
A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE
CHOSEN-PLAINTEXT ATTACK ON SSL

Gregory V. Bard
University of Maryland, Department of Mathematics

College Park, MD, 20914, USA

Keywords: Blockwise Adaptive, Chosen Plaintext Attack (CPA), Secure Sockets Layer (SSL), Transport Layer Security
(TLS), Cryptanalysis, HTTP-proxy, Initialization Vectors (IV), Cipher Block Chaining (CBC).

Abstract: This paper introduces a chosen-plaintext vulnerability in the Secure Sockets Layer (SSL) and Trasport Layer
Security (TLS) protocols which enables recovery of low entropy strings such as can be guessed from a likely
set of 2–1000 options. SSL and TLS are widely used for securing communication over the Internet. When
utilizing block ciphers for encryption, the SSL and TLS standards mandate the use of the cipher block chaining
(CBC) mode of encryption which requires an initialization vector (IV) in order to encrypt. Although the
first IV used by SSL is a (pseudo)random string which is generated and shared during the initial handshake
phase, subsequent IVs used by SSL are chosen in a deterministic, predictable pattern; in particular, the IV
of a message is taken to be the final ciphertext block of the immediately-preceding message, and is therefore
known to the adversary.
The one-channel nature of web proxies, anonymizers or Virtual Private Networks (VPNs), results in all Internet
traffic from one machine traveling over the same SSL channel. We show this provides a feasible “point of
entry” for this attack. Moreover, we show that the location of target data among block boundaries can have a
profound impact on the number of guesses required to recover that data, especially in the low-entropy case.
The attack in this paper is an application of the blockwise-adaptive chosen-plaintext attack paradigm, and is
the only feasible attack to use this paradigm with a reasonable probability of success. The attack will work for
all versions of SSL, and TLS version 1.0. This vulnerability and others are closed in TLS 1.1 (which is still
in draft status) and OpenSSL after 0.9.6d. It is hoped this paper will encourage the deprecation of SSL and
speed the adoption of OpenSSL or TLS 1.1/1.2 when they are finially released.

1 INTRODUCTION

This paper outlines a vulnerability of all ver-
sions of SSL and also TLS 1.0 by means of a
feasible blockwise-adaptive chosen-plaintext attack
(BACPA). The attack proceeds as follows. After valu-
able low-entropy data has been transmitted by the tar-
get (e.g. a stock from a list of 2–1000 companies) the
adversary inserts plaintext into the communications
stream by inducing the target machine to transmit data
designed to contain particular byte sequences. Based
on the ciphertext values of these known plaintexts,
the low-entropy data can be guessed. The probabil-
ity of success depends on the type of data being tar-
geted, with examples given below. Furthermore, it
is shown that the position of this target data within
block-boundariesdirectly and significantlyimpacts
the number of guesses required to recover that datum.

The vulnerability described here was closed in TLS
1.1 and OpenSSL after 0.9.6d. Probably all other
SSL implementations1 are vulnerable. Since TLS 1.1
had only just exited draft status in late April 2006,
most TLS deployments (at the time of the submis-
sion of this article) use version 1.0, which is vulner-
able to this attack. Nonetheless, the main purpose
of this paper is not to claim the existence of a ma-
jor threat to computer security, but rather to disprove
the myth that blockwise-adaptive chosen-plaintext at-
tacks are totally infeasible and thus of theoretical in-
terest only. Furthermore, we prove that it is easier
to guess the values of low-entropy data when it is di-
vided across block boundaries.2 It is hoped this paper
will highlight some of the disadvantages of Cipher
Block Chaining, emphasize the importance of using

1There would be exceptions if others copy OpenSSL.
2We believe this has not previously been published.

99
V. Bard G. (2006).
A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL.
In Proceedings of the International Conference on Security and Cryptography, pages 99-109
DOI: 10.5220/0002104100990109
Copyright c© SciTePress

distinct keys for each source-destination pair, and il-
lustrate the importance of using random numbers as
initialization vectors.

The Attack Modern users are becoming aware that
installing software of unknown origin is unsafe. For
this reason, and many others, the concept of an “un-
trusted applet” running in a “sandbox” within the Java
Virtual Machine was created (Gosling et al., 2005).
These applets have highly restricted security privi-
leges, but are commonly available on individual and
commercial web-sites as utilities and games. If an at-
tacker can manage to get a user to install a Java appli-
cation (or application in any other language) the at-
tacker can read the user’s keystrokes and broadcast
them—there is no need for cryptanalysis in this case.
However, an untrusted applet does not have this priv-
ilege (Loeffler, 1997) (Gosling et al., 2005). It only
receives notice (“events”) from keystrokes pressed
while the applet is on screen and “has the mouse fo-
cus.” Therefore reading the user’s keystrokes while
he/she enters valuable data into other applications is
impossible. However, one privilege of the untrusted
applet is to open a TCP connection to the web server
from whence it came (Loeffler, 1997). Imagine a
user visiting a secure web-site for banking, and later
playing a Java applet game. Naturally the socket for
the secure transaction and the socket that the applet
opens back to its server are unrelated. However, in
the special case of a web-anonymizer, HTTP-proxy
or virtual private network, all network traffic leav-
ing the user’s machine will travel over the same SSL
socket3. Since they travel over the SSL link and in the
same direction, the data in each case will be encrypted
with the same secret key. This results in the targeted
data, as well as data of the adversary’s choosing (the
chosen-plaintext), becoming available for use in veri-
fying guesses of the targeted plaintext via Blockwise-
Adaptive Chosen-Plaintext attack.

Blockwise-Adaptive Chosen-Plaintext BACPA
was simultaneously discovered in 2001 by Bellare,
Kohno, and Namprempre (Bellare et al., 2002) and
by Joux, Martinet, and Valette (Joux et al., 2002).
The BACPA differs from classical chosen plaintext
attack (now termed “message-wise” or MCPA) in
essentially one detail. In MCPA, the attacker can
generate arbitrary messages for the target to encrypt,
as part of a sequence of messages. In BACPA, the
attacker can generate arbitrary blocks for the target
to encrypt, inserted as part of an existing message
(i.e., a sequence of blocks). However, four years

3We have recently learned that an e-mail posted to the
Certicom TLS mailing list in March of 2002 had also men-
tioned this possibility, though with fewer details (Rescorla,
2002).

after its discovery, BACPA has received very little
notice outside the cryptographic community, despite
several additional papers within it. Bellare, Kohno,
and Namprempre (Bellare et al., 2002), in addition to
outlining a theoretical model of potential adversary
capabilities that is expanded upon in later papers
(Fouque et al., 2004) (Boldyreva and Taesombut,
2004) (Fouque et al., 2003), loosely describe a gen-
eral attack on the Secure Shell (SSH) first found by
(Dai, 2002). That attack had a success probability4

of 2−12.5 or 6.9 × 10−4. This paper outlines an
attack with a success probability that can approach
100%. We are aware of no other feasible attack under
the BACPA model against an existing or proposed
protocol, except for our previous paper (Bard, 2004).

The Versions of the SSL Protocol The Secure
Socket Layer (SSL) (Freier et al., 1996) is currently
one of the most widely-used methods for securing
communication over the Internet5. There are two re-
cent versions, SSL 2.0 (1995) and SSL 3.0 (1996).
The successor protocol is Transport Layer Security
(TLS), which includes version 1.0 (1999) (Dierks and
Allen, 1999), and version 1.1 (Dierks and Rescorla,
2005) (2006). Also, a version 1.2 has been proposed
(Dierks and Rescorla, 2006). Almost all secure web
transactions (i.e. HTTPS) use either TLS 1.0 or SSL
3.0. For simplicity, we refer to all versions of SSL,
as well as TLS 1.0, by saying “SSL.” OpenSSL is
an open source implementation of SSL. Versions of
OpenSSL since 0.9.6d (Various,) have closed this
vulnerability, as has TLS 1.1 (Dierks and Rescorla,
2005). All SSL deployments other than OpenSSL,
including TLS 1.0, are believed to be currently vul-
nerable to this attack6, though possibly other imple-
mentations have copied solutions used by OpenSSL.
See Section 6.

Initialization Vectors Our attack relies on the fact
that SSL currently mandates the use of a weak variant
of the cipher block chaining (CBC) mode of encryp-
tion (Kaufman et al., 2002, Chap. 4). CBC mode re-
quires a one-block initialization vector (IV) for each
message that is encrypted. In “standard” crypto-
graphic usage of CBC, a fresh, random IV is chosen
for each message. In SSL, however, only theinitial IV
is chosen in a (pseudo)random manner; IVs for subse-
quent messages are simply taken to be the final block

4The success probability is stated to be equivalent to
waiting for a collision on approximately 25 bits. See the
last sentence of Section 3 of (Bellare et al., 2002).

5See (Kaufman et al., 2002, Chap. 19) for an excellent
overview of SSL.

6Personal E-mails with E. Rescorla, co-author of the
TLS 1.0, 1.1, and 1.2 RFCs

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

100

of the ciphertext corresponding to the immediately-
preceding message. (This process is called “chaining
the IVs.”) In particular, an attacker may knowin ad-
vancethe IV that is going to be used to encrypt the
next message. We show that this enables an attacker
mounting a chosen-plaintext attack to validate a guess
as to the value of a particular plaintext block.

Consequences Since the adversary can validate a
guess as to the value of a particular plaintext block,
this attack violates the theoretical standard of Left-Or-
Right Indistinguishability, whereby no polynomial
time adversary may be able to distinguish between
the encryption of two messages of his/her own choice,
given the ciphertext, (with non-negligible advantage)
(Goldwasser and Micali, 1984) (Bellare et al., 1997).
On the more practical side, it possibly allows an at-
tacker to determine a low-entropy string by repeat-
edly guessing all possible values for this string until
the correct one is identified. Examples of such low-
entropy information (2–1000 choices) include names
of stocks, cities, users, or even PINs that have been
previously encrypted (or, for example, knowing if a
stock order is buy, sell, or stop-loss could be valuable
information by itself). Given the use of SSL for trans-
mitting exactly this sort of data, we believe this rep-
resents a potentially serious (but challenging) attack
which should be addressed by any security group se-
lecting an SSL implementation.

1.1 Related Work

Essentially this method has been used previously to
attack SSH (Bellare et al., 2002) (Dai, 2002). In fact,
the flaw attacked there is identical to the flaw attacked
here (namely, setting IVs in a predictable way). Little
discussion of feasibility or point-of-entry was given,
and the probability of success was very low as already
stated. On the other hand, that discovery gave birth to
the blockwise-adaptive chosen-plaintext world.

Due to the similar structure of SSL and SSH, the
related vulnerability in SSL was discovered soon af-
ter, independently by Moeller (Moeller,) and the au-
thor of this paper, in late 2002—8 months after the
publications of the two original blockwise papers.
Moeller’s work identifies the attack but does not show
how it could be exploited. Moreover, our paper elab-
orates upon the attack by showing how low-entropy
data, in particular, is easy to recover, and provides
mechanisms by which to execute the attack. The au-
thor of this paper, in 2004, wrote of a similar BACPA
attack against SSL but via a much more difficult and
complex point-of-entry (Bard, 2004).

The changes to TLS between versions 1.0 and 1.1
were made partially in response to this class of vul-

nerability7, as well as that of Vaudenay8 (Dierks and
Rescorla, 2005).

2 HIGH-LEVEL OUTLINE

We begin by briefly highlighting the minimal aspects
of SSL needed to understand our attack at a high level.
A more detailed treatment of the attack (and hence of
SSL) is given in Section 3. A good survey of the SSL
protocol is given in (Kaufman et al., 2002, Chap. 19).

The SSL protocol begins with a handshaking stage
during which the parties agree on a protocol version,
select cryptographic and (optionally) compression al-
gorithms, perform optional authentication steps, and
use public-key mechanisms to share secrets. The
shared secrets, which include distinct symmetric keys
and IVs for each direction of communication, can
then be used for symmetric-key encryption and mes-
sage authentication. While messages may optionally
be compressed before encryption, few SSL imple-
mentations do so (Kaufman et al., 2002, Chap. 19),
(Freier et al., 1996).

The SSL standard allows for symmetric-key en-
cryption using either block ciphers or stream ciphers.
Most implementations utilize block ciphers, and the
vulnerability in this paper applies only when block
ciphers are used. A block cipher is a keyed, invertible
function (orkeyed permutation) over strings of some
fixed length calledblocks; DES, for example, operates
on 64-bit blocks. We writeFsk(X) to represent the
application of a block cipher using keysk to blockX.
To encrypt messages longer than one block in length,
amode of encryptionmust be used. SSL mandates the
cipher block chaining (CBC) mode, which encrypts a
messageP = P1, . . . , Pℓ (where the length of each
Pi is the block-length of the cipher) as follows: given
some IV denotedC0, computeC1, . . . , Cℓ sequen-
tially via:

Ci = Fsk(Pi ⊕ Ci−1).

In the general case of CBC, the resulting ciphertext is
usually taken to beC0, . . . , Cℓ although if the receiver
already knowsC0 then it need not be transmitted. To
decrypt, the receiver computesPi for i = 1 to ℓ via:

Pi = F−1

sk (Ci) ⊕ Ci−1.

We note that it is considered “standard” security prac-
tice to choose a new, random IV for every message

7Attack denoted CBCATT in some TLS documentation
(Moeller,), see also Section 6.2.3.2 of (Dierks and Allen,
1999) (Dierks and Rescorla, 2005).

8Another interesting attack on the use of CBC in SSL,
discovered by Vaudenay, relates to the padding of messages,
and is unrelated to the vulnerability in this paper (Vaudenay,
2001).

A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL

101

that is encrypted. However, the above definition of
CBC does not force this to be the case. As we have
mentioned already, SSL chooses all but the initial IV
by setting it equal to the final ciphertext block of the
preceding encrypted message; this is referred to as
“chaining IVs across messages”. (Thus, continuing
the above example, the IV used for the next message
would simply beCℓ.) SSL chooses the initial IV in a
pseudorandom fashion which is not important for the
purposes of the present attack.

The attack. Suppose an adversary who can mount
a chosen-plaintext attack wants to verify a guess
as to whether some plaintext block has a particular
value. Specifically (continuing the above example),
suppose an adversary who has observed the cipher-
text C0, . . . , Cℓ wants to determine whether plain-
text block Pj is equal toP ∗. Note that the adver-
sary knows the IV (i.e.,Cℓ) that will be used when
encrypting the next message. Consider now what
happens if the adversary causes the sender to en-
crypt a messageP ′ whose initial blockP ′

1 is equal
to Cj−1 ⊕ Cℓ ⊕ P ∗. The first ciphertext blockC ′

1 is
then:

C ′

1 = Fsk(P ′

1 ⊕ Cℓ)

= Fsk((Cj−1 ⊕ Cℓ ⊕ P ∗) ⊕ Cℓ)

= Fsk(Cj−1 ⊕ (Cℓ ⊕ Cℓ) ⊕ P ∗)

= Fsk(Cj−1 ⊕ P ∗).

However, we also know thatCj = Fsk(Pj ⊕ Cj−1).
This implies thatC ′

1 = Cj if and only if Pj = P ∗,
sinceFsk is a permutation. In this way, an adversary
can verify a guessP ∗ for the value of any plaintext
block Pj . In particular, if the adversary knows that
Pj is one of two possible values then the adversary
can determine the actual value by executing the above
attack a single time. Similarly, if the attacker knows
that Pj is one ofN possible values then by repeat-
ing the above attackN/2 times (on average) the ad-
versary can determine the actual value ofPj . This
already violates the standard notions of security for
encryption (in terms of Left-Or-Right Indistinguisha-
bility, as mentioned in the Introduction (Goldwasser
and Micali, 1984) (Bellare et al., 1997)). Moreover,
this implies that an attack of this form can be used to
determine the value of a low-entropy string in its en-
tirety. (Note that, in practice, the block of plaintext
containing the user’s data also likely contains addi-
tional information such as headers, etc. However, it
is also likely that this additional information is known
to the attacker; for example, if the information is fixed
padding, then an adversary can learn the format of this
data from the web-page source code. We discuss this
further in Section 4.)

Attack requirements. Focusing specifically on the
case of an adversary trying to recover a user’s tar-

geted low-entropy data, we briefly highlight the re-
quirements needed for the above-described attack to
succeed; in Section 4 we discuss in more detail how
these requirements are typically met in practice. First,
the attacker must know which plaintext blockj con-
tains the desired information. All this means is that
the adversary knows the format of the HTTPS trans-
mission being targeted. Second, the adversary must
know Cj−1. However, since the ciphertext travels
over the Internet (in the clear!), this is not expected
to be difficult. (In fact, if it is assumed difficult to
obtain this information then there is little reason to
use encryption in the first place.) Third, the adver-
sary must know the value of the IV that is going to be
used for the next message. However, we have noted
already that because of the way SSL computes IVs, an
attacker would actually obtain this information from
the last ciphertext block of the previous message. Fi-
nally, the adversary must be able to insert a plaintext
block of its choice into the first block of the next mes-
sage to be transmitted. This is the most challenging
part of the above attack.

The scenario. The mechanism by which the adver-
sary executes the attack is summarized as follows.
First, we assume that the user is connected to an
HTTP-proxy, web anonymizing service, or virtual
private network. This guarantees that all outbound In-
ternet traffic will be routed over one SSL tunnel with
a single secret key. Second, we assume the attacker
can setup a site under his/her control, and create an
applet for the user to open. In particular, applets have
features, which will be described below in Section 4,
that make them desirable for use. Third, a “reflector”
or mechanism for observing the target’s ciphertexts is
set up. This is needed in all forms of cryptanalysis, so
we presume it is available. Fourth, we assume that the
user can be induced into opening the applet. This can
be in the form of an email which persuades the user to
go to the site, or perhaps an email that simply causes
the applet to be opened upon viewing, via HTML en-
coded requests for the applet in the email body, using
the<APPLET> tag. We fully acknowledge that these
assumptions are non-trivial but they demonstrate that
a chosen-plaintext attack is feasible.

Note that untrusted Java applets have very few priv-
ileges (Gosling et al., 2005), but one of those priv-
ileges is to open a TCP socket to the server from
whence it came (Loeffler, 1997). They cannot, for ex-
ample, simply read all of the user’s keystrokes and ex-
port them to the adversary, as explained before. Since
all outgoing traffic, in the case of a web anonymizer,
HTTP-proxy, or virtual private network, travels over
the same SSL link, this permits the applet to send and
receive arbitrary data—which will become the chosen
plaintexts of the attack.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

102

3 ATTACKING SSL

Here, we simply note that there is nothing in the struc-
ture of SSL (such as extraneous headers or formatting
information) which prevents the attack of the previous
section from succeeding.

SSL sits between the Application and Transport
layers, and so acts like a Session Layer in the OSI
model. As such, SSL receives plaintext from the Ap-
plication Layer as raw data. This plaintext is frag-
mented into blocks of length less than or equal to214

bytes. These blocks are optionally (but rarely) com-
pressed9 and are then processed and sent as follows:
• Unencrypted Portion:

– message type (8 bits);
– major/minor version number (16
bits);

– length counter (16 bits);

• Encrypted Portion:

– plaintext fragment (≤ 217 bits);
– message authentication code
(typically 160 bits);

– padding (0--56 bits; ensures
plaintext length is a multiple of
block length);

– padding length (8 bits);

We stress thatthe first block of the plaintext is the first
block to be encrypted. In particular, the header infor-
mation that is prepended to the eventual transmission
(i.e., the message type, major/minor version number,
etc. . .). isnot encrypted. Thus, as long as the adver-
sary can set the first block of the plaintext fragment to
some desired value (as discussed in the previous sec-
tion), that block will be encrypted first and the attack
will succeed.

We note that in SSH, some header data is
prepended to the plaintextbeforeencryption. This
makes an attack such as the one outlined here more
difficult in the context of SSH (Bellare et al., 2002)
(Dai, 2002), since the adversary no longer has con-
trol over the first block of the plaintext that is eventu-
ally encrypted. Although it may be possible to work
around these constraints (see (Bellare et al., 2002)),
the attack is more difficult against SSH than it is
against SSL (demonstrated by a success rate of2−12.5

as compared to rates as high as 100% under certain
circumstances).

4 FEASIBILITY

Several challenges must be surmounted before an ad-
versary can successfully perform the attack that has

9Our attacks do not apply when compression is used;
however, we note that it is rarely used.

been outlined here. The necessary steps to meet these
challenges are listed below.

Using one common key.First and foremost, the data
to be learned and the test cases must be encrypted
with the same key. Furthermore, since the key for the
block cipher is chosen at random each time an SSL
socket is created, the data to be learned and the test
cases must be transmitted through the same tunnel,
and in the same direction. Luckily enough, when a
web-tunneling service like an HTTP-proxy, or a VPN
is used, all the out-going data travels over one SSL
link, regardless of destination, and thus is encrypted
with the same secret key.

Learning the plaintext format. Despite the length
of a plaintext message, there are times when only a
very small sequence of bytes is of critical importance.
For example, a stock choice, a destination city for a
geospatial inquiry, a user name, or data where only
2–1000 choices are considered likely, and known in
advance (i.e., a “low-entropy string” in our terminol-
ogy).

We have mentioned earlier that the adversary must
somehow know which block of the plaintext contains
the data of interest. Note, however, this is easily done
by reading the source files for the pages that are used
in sending the data. Discerning the format merely re-
quires knowledge of HTTP, HTML, and CGI, and per-
haps Javascript. Commonly available browsers have
a “show page source” command, which displays the
page’s HTML source code. Both the “form elements”
which compile the user’s data, as well as the optional
Javascript code which would verify its format, would
thus be available to an attacker. While Javascript can
alter HTML code, for example, to add hidden form el-
ements, these would be visible in the Javascript code.
The attacker need only read this code and the format
is trivially derived.

Ensuring that the adversary’s chosen plaintext
block is encrypted first. It is essential that the chosen
plaintext, namelyPi = P ∗ ⊕ Cℓ ⊕ Cj−1, be the first
encrypted block of the SSL datagram inside which it
is found. However, this is easy, as we argue now.

Data is submitted to the SSL layer in the form of
application-level messages, which are first aggregated
into blocks of (at most)214 bytes in length. SSL does
not respect message boundaries. If more than214

bytes are submitted, additional blocks are created; if
several application level messages are submitted, they
are concatenated in the buffer. However, in the ab-
sence of these two conditions, the data is encrypted
and transmitted to the TCP layer immediately. There-
fore, short intermittent messages would be encrypted
and transmitted immediately. The structure of SSL
packets guarantees, in the absence of concatenation,
that the first block of the application message will be
the first encrypted block of the SSL datagram.

A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL

103

Concatenation only occurs when two messages ar-
rive at the SSL layer simultaneously. However, since
the packet source (the applet or game) is under the
control of the adversary, the timing could be adjusted
to guarantee that two packets never arrive during the
required interval. Of course, packets could arrive
from some other user activity or application. These
timing failures can be avoided probabilistically by re-
peating each guess several times. Finally it should be
noted that in the event concatenation does occur, if
the game packet is the first packet, with other packets
appended, no disadvantage is caused for the attack.
Nonetheless, we acknowledge the timing difficulties.

Encrypting Chosen Plaintext. The attacker must
force the encryption of particular data in any chosen
plaintext attack, in this case based upon the previous
ciphertext block, the guess of the targeted plaintext,
and the ciphertext previous to the data to be guessed.
Once this block is calculated, it must be inserted into
the “plaintext stream.”

Since our scenario of a user connecting via an
HTTP-proxy or a VPN involvesall network traffic
flowing to/from the target machine being encrypted
by the same SSL connection,with a distinct key for
each direction, the attacker need only cause the cho-
sen plaintext data to appear in an application-level
datagram, traveling in the same direction as the tar-
geted plaintext. However, there are other considera-
tions.

• The data must start the datagram. Once the
immediately previous ciphertext block is known,
the very next plaintext block must contain the at-
tacker’s plaintext. There must be no blocks in be-
tween, otherwise our previous formulas fail. There-
fore, it is essential that the test block (first block of
new plaintext) be the first block of the datagram.

• The data must be tolerated.The data must not re-
sult in a crashed application, a dropped connection
or error messages that would alert the user. Send-
ing arbitrary bytes to an application via a datagram
would almost surely violate that application pro-
tocol’s datagram formatting rules. The data must
“blend in” to the data that would have been other-
wise sent.10 For example, if the application has a
header for each datagram, then its unlikely that the
cryptanalysis blocks, being the first blocks of the
datagram, will conform to that header’s definition.

• The application must anticipate many data-
grams. Since only one guess can be validated per
packet, the application must anticipate a moderate
number of packets (on the order of 1–500 for a
guess among a set of 2–1000 choices).

10Special thanks to (a referee from a previous confer-
ence) for pointing out several challenges in this regard.

• Background Traffic The attack will also be less
likely detected if there is background traffic to/from
the applet when the attack is not running.

Given these four requirements, it seems desirable to
write one’s own application for the attack, rather than
find an application that can tolerate the above. In par-
ticular, if the applet is programmed to search for a
128-bit “magic number” in each datagram, then it can
discard all the data before and including that number.
This way the cryptanalysis blocks can be safely ig-
nored. The chances of the magic number occurring
accidentally are almost infinitesimal.

Providing feedback to the Applet.Note that the ad-
versary needs feedback from the reflector to the applet
site (in particular, to inform it of the ciphertext blocks
Cj−1, Cj , Cℓ) in order to perform the attack. It is not
expected to be difficult for an adversary’s reflector to
obtain these ciphertexts (after all, they are traveling
on the Internet), but the information must somehow
be communicated to the applet site.

There are two principal avenues through which this
communication could occur. First, if the attack is
being performed in a wireless environment, setting
a wireless device to promiscuous mode is attractive.
However, many systems use WEP (Wired Equivalent
Privacy) though certainly not all (including, for exam-
ple, the University of Maryland and American Uni-
versity campus networks, which are unencrypted).

Alternatively, if the adversary has access to the
same Ethernet network on his/her own machine that
the user is connected to, then the following can be
executed. Perhaps a subordinate employee will use
his/her private laptop with tcpdump and a special
feedback script acting as a reflector, to capture his/her
employer’s SSL traffic. The game applet’s server
would only need to know where the feedback dae-
mon is, receive the ciphertexts, and use it to compute
new plaintexts. The search for the daemon could be
through the use of a throw-away DNS address, or by
hard-coding the IP address.

On the one hand this could be detected by an In-
trusion Detection System as unauthorized traffic, but
on the other, steganography could be used to embed
the data in legitimate communications. Alternatively,
since few Intrusion Detection Systems would be this
sensitive, the reflector could simply pass the packets
back in the clear.

Synchronization. The demands of synchronization
are important since there can be no transmitted data
between the “last ciphertext block” and the encrypted
attacking plaintext. There may be many ways to
achieve this, but the game/applet server could signal
that it is ready by sending a special packet. The re-
flector responds with the most recently transmitted ci-
phertext, which hopefully travels with minimal delay

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

104

to the applet. Upon receipt of this, the applet trans-
mits a packet, with or without game data. The first 8
or 16 bytes of the packets (one encrypted word) is not
game data, but the chosen-plaintext. If no data (from
any application) was transmitted on the tunnel in this
time, then this stage of the attack succeeds and one
guess can be checked. If data was transmitted on the
tunnel in this time, then the plaintext loses its meaning
in this context, but no harm is done and the attack can
be attempted again. Since the Poisson Distribution
is known to be a good model of user packet gener-
ation during web-browsing and other non-streaming
Internet tasks, large gaps between packets will be ex-
pected. This is especially true if the game is interest-
ing and the user is not surfing other sites while playing
it.

If the user will play for as little as 15 minutes, many
packets can make the round trip in this time. Since the
“go signal”, the reflector’s “last seen ciphertext”, and
the “guess” must all be exchanged, naturally with ac-
knowledgments (since we are using TCP), six round-
trip times are required. Rarely is a round-trip more
than 250 ms, so each “guess” takes 1.5 seconds, or
40 guesses can be made per minute. This comes to
600 guesses per short 15 minute game. Some of these
guesses will be clobbered by traffic from other sock-
ets, but others should succeed. Even if only one-third
of the packets get through (which is very pessimistic),
a choice from a list of 200 options will be found with
absolute certainty, and a choice from a list of 10,000
options (e.g. a four digit PIN number) will be found
with a probability of 2%.

Summary The requirements listed in this section
are non-trivial. The timing and other network packet
structure considerations will result in some guesses
failing to serve their purpose. But we believe that we
have demonstrated the potential feasibility of this sort
of attack. This further demonstrates that BACPA is of
more than purely theoretical interest.

5 RECOVERING PIN’S

Here we show how even a moderately small entropy
string (≤10,000 choices) can be easy to recover due to
segmentation that occurs when the target data falls on
a block boundary. (We assume throughout this sec-
tion that the data surrounding the target information
is known; see above). Since it is now demonstrated
that the adversary has the ability to verify guesses of
plaintext blocks, one can imagine that an adversary
can attempt to guess the value of a valuable target
low-entropy string either by exhaustive search (in the
case of Personal Identification Numbers or PINs) or

by more efficient context-specific schemes (using dic-
tionary based attacks versus passwords, for example).

If we assume for simplicity that the data is cho-
sen uniformly from a space of sizeS, then the ex-
pected number of guesses needed before determining
the string isS/2. (Note that in the case of passwords
chosen by a user, the entropy is likely to be much
lower than would be indicated by the length of the
password alone. In particular, an 8-character pass-
word model typically has entropy much lower than
64 bits). For example, a 4-digit PIN can be deter-
mined with (on average) 5,000 guesses. If only 100
guesses can be made, the probability of success is
1%, which is low, but certainly represents a feasible
attack—we shall see momentarily that this can be im-
proved greatly.

Block Cipher Choices: Recall that AES was not
in existence when SSL 3.0 was originally specified
(1996), nor was it finalized when TLS 1.0 was re-
leased (1999). Both SSL 3.0 and TLS 1.0, the stan-
dardized versions now available, do not include AES
in their specification (Freier et al., 1996) (Dierks and
Allen, 1999). Likewise, TLS 1.1 does not have AES
as a built-in option, but it is available via some ex-
tension documents (e.g., (Modadugu and Rescorla,
2006)). Finally TLS 1.2 will have AES built in, as
this was one of two principle changes between 1.1 and
1.2, the other relating to the choice of hash functions
(Dierks and Rescorla, 2006). Therefore, essentially
all SSL/TLS transactions at this time use DES or 3-
DES, both with a 64-bit plaintext and ciphertext block
length (though with an effective key size of 56 or 112
bits).

Split Target Data: However, assume 3-DES is be-
ing used as the block-cipher in the SSL transaction.
Then the plaintext blocks are 64 bits or 8 bytes. There
is a 12.5% probability that the four bytes of pin-
data will be divided exactly in the middle of a block
boundary.11 Since each block can be guessed inde-
pendently, 50 guesses are required for the 100 options
on the left, and 50 guesses are required for the 100 op-
tions on the right. This use of 100 guesses results in
a 25% chance of success, since both halves must be
correct—rather than a mere 2% above. Alternatively,
fewer guesses can be made if a lower probability of
success is tolerated. Even a 3-1 or 1-3 split results in
a major distortion of the number of required guesses.
And there is a 37.5% chance that such a split (1-3, 2-2
or 3-1) will occur. See the Appendix for a discussion
of applying this technique to passwords.

11One must assume that enough traffic has gone by that
the “indentation” or “offset” within the stream of the valu-
able data is unpredictable, and therefore can be treated as a
uniformly distributed random variable.

A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL

105

One should be careful to distinguish forms where
passwords are entered all at once, and then submitted
via SSL, from the normal SSH method where pass-
words are entered one keystroke at a time. In the lat-
ter case, this trick of breaking up the password would
not work—a single byte is never broken up12.

6 SOLUTIONS

It has been noted that TLS 1.1 and OpenSSL (after
0.9.6d) are not vulnerable to this attack, for reasons
detailed below.

TLS 1.1 and Explicit IVs The TLS 1.1 protocol
(Dierks and Rescorla, 2005) fixes this vulnerability
by using explicit IVs. That is to say, each message
has one more ciphertext block than plaintext blocks.
This first ciphertext block is the IV, determined as a
(pseudo)random number. As we have stated several
times already, this is the accepted way to encrypt us-
ing CBC. Since the attacker does not know this value
in advance, this attack cannot be executed. Using the
formula for CBC, it is easy to see that having an Ex-
plicit IV is identical to adding an additional plaintext
block of all zeroes to the start of each message, which
the receiver knows to discard, and chaining the IVs
from message to message (Moeller,).

If generating truly random bits is a concern (say, for
reasons of efficiency), it is easy to generate a pseudo-
random IV in any of a number of ways. For example,
instead of simply usingCℓ (i.e., the last block of the
preceding ciphertext) as the IV, the protocol could use
H(Cℓ|sk) wheresk is the shared secret key used for
encryption andH is a cryptographic hash function.

Single Block Nonces This solution is mentioned
because it can be used in other applications that use
CBC, to protect them from BACPA, and helps to ex-
plain the solution used by the OpenSSL community.
As was noted previously, the adversary’s guess must
be the first block of each message. Introducing a one
block nonce—which would always be discarded be-
fore reading the message—would make this impos-
sible. The nonce does not even need to be random.
Suppose the nonce was always the all-zero string, and
the previous message ended on blockCi. Then the ad-
versary will submit a blockPi+2 based on a guessG
for blockg. This will be output in blocki + 2, where
i + 1 is the nonce. Therefore the submitted plaintext,
from the attack formula given previously would be

12Personal E-mails with E. Rescorla, co-author of the
TLS 1.0, 1.1, and 1.2 RFCs (Dierks and Allen, 1999)
(Dierks and Rescorla, 2005) (Dierks and Rescorla, 2006)

Pi+2 = Ci+1 ⊕ Cg−1 ⊕ G

But Ci+1 has not been transmitted yet. It equals

Ci+1 = Fsk(Ci ⊕ 0000 · · · 0)

Therefore,Ci+1 can only be determined ifFsk(Ci)
has been calculated before, or the adversary guesses
the Fsk(Ci). SinceFsk(·) is a function family be-
lieved to be pseudorandom, this guess will be correct
with negligible probability. Likewise, since the space
of all possible ciphertexts is264 or 2128, the proba-
bility of a repetition is low. As mentioned earlier, in
the case of the all zero plaintext, this is identical to
explicit IVs. The TLS specification for version 1.1 al-
lows for this solution, in addition to Explicit IVs, but
recommends that the nonce be pseudorandom, gen-
erated for each message independently (Dierks and
Rescorla, 2005).

OpenSSL and the Empty Message A slight vari-
ation of the above is used by OpenSSL after version
0.9.6d (Various,). An empty message, which con-
sists of no plaintext, but only padding and a hash, is
prepended to each set of messages before encryption.
The “extra parts”, namely the padding and hash, are
encrypted, and so form the throw-away blocks sim-
ilar to the nonce above. Since the adversary’s cho-
sen blocks are no longer the first to be encrypted,
this attack becomes impossible. What is interesting
about this solution is that it does not require any ma-
jor changes at all to the SSL standard, and fulfills
the present definition of SSL as written. The only
point to mention is that some SSL clients will declare
an error if an empty message is received. This error
message need only be suppressed, which is a minor
change.

Compression Note that an immediate way to pre-
vent the attack suggested here is to turn compres-
sion on (as we have noted, an attack of the sort sug-
gested here is much more difficult — if not impos-
sible — if compression is used). However, this re-
quires that peers only communicate with others who
also use compression (or else an adversary connecting
to the honest party could mount a “chosen-protocol
attack” in which they claim to be unable to use com-
pression). On the other hand, blocking users not con-
figured for compression would limit inter-operability
with deployed versions of SSL.

7 CONCLUSIONS

The attack presented here is not so easy that it can
be done on the spur of the moment by the typical

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

106

hacker. However, while the attack is challenging to
carry out, the success probability and relatively low
numbers of datagrams required should be sufficient to
motivate the SSL community to migrate away from
TLS 1.0 and SSL, to OpenSSL after 0.9.6d, or TLS
1.1/1.2 when they are finally released. Moreover, by
demonstrating the existence of this attack on a real-
world protocol, which corresponds to the theoretical
definition of blockwise-adaptive chosen-plaintext at-
tack, we prove that the BACPA model is not sterile,
but is useful for modeling adversarial capabilities.

Moreover it is hoped that this work will take a step
toward opening the dialog between protocol designers
and theoretical cryptographers, and stimulate discus-
sion between these two camps which are otherwise in-
dependent. Finally, there are other uses of CBC sim-
ilar to that of SSL, and this attack shows that those
applications should also use explicit IVs or another
solution listed here (e.g. Datagram Transport Layer
Security or DTLS (Modadugu and Rescorla, 2004)).

ACKNOWLEDGEMENTS

Thanks to Prof. Jonathan Katz for suggesting the
problem, for helpful discussions, and for substantial
help editing this document. Thanks also to Rug-
gero Morselli, Patrick Studdard, Radostina Koleva,
Zhongchao Yu, Susan Schmoyer and Prof. Lawrence
Washington (all of the University of Maryland), for
reading and commenting extensively on early ver-
sions of this paper. Valuable feedback was received
from Daniel Brown of CertiCom, Eran Tromer of
the Weizmann Institute, Prof. Bodo Moeller of UC
Berkeley, and Jack Lloyd of randombit.net, about an
earlier paper outlining a different attack on this same
SSL vulnerability (Bard, 2004). Most importantly
we would like to thank Eric Rescorla, co-author of
the TLS RFCs (Dierks and Allen, 1999) (Dierks and
Rescorla, 2005), (Dierks and Rescorla, 2006), for his
extended correspondences via email that helped this
work immensely.

REFERENCES

Bard, G. (2004). The vulnerability of ssl to chosen-plaintext
attack. Cryptology ePrint Archive, Report 2004/111.
http://eprint.iacr.org/.

Bellare, M., Boldyreva, A., Knudsen, L., and Namprempre,
C. (2001). On-line ciphers and the hash-cbc construc-
tion. InLecture Notes in Computer Science. Advances
in Cryptology— CRYPTO’01, Springer-Verlag.

Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. (1997).
A concrete security treatment of symmetric encryp-
tion: Analysis of the des modes of operation. In

Symposium on the Foundations of Computer Science
(FOCS’97). IEEE.

Bellare, M., Kohno, T., and Namprempre, C. (2002). Prov-
ably fixing the ssh binary packet protocol. InCon-
ference on Computer and Communications Security
(CCS’02). ACM.

Bellare, M. and Namprempre, C. (2000). Authenticated en-
cryption: Relations among notions and analysis of the
generic composition paradigm. InLecture Notes in
Computer Science. Advances in Cryptology— ASI-
ACRYPT’00, Springer-Verlag.

Boldyreva, A. and Taesombut, N. (2004). On-line encryp-
tion schemes: New security notions and constructions.
In Cryptographer’s Track. RSA Conference.

Dai, W. (2002). An attack against ssh2 protocol. Email to
the ietf-ssh@netbsd.org email list.

Dierks, T. and Allen, C. (1999). The tls protocol, version
1.0. Technical Report RFC 2246, Internet Engineering
Task Force.

Dierks, T. and Rescorla, E. (2005). The tls protocol, ver-
sion 1.1. Technical Report RFC 2246-bis-11, Internet
Engineering Task Force.

Dierks, T. and Rescorla, E. (2006). The tls protocol, ver-
sion 1.2. Technical Report RFC 4346-bis-00, Internet
Engineering Task Force.

Dworkin, M. (2001). Recommendation for block cipher
modes of operation: Methods and techniques. Tech-
nical Report NIST Special Publication 800-38A, Na-
tional Institute of Science and Technology.

Dworkin, M. (2002). Recommendation for block cipher
modes of operation: The rmac authentication mode,
methods and techniques. Technical Report NIST Spe-
cial Publication 800-38B, National Institute of Sci-
ence and Technology.

Fouque, P., Joux, A., and Poupard, G. (2004). Blockwise
adversarial model for on-line ciphers and symmet-
ric encryption schemes. InLecture Notes in Com-
puter Science. Advances in Cryptology— SAC’04,
Springer-Verlag.

Fouque, P., Martinet, G., and Poupard, G. (2003). Practi-
cal symmetric on-line encryption. InLecture Notes
in Computer Science. Advances in Cryptology—
FSE’03, Springer-Verlag.

Freier, A., Karlton, P., and Kocher, P. (1996). The ssl pro-
tocol, version 3.0. Technical report, Transport Layer
Security Working Group Internet Draft.

Gligor, V. and Donescu, P. (2001). Fast encryption and au-
thentication: Xcbc encryption and xecb authentication
modes. In2nd NIST Workshop on AES Modes of Op-
eration. National Institute of Science and Technology.

Goldwasser, S. and Micali, S. (1984). Probabilistic encryp-
tion. Journal of Computer and System Sciences.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005).The
Java(TM) Language Specification. Addison-Wesley
Professional, third edition.

A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL

107

Joux, A., Martinet, G., and Valette, F. (2002). Blockwise-
adaptive attackers: Revisiting the (in)security of some
provably secure encryption models: Cbc, gem, iacbc.
In Lecture Notes in Computer Science. Advances in
Cryptology— CRYPTO’02, Springer-Verlag.

Kaufman, C., Perlman, R., and Speciner, M. (2002).Net-
work Security: Private Communication in a Public
World. Prentice Hall, second edition.

Knudsen, L. (2000). Block chaining modes of operation.
In Symmetric Key Block Cipher Modes of Operation
Workshop. National Institute of Science and Technol-
ogy.

Krawczyk, H. (2001). The order of encryption and authen-
tication for protecting communications (or: How se-
cure is ssl?). InLecture Notes in Computer Science.
Advances in Cryptology— CRYPTO’01, Springer-
Verlag.

Lipmaa, H., Rogaway, P., and Wagner, D. (2000). Com-
ments to nist concerning aes modes of operation: Ctr-
mode encryption. InSymmetric Key Block Cipher
Modes of Operation Workshop. National Institute of
Science and Technology.

Loeffler, S. (1997). Using flows for analysis and mea-
surement of internet traffic. Master’s thesis, Institute
of Communication Networks and Computer En-
gineering of the University of Stuttgart. http:
//www.mathematik.uni-stuttgart.de/
∼floeff/diplom/report/node62.html.

Modadugu, N. and Rescorla, E. (2004). The design and im-
plementation of datagram tls. InNetwork Distributed
System Security Conference.

Modadugu, N. and Rescorla, E. (2006). Aes counter mode
cipher suites for tls and dtls. Technical report, Internet
Engineering Task Force.

Moeller, B. Security of cbc ciphersuites in ssl (tls prob-
lems and counter-measures. Posting on the Open SSL
Project’s website.http://www.openssl.org/
∼bodo/tls-cbc.txt.

Rescorla, E. (2002). [ietf-tls] re: Rfc 2246-bis open
issues. Email to the ietf-tls@lists.certicom.com
email list. http://www.imc.org/ietf-tls/
mail-archive/msg03341.html.

Various. Various documents at the Open SSL web-site.
http://www.openssl.org/.

Vaudenay, S. (2001). Security flaw induced by cbc padding
applications to ssl, ipsec, wtls, InLecture Notes
in Computer Science. Advances in Cryptology— EU-
ROCRYPT’02, Springer-Verlag.

A GENERAL PROBLEMS WITH
CBC

The Cipher Block Chaining (CBC) mode of encryption was
first proposed as a mode for DES, the Data Encryption Stan-
dard (Bellare et al., 1997). However, in the three decades
that have passed since that time, much research has taken

place in both adversarial modeling and modes of encryp-
tion (Bellare et al., 2001) (Dworkin, 2001) (Dworkin, 2002)
(Fouque et al., 2003) (Gligor and Donescu, 2001) (Knud-
sen, 2000) (Lipmaa et al., 2000).

A mode of encryption is an algorithm for defining how
the block cipher will be used to produce ciphertexts when
the plaintext is of length longer than one block. For exam-
ple, CBC has the formulaCi = Fsk(Ci−1 ⊕ Pi) whereC0

is an initialization vector, and Counter Mode (CTR) has the
formulaCi = Fsk(i+ i0)⊕Pi, wherei0 is an initialization
vector (Knudsen, 2000) (Lipmaa et al., 2000).

We note the following disadvantages of CBC.

• CBC is vulnerable to blockwise-adaptive chosen-
plaintext attack, while CTR is not.

• An error in one block of CBC renders unreadable the re-
mainder of the message, while an error in one block of
CTR only renders that block unreadable.

• CBC cannot be parallelized, as can CTR. In CBC each
block depends on the encryption of the block before it.
In CTR, each block is encrypted independently.

• CBC is subject to the padding attack of Vaudenay (Vau-
denay, 2001), but this is avoidable if one pads according
to the algorithm given in that paper. In CTR, one can
pad arbitrarily and have the padding length as an extra
plaintext block at the end.

• CBC offers no protection versus Chosen Ciphertext At-
tack (CCA), as would HPCBC, XCBC, or OCB (Bel-
lare et al., 2001) (Gligor and Donescu, 2001). However,
Counter Mode also offers no CCA protection.

• An initialization vector need only be calculated once in
CTR mode, not per message as in CBC. The counteri

can be statefully maintained, and so will not repeat until
264 or 2128 blocks.

• While this does not necessarily apply to SSL, theFsk(i+
i0) can be pre-computed, leaving only XOR operations
with the plaintext to compute the ciphertext. If data needs
to be transmitted only occasionally, but urgently when
ready, this can be an advantage.

Since SSL uses Message Authentication Code (MAC)
algorithms for the datagrams, the malleability attacks and
other CCA attacks that plague CTR mode are of no interest.
Therefore it is clear that CTR and not CBC would be a bet-
ter choice for future versions of TLS and SSL, as CTR has
advantages and no disadvantages over CBC (Lipmaa et al.,
2000).

Other Problems with SSL’s Encryption: We note
that the mode of encryption should probably be changed
to address other concerns as well. For example, it is well-
known that applying a message authentication code to the
ciphertext itselfafter encryption is preferable to applying
it to the messagebeforeencryption (Bellare and Namprem-
pre, 2000) (Krawczyk, 2001). Currently, SSL does the latter
rather than the former.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

108

B THE APPLICATION OF
SPLITTING BLOCKS TO
GUESSING PASSWORDS

While the attack presented in this paper really can only pro-
vide for up to about 1000 guesses at best (a long game with
little background traffic), under ideal conditions, other cho-
sen plaintext attacks might allow for several more. There-
fore it is interesting to point out the effect of splitting
upon passwords. If the printable ASCII character set of 95
choices is used, and the passwords are 8 bytes long, and
nearly randomly chosen (very generous assumptions), then
there are958 = 6.6 × 1015 = 252.6 possible passwords,
and251.6

≈ 3.4 × 1015 guesses would be required in ex-
pectation.

However, the probability of the password not being bro-
ken in two is 12.5%. Even with AES and 16-byte blocks,
7

16
= 43.8% will be broken into pieces. If divided down the

center, (regardless of 64-bit or 128-bit blocks) the number
of guesses expected would be

2
52.6

2 + 2
52.6

2

2
= 226.3 = 8.26 × 107

Since3.4×1015 guesses are expected in the unsplit case,
and8.3×107 in the split case, the attack becomes4.1×107

times faster when the password is split. While our present
attack scenario is not suited for anywhere near this num-
ber of guesses, there may be similar scenarios which can
tolerate a few tens of thousands guesses, and if a few thou-
sand users are targeted, then at least one password recovery
would be expected, if not more.

A CHALLENGING BUT FEASIBLE BLOCKWISE-ADAPTIVE CHOSEN-PLAINTEXT ATTACK ON SSL

109

