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Abstract: In this paper we explore a matrix representation of binary fi&lgs defined by an irreducible trinomial

P = X" + X* + 1. We obtain a multiplier with time complexity dfa + ([log,(n)])Tx and space
complexity of(2n — 1)n AND and(2n — 1)(n — 1) XOR . This multiplier reaches the lower bound on time
complexity. Until now this was possible only for binary field defined by AOP (Silverman, 1999), which are
quite few. The interest of this multiplier remains theoretical since the size of the architecture is roughly two
times bigger than usual polynomial basis multiplier (Mastrovito, 1991; Koc and Sunar, 1999).

1 INTRODUCTION

A binary fieldFo» = F3[X]/(P) is a set of2™ ele-
ments in which we can do all the basic arithmetic op-
eration like addition, subtraction, multiplication and
inversion modulo anirreducible binary polynomial
Finite field arithmetic is widely used in cryptographic
applications (Miller, 1985) and error-correcting code
(Berlekamp, 1982). For these applications, the most
important finite field operation is the multiplication.
The representation of binary field elements have a
big influence on the efficiency of field arithmetic. Un-

til now, field elements were represented as sum of ba-

sis elements: the basis is composedrbglements
By,...,B, € T, in this situation an elemerf
in Fyn is written asU = w1 By, + -+ + u, B, with
U; € {O, 1}

The most used bases are polynomial bases (Mas
trovito, 1991; Koc and Sunar, 1999; Chang et al.,

2005) and normal bases (Wu and Hasan, 1998; Koc

and Sunar, 2001).

Our purpose here is to investigate a new represen-

tation: the matrix representation. We will focus on
field defined by a trinomiaFq» = Fy[X]/(P) with

P = X" + X* 4 1. In the matrix representation an
element of F,. is represented by the? coefficients
of an x n matrix M;. The additions of two elements
U andV simply consists to add the two matrickf;
and My, and to multiplyU andV it consists to multi-
ply the matrix produci\fy; - My, .
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This gives a faster multiplication than multiplica-
tion using basis representation: a parallel multiplier
associated to a matrix representation has a time com-
plexity of T4 + ([log,(n)])Tx, whereas in basis rep-
resentation, for field defined by a trinomial (Koc and
Sunar, 1999; Mastrovito, 1991), the time complexity
is generally equal td’s + (2 + [logy(n)])Tx. The
major drawback of this method is due to the length of
the representation which requires coefficients, and
provides parallel multiplier with a cubic space com-
plexity in n. But if we carefully select a subset of the
matrix coefficients, the number of distinct coefficients
in each matrix);; becomes small: in our situation it
is equal to(2n — 1). In other words we condense the
matrix representation if2n — 1) distinct coefficients
to decrease the space complexity.

The paper is organized as follows : in the first sec-
tion we recall the method of Koc and Sunar (Koc and

Sunar, 1999) for finite field multiplication modulo tri-
nomial. They perform the reduction modulo the trino-
mial on a matrix and then compute a matrix-vector to
get the product of two elements. In the second section
we study the possibility to use the matrix constructed
with Koc and Sunar’s method to represent finite field
elements. After that we evaluate the complexity of a
parallel multiplier in this matrix representation. Next,
we study a condensed matrix representation and the
associated multiplier. We finally give a small exam-
ple of our matrix multiplier and finish by a complexity
comparison and a brief conclusion.
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2 MATRIX REPRESENTATION IN Xi=n and X~"**, Using the previous notation, this

POLYNOMIAL BASIS procedure modifies the matriXy as follows
. _ _ _ (Nu)e = (Nu)e+ (Nu)i+ (Null k] (3)
Let P = X" 4 X" 4 1 be an irreducible polynomial (Nu)i — (Npq[t (n—k)] 4)

in F3[X]. Without loss of generality we can assume
k < Z since whenX™ + X" + 1 is irreducible, the

reciprocal polynomialX” + X"~* + 1 is also irre-

If we denote byS the low part of Ny, and byT" the
top part of Ny

ducible. Furthermore, in this paper we will always OUp—1Up_o- - UL 0 0

suppose for simplicity: > 2. 0 0 wUp_1--- ug to 0
An elementl/ € Fy. = Fy[X]/(P)isapolyno- g_|. . . . . | p_| " "

mial of degreen — 1. To compute the product of two C . o ’ ’

elementd/ andV in Fy» we first compute the product 8 8 8 0 “nofl Up—1 Up 2+ * U

of polynomial
we can rewrite equation (3) and (4) as

n—1 n—1
W=UV = (ZWX’) (sz-XZ). (1) (Nu)e =T + 5+ S[| &, -
i=0 i=0 (Nu)e = S[1 (n = k)].
This product can be done by a matrix vector prod-  Now, since we assumed: > 2, in the

uct Ny - V- whereNy is given below new expression ofNy, the lines corresponding
to X™, ..., X"tk=2 contains non-zero coefficients.
1 T oug 0 ... 0 o0 1 Thus, we have to reduce a second tindg with the
X u w0 0 same method. We sé& = S[1 (n — k)] = (Nu)
and the second reduction provides
Xn,'Q _ uns wn_s - uy 0 (Ng)y = THS+S +(S+ 9|l ] ©6)
anl N Up—1 Up—2 . u1 ug (NU)l = O
X" — 0 Un—1 - w2 ouwr | We finally have the expression 8fy; = (Ny), the
Xt 0 0 - uz  wg reduced form ofVy,

. UY Up—1 =0 - Up Wp_q wvv e ull b
X2n—2 _, 0 0 0 Up—1 u1 UQ Up—1 - -+ S uy u;c—l"' ’U,l2
x:=1_, | o0 o - 0 0 |
The productiV = UV contains monomials\’ th—2 Hotin=1 k=1

with larger degree than, i.e., withn < i < 2n — 2. My=| -2 Ho Mmet o r el
These monomials must be reduced modifto = R e A Yo tn—1 0ttt e
X" + X* 4+ 1. To perform this reduction we will Ukt1 Uk gyttt T Yo Un—1t U
use the following identity modul® for eachi > n : I e
Xi— xi-(n=k) L xi-n 04 P @) Un— oot URUL_ g e e s uQUD
= 3 Unel oo e e W Wy e e e ) |
For example ifP = X°+ X2+ 1 then we have(® = )
X241 mod P andinthe sameway® = X3 + X where
mod P and so on. Uy = Ui + Ui (n—p) TOr0 < i <k,

Ui + Ui—t + Uign—ak FOrk <4 < 2k,

posed to perform the reduction modutoon the line wi + sy for 2k < i < n.

of the matrix/Ny; instead of performing the reduction

on the polynomialV = UV'. The method of Koc and Sunar (Koc and Sunar,
To describe this reducing process we need to state1999) to compute the produbtl’ mod P, first con-

some notations. Ifi/ is an x 2n matrix, we denote  sists to compute the coefficientsandu; of M and

by (M), the top part of the matrid/ constituted by  after that to perform the matrix-vector produdi, -V

then first lines. We will denote als6)M ); the matrix to obtainU'V' mod P. This multiplier computes the

constituted by the: last lines. And finally, we will  product in timeT's + ([log,(n)] + 2)Tx using a par-

denoteM [T s] the matrix shifted up by rows from allel architecture.

M, andM]| s] the matrix shifted down by rows. If we know the coefficients,;, v, andu; we avoid
From equation (2) the line correspondingXd for the delay to compute these coefficients. In this sit-

1 > n are pushed up to the lines corresponding to uation the product could be done in ting, +

Koc and Sunar in (Koc and Sunar, 1999) have pro-
u) = {
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[log,(n)]Tx. This remark pushed us to try to keep

the field elementé/ € Fy. expressed by the matrix My, -Z = WeZ=UVZ
My (i.e., in this case we always know the coefficients = My -(VZ)=My-(My - 2)
u;, w, andw/, and we don’'t have to compute it before = (My-My)-Z

the multiplication) and try to use this representation This implies tha{ My — My My) - Z = 0 for each

to implement finite field arithmetic. Zin Fyn, but this means that\y, — My My) is the
Definition (Matrix Representation) Let Fan = zero matrix. In other words we haviey, = My - My,
Fo[X]/(P) where P = X™ + XF + 1 with 2 < as required. O

k < §. The matrix representation of an element

U ="} u; X of the fieldFyn is the matrix given
in equation(7) expressed in term of the coefficients rem 1

ug, u; anduy . : ,
Th ion is d d lain h dd Example 1. We consider the fieldFy,» =
e next section is devoted to explain how to a Fy[X]/(XT + X3 + 1) and letU — 27_171 Xi pe

. . . . . =0 U;
and multiply field elements in matrix representation. an element oF,:. From equation (7) r get the fol-

lowing expression of\f;
UQ Ug U Ug U3 U U)

For a more general proof see (Lidl and Niederreiter,
1986). The following example illustrates the Theo-

3 FIELD ARITHMETIC IN i o W 4%
MATRIX REPRESENTATION U U1 Up Ug Us Ug U3

My = | ug ub v} ugy ug uff ul

LetFon =y [X]/(Pz whereP is an irreducible tri- Uy u3 U U:f Ug) U%s' U%
nomial P = X" + X* +1with2 <k < 3. U5U4U3U2U}U9“9
The following Theorem shows that, if the elements Ue Us Ug U3 Uy Uy Up

U e Egtz, are reprgsenteq by their associated mg;\trix With u)y = ug + ug, u) = uy + us, uh = ug + ug and
My, finite _ﬂelo! arlthr_netlc corresponds to classical /! = u/, +uy +us, ul = us+us +ug, ul = ug+us.
n X n matrix arithmetic. ForU=1+X+X*andV = X2+ X3+ X5we
Theorem 1. LetF,. = Fy[X]/(P) whereP is an  obtain the following matrices

irreducible trinomial P = X™ + X* + 1 with 2 <

k<oLetU =30 u X andV = 30 o X1 1001001 0010111
be two elements if';» and My and My, their cor- 1100100 0001011
responding matrix defined iv). If Wy, = U +V 0110010 1000101
mod PandWy = UV mod P we have My =10010000|, My = (1110101
1001000 0111010
Mw, =My + My, (8) 0100100 1011101
My, =My - My. 9 0010010 0101110
Proof. Using equation 7, it is clear that to show the =~ Now we addM; andMy to gettge mat4ri>MW§ =
assertion folV, it is sufficient to show that My + My of Wi =U+V = X°+ X"+ X° +
X3+ X +1 mod P and we multiplyM;; and My
Wi = U i“;a to get the matrix\yy, = My - My of Wy = UV =
k = g 4 4
5}{3 — Z}l+%{3' X4+ X341 mod P
The identity onw; is trivial sinceW; = U + V 1011110 1001100
mod P. Forw; we have 1101111 0100110
, 1110111 0010011
Wi = Wi+ Wit (n—k) = (Ui Vi) F (Ui (n—k) F Vit (n—k))- My, = | 1100101 | , My, = | 1000101
By rearranging this expression, we get 1110010 1100010
/ o 1111001 0110001
w; = (Ui + Uit (n—k)) + (Vi + Vig(n—k)) = u; + V5. 0111100 0011000
A similar proof can be done to show thaf = u} +
vy
4 PARALLEL MULTIPLICATION

For the assertion offyy, it is a little bit more dif-
ficult. We remark that from the result of section 2, for IN MATRIX REPRESENTATION
every elements € Fay. the productV Z in Fan is
given by My - Z and the producWW»Z by My, - Z. Let us now study the architecture of the multiplier as-
Thus we get for every, € Fon that sociated to the matrix representation. Welix’ €
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Fo» and My and My, their associated matrix. Let
W = UV be the product of/ andV in Fy. and
My its associated matrix . We will notg; (M) for

i =0,...,n — 1the line of My and C;(My ) for
j=0,...,n—1the columns of\/y .

The coefficient Coeff; (M) of index (¢, j) of
My is then computed as a line-column matrix prod-
uct (in the sequel we will call this operatiorsaalar
produc)

Coeff; ;(Mw) = Li(My) - C;(My)

n’ 10
= E:(} Coeffi,g(MU)Coef‘f&j(MV) ( )

A scalar product (10) can be done in tirig +
[log,(n)]|Tx, whereT 4 is the delay for an AND gate
andTx for an XOR gate, using parallel AND gates
and a binary tree of XOR.

Consequently, if all these scalar products are done cqpstruction of the columns of M. We

in parallel, one can compute the produdty, of M,
andMy intime T4 + [log,(n)]Tx. So at this point
we reach the lower bound on time complexity in bi-
nary field multiplication.

The major drawback of this approach is that
we have to compute? coefficients Coeff; (M ).
The space complexity is thus roughty AND and
n3 XOR which is widely too big and not practical.

But in fact, we did not use the fact that the number
of distinct coefficients in each matriX{;;, My, and
My is quite small. A lot of scalar products can be

avoided, this motivates the use of a condensed matrix

representation.

5 CONDENSED MATRIX
REPRESENTATION

The set of coefficients of the matriX; for a givenU

is quite small: it consists of the bits u,, thek bits u/,

and the(n — k —1) bitsw'. The matrix representation
My can be condensed in this three set of coefficients.

Definition (Condensed Matrix Representation)e
consider the fieldy» = Fo[X]/(P) whereP is an
ireducible trinomial, and let/ = 37 ' u; X" be an
element off,.. The condensed matrix representation
of U is CMRU) = (U,U",U"") such that

U= (UO, ce ,un_l),

U' = (ug, ..., uj_y), whereu; = u; + t;q(n—p),

U" = (uf,...,u}), where

o u! = w; + Uik + Uign—or fOr i = k +
1,...,2k—1,

o v/ =w; +u;_pfori=2k,....n—1.

The condensed matrix representatio/ofontains
all the distinct coefficients of the matrix/;;. We can

thus reconstruct each line and each column of matrix
M.

Construction of the lines of My;. We noteL; (M)
the line of My for i = 0,...,n — 1. Using the
expression of\/y; of equation (7), we get the fol-
lowing expression of these lines 8f;; in term of
the CMR ofU in the Table 1.

Table 1: Lines ofMy .

i=0,...,k—2 L,i(MU):[u,Lvu,-,l-~u0un,1-~uku§971...u§+1]
i=k—1 kal,A:[uk71uk72"'uounfl"'uk]

i=k,..n—2 L;(My)= ul...uku;c71...uf)u:ifl...ufb-;l]
i=n—1 L;(My)= un,l‘..uku;_l...ug]

note
C;(My) the columns of\fy; for j =0,...,n — L.
From (7) we get the Table 2 of the columnsidf;
where the expression 6f; (M) are given in term
of the CM representation af .

Now using these descriptions of the lines and the
columns of the matrix(/; we can easily express the
multiplication in the condensed matrix representation.

5.1 Multiplication in Condensed
Matrix Representation

Let U and V be two elements offF;-» given

by their respective condensed matrix representa-
tion CMR(U) (U,U',U") and CMRYV)
(V,V',V"). As stated in the previous section, with
the CMR representation df andV we can easily
construct the lines and columns bfy andMy,. We
want to compute the coefficients of the condensed
matrix representation of the produd = UV in

Fon = Fo[X]/(X™ + X* + 1). To do this first re-
call that, from Theorem 1, foreach< i,j <n —1

we have

Coeﬁi}j(Mw) = Lz(MU) . Cj(Mv) (ll)
To get the CMR ofi¥ we need only to compute the
coefficientsiW, W', W" of Myy.

e Computing the coefficients &F. The coefficients
w; of CMR(W) are in the first column of\/y.
This means that

w; = Coeff(),j(MW) = LO(MU) : CJ(MV)

e Computing the coefficients &’ and W". If we
look at equation (7) we can see tHat' and W”
appears in the liné, (M), i.e.,

U}; = Coeffk,j(MW) for 1 < 7 < k,
w; = Coeffy ;(Mw) for k+1<j<n-—k.
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Table 2: The columns af/y .

j=0 Co(My) Zt[UO""""'Un—l]
j=1,...k—1 Cj(MU) =t Up—j Up—1UQ" -uk_j_luz_j- . -uﬁc_luk- . -un_j_l]
j=k,...,n—k Ci(My) =" [Un—j** Un—jph—1Up_j g Up_1Up" * UpUk41* Up—j—1
j=n—k+1,...,n—1|C;(My) =" [up_j U Uk Un—jrk—1Up g Up_1Ug U j_q] .

Now using (11) we get the following expression for Nowif U =1+ X3 + X*andV = X + X? their

w’ andw?/ condensed matrix representation are
wi = Li(My) - Cj(My) for 1 <j <k, U =(1,0,0,1,1),
" : CMR(U) - U = (0 1) Ug= (0 1)
w; :Lk<MU)-Cj(Mv) for k+1<j<n. y ) )
. . CMR(V) — vV =(0,1,1,0,0),
These operations can be done in a parallel hardware (V) = V! = (048#" 1.1

architecture. Specially each coefficient, w; andw)
we perform in parallel a scalar product through paral- Using the vector&’, U’, U” we can construct/y; and

lel AND gates, and a binary tree of XOR. ~ with the vectors/, V" andV”’ we can construch/y,
Complexity.Let us evaluate the complexity of this

multiplier. It consists in2n — 1) scalar products done 11101 00011

in parallel: 01110 10001

¢ n for the coefficientsv;, j =0,...,n —1, My = | 01010}, My = 11011

L 10101 01101
on—lforthew},wnhg:0,...,k—1andw;/ 11010 00110

withj =k+1,...,n—1.

Let W = UV be the product oV andV in Fs.
We compute the condensed matrix representation of
W by multiplying well chosen line of\/; and well

For the time complexity, since the computation of the Shosen line of\/y- as described in the previous sec-
coefficients of CMRW) are done in parallel, the time 10N o _
complexity is equal to the delay of only one scalar . e computew, by multiplying Lo(My) the first

Since one scalar product requireé&ND and(n — 1)
XOR, the overall space complexity of the multiplier is
equal to(2n — 1)n AND and(2n —1)(n—1) XOR .

product. But this delay is equal 1, + [log, (n)]Tx . line of My with Co(My ) the first column ofM/y
wo = LO(MU) : C()(Mv)
6 EXAMPLE = [11101]~t[01100}:0

. . Forw;, i = 1,2, 3,4 we have
We consider the fiellfys = Fo[X]/(X° + X2 + 1).

LetU = ug +u1 X +UQX2 —|-U3X3 —I—U4X4 € [Fys. wy = Ll(MU) . CO(MV) =0,
The condensed matrix representatioi/ak given by we = Lo(My) - Co(My ) =1,
the three vectors wz = L3(My) - Co(My) =1,
wy = L4(MU) . C()(Mv) =1.
U = (ug,u1,us, us, ug, us),
U = (up,uy), U" = (ug,uj). For the coefficients! we do

where theu; andw; are defined by ,
wy = Ly(My) - Cr(My) =1,

ug = ug +uz, up = Uy + Uy, wh = Ly(My) - Cy(My) = 1.
uf = us+ug + ug, uj =ug+ ug,
y ] 11
Using the general formula (7) favly; we get that And finally for the coefficientsv, we have
My is as follows wy = Lo(My) - C3(My) = 0,

ug ug Uz up Uy wy = La(My) - C4(My) = 0.
Up Upg U4 U3 U2 . .

My=| uy u) uh u uf |. We can easily check that the coefficients w; and
us ugp uy b ul wy are the correct coefficients of the condensed ma-
uy us up ol trix representation of the product 6fandV in Fas.
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Table 3: Complexity.

Algorithm Space complexity Time complexity
# AND [ # XOR
CMR for X" + X* 4+ 1 (2n —1)n 2n—1)(n—1) T4 + ([logy(n)])Tx
with 2 < & < % (this paper)
PBforX" + XF +1with2 <k <2 n? (n? —k) T + (2 + [logy(n)])Tx
(Koc and Sunar, 1999)
PBforX™+ X +1 n? (n?-1) Ta+ (14 [logy(n)])Tx
(Koc and Sunar, 1999)

PB for AOP (Chang et al., 2005) | (32 4 2n + 1) 3t Ta + (1 + [logy(n)))Tx
NB of Type I (Wu and Hasan, 1998) n? (n?—1) Ta + (1 + [logy(n))Tx
NB of type Il (Koc and Sunar, 2001) n? 3(n* —n) Ta + (1 + [logy(n)])Tx

7 CONCLUSION Lidl, R. and Niederreiter, H. (1986)ntroduction to Finite

Fields and Their ApplicationgCambridge Univ Press.
We have presented in this paper a new multiplier ar- Mastrovito, E. (1991)VLSI architectures for computations

chitecture for binary field,~ generated by a trino- in Galois fields PhD thesis, Dep.Elec.Eng.,Linkoping

mial X"+ X*+1with 2 < k < 2 using a condensed univ.

matrix representation. This multiplier is highly paral- Miller, V. (1985). Uses of elliptic curves in cryptography.

lelizable. Advances in Cryptology, proceeding’s of CRYPTO'85,
In Table 3 we give the complexity of our architec- Lecture Note in Computer Science 218

ture, and also the complexity of different multiplier  Silverman, J. H. (1999). Fast Multiplication in Finite Fields

architectures proposed in the literature for fild . GF@2™). In Crytographic Hardware and Embedded
We see that the use of a condensed matrix repre- Systems - CHES'99volume 1717 ofLNCS pages

sentation provides a multiplication which is the faster 122-134.

among all previously proposed multiplier known by Wu, H. and Hasan, M. (1998). Low-Complexity Multipliers

the author. The gain on time complexity for multipli- Bit-Parallel for a Class of Finite FielddEEE Trans.

cation modulo trinomialsX™ + X* + 1 with crypto- Computers47:883-887.

graphic sizen ~ 160 is around20% whenk > 2
compared to polynomial basis multiplier and%
compared to normal basis multiplier or AOP polyno-
mial bases. But we have to pay a big price for this
improvement : the condensed matrix representation
parallel multiplier has a space complexity which is
roughly two times bigger than classical polynomial
and normal basis multiplier.
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