t
[

u′

n−j · · ·u
′

k−1uk· · ·un−j+k−1u
′′

n−j+k· · ·u
′′

n−1u
′

0· · ·u
′

n−j−1

]

.

Now using (11) we get the following expression for
w′

j andw′′

j

w′

j = Lk(MU ) · Cj(MV ) for 1 ≤ j ≤ k,

w′′

j = Lk(MU ) · Cj(MV ) for k + 1 ≤ j < n.

These operations can be done in a parallel hardware
architecture. Specially each coefficientwi, w

′

i andw′

i

we perform in parallel a scalar product through paral-
lel AND gates, and a binary tree of XOR.

Complexity.Let us evaluate the complexity of this
multiplier. It consists in(2n−1) scalar products done
in parallel:

• n for the coefficientswj , j = 0, . . . , n− 1,

• n − 1 for the w′

j , with j = 0, . . . , k − 1 andw′′

j

with j = k + 1, . . . , n− 1.

Since one scalar product requiresn AND and(n− 1)
XOR, the overall space complexity of the multiplier is
equal to(2n− 1)n AND and(2n− 1)(n− 1) XOR .
For the time complexity, since the computation of the
coefficients of CMR(W ) are done in parallel, the time
complexity is equal to the delay of only one scalar
product. But this delay is equal toTA+⌈log2(n)⌉TX .

6 EXAMPLE

We consider the fieldF25 = F2[X]/(X5 + X2 + 1).
Let U = u0 + u1X + u2X

2 + u3X
3 + u4X

4 ∈ F25 .
The condensed matrix representation ofU is given by
the three vectors

U = (u0, u1, u2, u3, u4, u5),
U ′ = (u′

0, u
′

1), U ′′ = (u′′

3 , u′′

4).

where theu′

i andu′′

i are defined by

u′

0 = u0 + u3, u′

1 = u1 + u4,
u′′

3 = u3 + u1 + u4, u′′

4 = u4 + u2,

Using the general formula (7) forMU we get that
MU is as follows

MU =











u0 u4 u3 u2 u′

1
u1 u0 u4 u3 u2

u2 u′

1 u′

0 u′′

4 u′′

3
u3 u2 u′

1 u′

0 u′′

4
u4 u3 u2 u′

1 u′

0











.

Now if U = 1 + X3 + X4 andV = X + X2 their
condensed matrix representation are

CMR(U) =

{

U = (1, 0, 0, 1, 1),
U ′ = (0, 1), U ′′ = (0, 1).

CMR(V ) =

{

V = (0, 1, 1, 0, 0),
V ′ = (0, 1), V ′′ = (1, 1).

Using the vectorsU,U ′, U ′′ we can constructMU and
with the vectorsV, V ′′ andV ′′ we can constructMV

MU =











1 1 1 0 1
0 1 1 1 0
0 1 0 1 0
1 0 1 0 1
1 1 0 1 0











, MV =











0 0 0 1 1
1 0 0 0 1
1 1 0 1 1
0 1 1 0 1
0 0 1 1 0











.

Let W = UV be the product ofU andV in F25 .
We compute the condensed matrix representation of
W by multiplying well chosen line ofMU and well
chosen line ofMV as described in the previous sec-
tion.

We computew0 by multiplying L0(MU ) the first
line of MU with C0(MV ) the first column ofMV

w0 = L0(MU ) · C0(MV )

= [ 1 1 1 0 1 ] · t [ 0 1 1 0 0 ] = 0

Forwi, i = 1, 2, 3, 4 we have

w1 = L1(MU ) · C0(MV ) = 0,
w2 = L2(MU ) · C0(MV ) = 1,
w3 = L3(MU ) · C0(MV ) = 1,
w4 = L4(MU ) · C0(MV ) = 1.

For the coefficientsw′

i we do

w′

1 = L2(MU ) · C1(MV ) = 1,
w′

2 = L2(MU ) · C2(MV ) = 1.

And finally for the coefficientsw′′

i we have

w′′

3 = L2(MU ) · C3(MV ) = 0,
w′′

4 = L2(MU ) · C4(MV ) = 0.

We can easily check that the coefficientswi, w
′

i and
w′′

i are the correct coefficients of the condensed ma-
trix representation of the product ofU andV in F25 .
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Table 3: Complexity.

Algorithm Space complexity Time complexity
# AND # XOR

CMR for Xn + Xk + 1 (2n− 1)n (2n− 1)(n− 1) TA + (⌈log2(n)⌉)TX

with 2 ≤ k ≤ n
2 (this paper)

PB forXn + Xk + 1 with 2 ≤ k ≤ n
2 n2 (n2 − k) TA + (2 + ⌈log2(n)⌉)TX

(Koc and Sunar, 1999)
PB forXn + X + 1 n2 (n2 − 1) TA + (1 + ⌈log2(n)⌉)TX

(Koc and Sunar, 1999)

PB for AOP (Chang et al., 2005) ( 3n2

4 + 2n + 1) + 3(n+2)2

4 TA + (1 + ⌈log2(n)⌉)TX

NB of Type I (Wu and Hasan, 1998) n2 (n2 − 1) TA + (1 + ⌈log2(n)⌉)TX

NB of type II (Koc and Sunar, 2001) n2 3
2 (n2 − n) TA + (1 + ⌈log2(n)⌉)TX

7 CONCLUSION

We have presented in this paper a new multiplier ar-
chitecture for binary fieldF2n generated by a trino-
mial Xn+Xk +1 with 2 ≤ k ≤ n

2 using a condensed
matrix representation. This multiplier is highly paral-
lelizable.

In Table 3 we give the complexity of our architec-
ture, and also the complexity of different multiplier
architectures proposed in the literature for fieldF2n .

We see that the use of a condensed matrix repre-
sentation provides a multiplication which is the faster
among all previously proposed multiplier known by
the author. The gain on time complexity for multipli-
cation modulo trinomialsXn + Xk + 1 with crypto-
graphic sizen ∼ 160 is around20% whenk ≥ 2
compared to polynomial basis multiplier and10%
compared to normal basis multiplier or AOP polyno-
mial bases. But we have to pay a big price for this
improvement : the condensed matrix representation
parallel multiplier has a space complexity which is
roughly two times bigger than classical polynomial
and normal basis multiplier.
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