
INTER-NODE RELATIONSHIP LABELING: A FINE-GRAINED
XML ACCESS CONTROL IMPLEMENTATION USING GENERIC

SECURITY LABELS

Zheng Zhang
University of Toronto

Toronto, Ontario, Canada

Walid Rjaibi
IBM Toronto Software Laboratory

Markham, Ontario, Canada

Keywords: Authorization-transparent, fine-grained access control, label-based access control, XML relationship labeling.

Abstract: Most work on XML access control considers XML nodes as the smallest protection unit. This paper shows the
limitation of this approach and introduces an XML access control mechanism that protects inter-node relation-
ships. Our approach provides a finer granularity of access control than the node-based approaches(i.e., more
expressive). Moreover, our approach helps achieve the “need-to-know” security principle and the “choice”
privacy principle. This paper also shows how our approach can be implemented using a generic label infras-
tructure and suggests algorithms to create/check a secure set of labeled relationships in an XML document.

1 INTRODUCTION

XML has rapidly emerged as the standard for the rep-
resentation and interchange of business and other sen-
sitive data on the Web. The current trend of adding
XML support to database systems poses new secu-
rity challenges for an environment in which both re-
lational and XML data coexist. In particular, fine-
grained access control is even more necessary for
XML than for relational data, given the more flexible
and less homogeneous structure of XML data com-
pared to relational tables and rows. The additional
difficulty of controlling access over XML data com-
pared to relational data can be summarized as follows.

• The semi-structured nature of XML data, where a
schema may be absent, or, even if it is present, may
allow much more flexibility and variability in the
structure of the document than what is allowed by
a relational schema.

• The hierarchical structure of XML, which requires
specifying, for example, how access privileges to a
certain node propagate from/to the node’s ancestors
and descendants.

In almost all of the work on XML access con-
trol (Bertino and Ferrari, 2002; Damiani et al., 2002;
Fan et al., 2004), the smallest unit of protection is
the XML node of an XML document, which are
specified by XPath fragments. Access to ancestor-
descendant and sibling relationships among nodes has

not been considered. An access control policy con-
sists of positive (resp. negative) authorization rules
that grant (resp. deny) access to some nodes of
an XML document. The main difference between
XML access control models lies in privilege propa-
gation. Some (Bertino and Ferrari, 2002; Gabillon
and Bruno, 2001) forbid access to the complete sub-
tree rooted at an inaccessible node. Alternatively, if a
node is granted access while one of its ancestor nodes
is inaccessible, the ancestor node would be masked as
an empty node in the XML document (Damiani et al.,
2002). However, this makes visible the literal of the
forbidden ancestor in the path from the root to that au-
thorized node. This can be improved by replacing the
ancestor node literal by a dummy value (Fan et al.,
2004). However, this still does not solve the prob-
lem that different descendant nodes may require their
ancestor’s literal to be visible or invisible differently.
From the differences among the above models, it is
clear that defining a view that precisely describes the
path leading to an authorized node is difficult. The
question that begs to be asked is therefore the fol-
lowing: Is a node the most fine-grained entity within
an XML document upon which a fine-grained access
control model for XML is to be built?

We believe that the answer to this question is
an unequivocal NO. We contend that the path be-
tween nodes is a better alternative upon which a
fine-grained access control model for XML is to be
built (Kanza et al., 2006). In other words, we con-

371
Zhang Z. and Rjaibi W. (2006).
INTER-NODE RELATIONSHIP LABELING: A FINE-GRAINED XML ACCESS CONTROL IMPLEMENTATION USING GENERIC SECURITY LABELS.
In Proceedings of the International Conference on Security and Cryptography, pages 371-378
DOI: 10.5220/0002104803710378
Copyright c© SciTePress

Figure 1: A document that contains information on accounts, orders and items for an online seller..

tend that ancestor-descendent relationships and sib-
ling relationships should be considered as legitimate
elements to be protected. The main advantages of our
approach are as follows.

First of all, blocking access to a node can be ad-
dressed by blocking access to all the relationships re-
lating to the node. For example, in Figure 1, if we
want to block all access to the Account Node “202”,
we could simply block access to all the paths from
that node’s ancestors to the node and all the paths
from the node to its sibling and descendants.

Second, blocking access to relationships helps
achieve the “need-to-know” principle, one of the most
fundamental security principles. This principle re-
quires information to be accessed by only those who
strictly need the information to carry out their assign-
ments. The practice of “need-to-know” limits the
damage that can be done by a trusted insider who
betrays our trust. The hierarchical structure of an
XML document often reveals classification informa-
tion. For example, in Figure 1, the root of the left
subtree of the document represents a special account
type “VIP Accounts”. Knowing an account node, say
Node “201”, belongs to that subtree reveals the ac-
count type. If the smallest protection unit is a node,
once we let the root of the subtree accessible, we
may leak unnecessary information. For example, sup-
pose that the relationship between the Account Node
“202” and the account type “VIPAccounts” at the
root of the subtree should be protected, knowing the
account type of Node “201” in the subtree reveals
the account type of Node “202”. With relationship
protection, we identify that the ancestor-descendant
relationship between Node “101” and Node “202”,
and the sibling relationship between Node “201”
and Node “202” should be protected while we let
the ancestor-descendant relationship between Node
“101” and Node “201” be accessible.

Third, blocking access to relationships helps
achieve the “choice” principle, one of the most fun-
damental privacy principles. At its simplest, the prin-
ciple means giving clients options as to how any per-
sonal information collected from them may be used.
If the smallest protection element is a node, access
control over one node is propagated to its ances-
tor/descendant nodes (Murata et al., 2003),i.e., when-
ever access is denied to a node, access is denied to its
descendants; whenever access is granted to a node,
access is granted to all its ancestors. Hence, nega-
tive access control policies over ancestor nodes give
a common authorized view of the paths leading to
their descendants. This violates the “choice” princi-
ple: in Figure 1, a client may want to hide the ac-
count type but not the other account information for
the account with AID “A2398”. If the smallest pro-
tection element is a relationship between nodes in an
XML document, we could protect the relationships
between Node “101” and the nodes in the subtree
rooted at Node “201”, and the sibling relationship be-
tween Node “201” and Node “202”. Then all the ac-
count information except the account type is still ac-
cessible from the root of the document tree. More-
over, there is no way to know that the subtree rooted
at Node “201” is a subtree of Node “101”.

Last but not least, protecting relationships between
nodes in an XML document is more expressible in
terms of access control policy translation.
Contributions : The contributions made in this paper
can be summarized as follows:

1. We propose an authorization-transparent fine-
grained access control model that protects the
ancestor-descendant and sibling relationships in an
XML document. Our model distinguishes two lev-
els of access to relationships, namely theexistence
accessand thevalue access.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

372

2. We propose a new semantics for concealing rela-
tionships in an XML document where a relation-
ship is defined by a path in the document.

3. We propose a generic and flexible label-based ac-
cess control mechanism to protect relationships.
Our mechanism allows DBAs to define label-based
access control policies.

4. We propose a new query evaluation mechanism to
enforce our access control model.

5. We develop algorithms to check/create a secure set
of labeled relationships of an XML document.

2 RELATED WORK

XML access control has been studied on issues such
as granularity of access, access-control inheritance,
default semantics, overriding, and conflict resolu-
tions (Bertino and Ferrari, 2002; Damiani et al., 2002;
Gabillon and Bruno, 2001; Murata et al., 2003). In
particular, a useful survey of these proposals is given
in (Fundulaki and Marx, 2004), which uses XPath to
give formal semantics to a number of different mod-
els in a uniform way, making it possible to com-
pare and contrast them. Almost all the recent mod-
els (Bertino and Ferrari, 2002; Damiani et al., 2002;
Gabillon and Bruno, 2001) propose to restrict the
user’s view of a document by access control poli-
cies. In particular, authors in (Damiani et al., 2002;
Gabillon and Bruno, 2001) mark each node as “ac-
cessible” or “inaccessible” in an XML document and
apply conflict resolution policies to compute an au-
thorized pruned view of the document. An alter-
native approach (Miklau and Suciu, 2003) defines
access control policies as XQuery expressions. A
user is given a modified document with encrypted
data and queries are posed on this modified docu-
ment. They present a new query semantics that per-
mits a user to see only authorized data. In (Fan et al.,
2004), security is specified by extending the docu-
ment DTD with annotations and publishing a modi-
fied DTD. Similarly, work by Bertinoet al. (Bertino
et al., 2001) and Financeet al. (Finance et al., 2005)
provides XML-based specification languages for pub-
lishing secure XML document content, and for spec-
ifying role-based access control on XML data (Bhatti
et al., 2004; Wang and Osborn, 2004). Restricting
access to nodes has also been used in XACL (IBM,
2001) and XACML (Oasis., 2005), two proposed in-
dustrial standards. Kanzaet al. propose to restrict
access to ancestor-descendant relationships (Kanza
et al., 2006) and introduce authorization-transparent
access control for XML data under the Non-Truman
model (Rizvi et al., 2004).

3 DATA MODEL AND QUERIES

We consider an XML document as a rooted directed
tree over a finite set of node literalsL with a finite
set of valuesA attached to atomic nodes (i.e., nodes
with no outgoing edges). Formally, a documentD is
a 5-tuple(ND, ED, rootD, literal of D, value of D),
whereND is a set of nodes,ED is a set of directed
edges,rootD is the root of a directed tree,literal of D

is a function that maps each node ofND to a literal
of L, and value of D is a function that maps each
atomic node to a value ofA. In order to simplify the
data model, we do not distinguish between elements
and attributes of an XML document. We also assume
that all the values on atomic nodes are of typePC-
DATA (i.e., String).

Example 3.1 Figure 1 shows a document that con-
tains information on accounts, orders, and items for
an online seller. Nodes are represented by circles with
ID’s for easy reference. Values inA appear below the
atomic nodes and are written in bold font.

In this paper, we use XPath (Clark and DeRose, 1999)
for formulating queries and specifying relationships.
XPath is a simple language for navigation in an XML
document. In XPath, there are thirteen types of axes
that are used for navigation. Our focus is on the
child axis (/), the descendant-or-selfaxis (//), the
preceding-siblingaxis and thefollowing-siblingaxis
that are the most commonly used axes in XPath. Our
model, however, can also be applied to queries that
include the other axes.

4 RELATIONSHIP ACCESS

First, we consider what it means to conceal a relation-
ship. In general, arelationshipis an undirected path
between two nodes in an XML document. A set of
relationshipsis represented by two sets of nodes. For
example, the pair(C,N), whereC is the set of all
Customer Nodes andN is the set of all Name Nodes
in Figure 1, represents the set of relationships between
customers and their names. Concealing the relation-
ships (C,N) means that for every customerc and
namen in the document, a user will not be able to in-
fer (with certainty), from any query answers, whether
n is the name forc. We want this to be true for all
authorized query results. Note that we are concealing
the presence or absence of relationships, so we are
concealing whether any of the set of pairs in(C,N)
exists in the document.

Definition 4.1 (Concealing a Relationship)Given
an XML documentD and a pair of nodesn1 andn2

in D, the relationship(n1, n2) is concealed if there

INTER-NODE RELATIONSHIP LABELING: A FINE-GRAINED XML ACCESS CONTROL IMPLEMENTATION
USING GENERIC SECURITY LABELS

373

exists a documentD′ over the node set ofD, such
that the following is true.

1. Exactly one ofD andD′ has a path fromn1 to n2.
2. For any XPath queryQ, the authorized answer set

of Q overD is equal to that ofQ overD′.

We consider two kinds of relationships in an XML
document, namely the ancestor-descendant relation-
ships and the sibling relationships. Kanzaet al. con-
sider ancestor-descendant relationships only (Kanza
et al., 2006). Sibling relationships are inferred by the
ancestor-descendant relationships. Hence, when ac-
cess to an ancestor-descendant relationship is blocked
in their model, access to the related sibling relation-
ships is automatically blocked.

Example 4.2 In Figure 1, suppose the relationship
between VIPAccounts Node “101” and Account
Node “201” is inaccessible, then the sibling relation-
ship between Node “201” and Node “202” is lost.

It could be necessary to preserve such sibling re-
lationship information. For example, one policy may
want to block access to the ancestor-descendant rela-
tionships between VIPAccounts Node and Account
Nodes while maintain access to the sibling relation-
ships between the Account Nodes.

On the other hand, it might be desirable to block
access to sibling relationships only. For example, one
policy may want to block access to the sibling rela-
tionship between Customer and his Order.

In order to express such access control policies,
we consider sibling relationships as well as ancestor-
descendant relationships.

We distinguish two levels of access to relationships,
namely theexistence accessand thevalue access. In
value access, information about a relationship indi-
cates a node whose ID is “va” and whose literal is
“A” is related to a node whose ID is “vb” and whose
literal is “B”. For example, the pair(C,N) is a value
access to the relationships between Customer Nodes
and Name Nodes. In existence access, information
about a relationship is basically the same as informa-
tion of value access but lacks at least one of the values
“va” and “vb”. In other words, existence access to a
relationship returns whether a node of some literal is
related to some node. For example, existence access
could indicate a node whose literal is “A” is related to
a node whose literal is “B”. Obviously, if a relation-
ship is not accessible under existence access, then the
relationship is not accessible under value access.

Example 4.3 Consider the relationship between the
account with AID “A2398” and its customer name in
Figure 1. The value access to this relationship returns
that Node “201” whose literal is “Account” is related
to Node “311” whose literal is “Name” and whose
value is “John”. The typical queries that will return
this information are:

Q1: //Account[AID=“A2398”] ,
Q2: //Account[AID=“A2398”]/Customer/Name.

Now consider an existence access to this relationship:
a queryQ3 wants to return all the accounts’ AID’s
that have a customer name. The fact that “A2398”
is returned tells us that there exists a customer with
name under the account with AID “A2398”, but it
does not tell us what the customer’s name is, nor the
Node ID “311”. In other words,Q1 andQ3 reveal
that Node “201” whose literal is “Account” is related
to some noden whose literal is “Name”, wheren is
a child of some node whose literal is “Customer” and
which is a child of Node “201”.

Q3: //Account[Customer/Name]/AID.

In the next section, we show how to specify
ancestor-descendant and sibling relationships and at-
tach access labels to them.

5 ACCESS CONTROL POLICY
SPECIFICATION

Our access control model uses a generic, flexible la-
bel infrastructure (Rjaibi and Bird, 2004) where a la-
bel has only one component “access level”. The value
of the component can be “EXISTENCE”, “VALUE”,
or “NULL”. The ranks of these values are as fol-
lows: “EXISTENCE” > “VALUE” > “NULL”. We
distinguish two types of labels:Access labelsand
Path labels. Access labels are created and assigned
to database users, roles, or groups along with the type
of access for which the access label is granted (i.e.,
Read/Write). For simplicity, we consider only users
in this paper. We callread (resp. write) access label
an access label associated with the Read (resp. Write)
access type. Path labels are created and attached to
paths of an XML document. When a user or a path
is not associated with a label, the “NULL” label is
assumed for that user or path.

Example 5.1 The following statement creates and
grants the “EXISTENCE” access label to a database
user Mike for the Read access type.

GRANT ACCESS LABEL EXISTENCE
TO USER Mike FOR READ ACCESS

The following statement revokes the “EXISTENCE”
read access label from Mike.

REVOKE ACCESS LABEL EXISTENCE
FROM USER Mike FOR READ ACCESS

Access to an XML document is based upon the la-
bels associated with the paths of the XML document
and the label associated with the user accessing the
document via the paths. A label access policy consists
of label access rules that the database system evalu-
ates to determine whether a database user is allowed

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

374

access to an XML document. Access rules can be
categorized as Read Access rules and Write Access
rules. The former is applied by the database system
when a user attempts to read a path in an XML doc-
ument; the latter is applied when a user attempts to
insert, update or delete a path in an XML document.
In both cases, a label access rule is as follows:

Access Label〈operator〉 Path Label
where the operator is one of the arithmetic compari-
son operators{=,≤, <,>,≥, 6=}.

Example 5.2 The following statement creates a label
access policy that(1) does not allow a user to read a
path unless his read access label is larger than or equal
to the path label,(2) does not allow a user to write a
path unless his write access label is equal to the path
label.

CREATE LABEL POLICY XML-FGAC
READ ACCESS RULE rule

READ ACCESS LABEL≥ Path LABEL
WRITE ACCESS RULE rule

WRITE ACCESS LABEL= Path LABEL

Recall value access to a relationship returns more
information than existence access. An “EXIS-
TENCE” label protects existence and value access.
A “VALUE” label protects value access only. There-
fore, if a user with a “NULL” read access label wants
to existence access a path with a “VALUE” path label,
access should be allowed since this existence access
does not return the complete relationship information
from value access. We call this the DEFAULT pol-
icy. This policy only applies to Read Access since
any Write Access involves real node ID’s (i.e., exis-
tence access is impossible). This policy could coex-
ist with other policies such as XML-FGAC to give a
more complete authorized answer set of a query.

Example 5.3 Assume the relationship in Exam-
ple 4.3 has a “VALUE” path label. If a user with a
“NULL” read access label asks queryQ3, the exis-
tence access to the relationship should be allowed.

Next, we introduce how the labels are attached to
paths in an XML document. First, attaching a label
to ancestor-descendant paths are specified by an SQL
statement in the following form:

ATTACH path label ANCS path1 DESCpath2,
wherepath1 and path2 are two XPath expressions.
Notice expressionpath2 is a relative XPath expression
w.r.t. path1. The two expressions specify pairs of an-
cestor nodes (i.e., path1) and descendent nodes (i.e.,
path1/path2). Expressionpath label is a label.

Example 5.4 The following expression attaches
“EXISTENCE” path labels to the relationships be-
tween Account Nodes and their Customers’ Name
Nodes in Figure 1.

ATTACH EXISTENCE ANCS //Account

DESC/Customer/Name
The following expression attaches a “VALUE” path
label to the relationship between the Item Node with
Name “IPOD” and its Cost Node in Figure 1.
ATTACH VALUE ANCS //Item[Name = “IPOD”]
DESC //Cost

For sibling relationships, we consider thepreceding-
sibling axisand the following-sibling axisin XPath.
Thus, attaching a label to sibling paths are specified
by XPath expressions in the following form:

ATTACH path label
NODEpath1 PRECEDING-SIBLINGpath2
FOLLOWING-SIBLING path3,

where path1, path2 and path3 are three XPath ex-
pressions. Notice expressionspath2 and path3
are two relative XPath expressions w.r.t.path1.
The expressions specify relationships between some
nodes (i.e., path1), and their preceding siblings (i.e.,
path1/preceding-sibling:: path2) as well as the rela-
tionships between the nodes and their following sib-
lings (i.e., path1/following-sibling :: path3). No-
tice thePRECEDING-SIBLINGexpression and the
FOLLOWING-SIBLING expression do not have to
appear at the same time.

Example 5.5 The following expression attaches a
“VALUE” path label to the relationship between the
Account whose Customer has Name “Barbara” and
its preceding sibling.
ATTACH VALUE
NODE //Account[Customer/Name = “Barbara”]
PRECEDING-SIBLINGAccount

Note that the SQL statement to detach a label from
an ancestor-descendant path or a sibling path is sim-
ilar to the SQL statement to attach a label to those
paths except that ATTACH is replaced by DETACH.

6 QUERY EVALUATION

In authorization-transparent access control, users for-
mulate their queries against the original database
rather than against authorization views that transform
and hide data (Motro, 1989). In (Rizvi et al., 2004),
authorization transparent access control is categorized
into two basic classes, theTruman modeland theNon-
Truman model. In the Truman model, an access con-
trol language (often a view language) is used to spec-
ify what data is accessible to a user. User queries are
modified by the system so that the answer includes
only accessible data. LetQ be a user query,D be a
database andDu be the part ofD that the user is per-
mitted to see, then queryQ is modified to a safe query
Qs such thatQs(D) = Q(Du). We callQs(D) the
authorized answer setof Q over D. In contrast, in

INTER-NODE RELATIONSHIP LABELING: A FINE-GRAINED XML ACCESS CONTROL IMPLEMENTATION
USING GENERIC SECURITY LABELS

375

the Non-Truman model, a query that violates access
control specifications is rejected, rather than modi-
fied. Onlyvalid queries are answered.

Our model is an authorization-transparent Truman
model. We allow users to pose XPath queries against
the original labeled XML document. The evaluation
of an XPath query over a labeled XML document has
two parts. First, we change the usual XPath query
semantics as follows. If a child axis occurs, the eval-
uation follows a parent-child path; if a descendant-or-
self axis occurs, the evaluation follows an ancestor-
descendant path; if a preceding-sibling axis occurs,
the evaluation follows a preceding-sibling path; if a
following-sibling axis occurs, the evaluation follows
a following-sibling path.

Second, we need to make sure that for each path ac-
cessed, a user is allowed access to that path based on
the path label and the user’s access label. Suppose a
pathP has a path labelL1 and a user Mike has a read
access labelL2. According to the XML-FGAC pol-
icy, (1) if L2 is “EXISTENCE”, Mike could read the
pathP regardless of the value of labelL1; (2) if L2

is “VALUE”, Mike could read the pathP if L1 is not
“EXISTENCE”; (3) if L2 is “NULL”, Mike can only
access paths with “NULL” labels; if the DEFAULT
policy coexists, Mike could ask queries to existence
access the pathP if L1 is “VALUE”. The discussion
for Write Access is similar. The above logic is in-
serted into the query access plan. When the access
plan is executed, the access rules from the label ac-
cess policy associated with the labeled XML docu-
ment are evaluated for each path accessed in the doc-
ument. This approach allows the cached access plan
to be reused because the access labels of the user who
issued the query are acquired during runtime.

For an XML document, there is an ordering,docu-
ment order(Clark and DeRose, 1999), defined on all
the nodes in the document corresponding to the order
in which the first character of the XML representa-
tion of each node occurs in the XML representation
of the document. This ordering information may leak
information as shown in the following example.

Example 6.1 Let us look at Figure 1 again. Sup-
pose one security policy wants to block public ac-
cess to the sibling relationships between the Customer
Nodes and their Order Nodes. Suppose the following
queries are allowed to return their answers in docu-
ment order://Customerand//Order. Then the order
of Customer output might match the order of Order
output, hence leaks secret information. The situa-
tion becomes worse if the document has a registered
schema and the schema shows publicly that each cus-
tomer has a fixed number, say 2, of orders. In this
case, the association between a Customer and his Or-
ders is completely leaked.

To prevent an information leak based on document

order, we shuffle the output as follows. Each node
in the output will receive a random number. And the
nodes will be output based on the order of their as-
signed random numbers.

In sum, the processing algorithm to be inserted in
the access plan for a labeled XML document with
XML-FGAC and DEFAULT policies is as follows.
Algorithm : Insert Read and Write Access logic into
a query access plan for a labeled XML document.

1. Fetch the user’s Access Labels for Read and Write
actions (e.g., from a system catalog table).

2. For all paths accessed, do the following.

(a) If it is a Read Access and READ Access rules
do not permit access, skip the path unless(1) the
Read Access Label is “NULL”,(2) the Path La-
bel is “VALUE”, and (3) it is an existence access.

(b) If it is a Write Access and Write Access rules do
not permit access, skip the path.

3. Shuffle output.

Example 6.2 Suppose the document in Figure 1 has
two labels attached to its paths as specified in Exam-
ple 5.4 and the label access policies are XML-FGAC
and DEFAULT. Suppose a database user Mike with a
read access label “EXISTENCE” asks the queryQ1:
//Account[Customer/Name]. The query access plan
checks the following paths:

1. the pathsP1 from the root of the document to Ac-
count Nodes,i.e., //Account,

2. the pathsP2 from Account Nodes to their descen-
dant Name Nodes via Customer Nodes,i.e.,
ANCS //AccountDESC /Customer/Name,

3. the pathsP3 from Customer Nodes to their children
Name Nodes,i.e., Customer/Name.

PathsP1 andP3 have “NULL” labels, hence, access is
allowed. PathsP2 have “EXISTENCE” labels. Mike
could read them since his read access label is “EXIS-
TENCE”. Read access toP2 is denied for any other
labels and the authorized answer set is empty.

Next, suppose another user John with a read access
label “VALUE” asks the queryQ2: //Item//Cost. The
query access plan checks the following paths:

1. the pathsP1 from the root of the document to the
Item Nodes,i.e., //Item,

2. the pathsP2 from the Item Nodes to their descen-
dant Cost Nodes,i.e., ANCS //ItemDESC //Cost.

PathsP1 have “NULL” labels, hence, access is al-
lowed. For P2, one pathP21 has a “NULL” la-
bel; the other pathP22 has a “VALUE” label as it is
ANCS //Item[Name=“IPOD”] DESC //Cost. John
could readP2 if his read access label is “VALUE”.
John could readP21 but notP22 if his read access la-
bel is “NULL”. Hence, the authorized answer set is
“450$”. However, even if John’s read access label is

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

376

“NULL”, the following query from John will still re-
turn the complete answer toQ3: //Item[Cost]. This
is becauseQ3 only existence accesses the pathsP2,
i.e., the authorized answer set only indicates there ex-
ist Cost children Nodes for the Item Nodes “203” and
“204”, but no information about the values and node
ID’s of the Cost Nodes is leaked.

7 CREATE A SECURE SET OF
LABELED RELATIONSHIPS

Our goal is to allow users to label node relationships
and let them be sure that what they want to conceal
is truly concealed from the users whose access labels
do not satisfy the label access policy with the path la-
bels. Unfortunately, it is impossible to guarantee con-
cealment for any arbitrary set of relationships. Some-
times, it is possible to infer a concealed relationship
from the relationships that are not concealed.

Let us see an example of four cases where a re-
lationship could be inferred from a pair of non-
concealed relationship.

Example 7.1 In Figure 1, suppose it is known
that Account Node “201” is a descendant of
VIP Accounts Node “101” and Customer Node “301”
is a descendant of Account Node “201”. Then, there
is no point to conceal the ancestor-descendant rela-
tionship between VIPAccounts Node “101” and Cus-
tomer Node “301”.

Suppose it is known that Customer Node “301” is
a descendant of VIPAccounts Node “101” as well
as Account Node “201”. Since there is only one
path from the root of the document to Account Node
“201”, there is no point to conceal the ancestor-
descendant relationship between VIPAccounts Node
“101” and Account Node “201”.

Suppose it is known that Account Node “201”
and Account Node “202” are the children of
VIP Accounts Node “101”, then there is no point
to conceal the sibling relationship between Account
Node “201” and Account Node “202”.

Suppose it is known that VIPAccounts Node
“101” has a descendant Customer Node “301” and
the customer has a sibling Order Node “302”, then
there is no point to conceal the ancestor-descendant
relationship between VIPAccounts Node “101” and
Order Node “302”.

We say a set of labeled relationships/paths in an
XML documentD is not securew.r.t. a path label
L if one of the following four cases happens.

1. Case 1:D has three nodes,n1, n2 andn3 s.t. the
ancestor-descendant path fromn1 to n2 and the
ancestor-descendant path fromn2 to n3 have labels

L12 < L andL23 < L. The ancestor-descendant
path fromn1 to n3 has a labelL13 ≥ L.

2. Case 2:D has three nodes,n1, n2 andn3 s.t. the
ancestor-descendant path fromn1 to n3 and the
ancestor-descendant path fromn2 to n3 have labels
L13 < L andL23 < L. The ancestor-descendant
path fromn1 to n2 has a labelL12 ≥ L.

3. Case 3:D has three nodes,n1, n2 andn3 s.t.n1 is
the parent ofn2 andn3, the parent-child path from
n1 to n2 and the parent-child path fromn1 to n3

have labelsL12 < L andL13 < L. The sibling
path fromn2 to n3 has a labelL23 ≥ L or the
sibling path fromn3 to n2 has a labelL32 ≥ L.

4. Case 4:D has three nodes,n1, n2 andn3 s.t. the
ancestor-descendant path fromn1 to n2 has a label
L12 < L, and either the sibling path fromn2 to n3

has a labelL23 < L or the sibling path fromn3 to
n2 has a labelL32 < L. The ancestor-descendant
path fromn1 to n3 has a labelL13 ≥ L.

There is a simple test to verify that a set of labeled
relationships/paths in an XML documentD is not se-
cure w.r.t. a path labelL. The test starts by comput-
ing three ternary relationsR1, R2 andR3. The first
two columns store the start/end nodes of paths. The
third column stores the label associated with paths (if
a label is missing, then it is a NULL value). In par-
ticular,R1 stores all ancestor-descendant paths inD,
R2 stores all parent-child paths inD, andR3 stores
all sibling paths inD.

1. Case 1 is true for a path labelL iff the expression
π$1,$5(R1,L ⊲⊳$2=$1 R1,L) − R1,L is not empty
whereR1,L is σ$3<L(R1).

2. Case 2 is true for a path labelL iff the expression
π$1,$4(R1,L ⊲⊳$2=$2 R1,L) − R1,L is not empty
whereR1,L is σ$3<L(R1).

3. Case 3 is true for a path labelL iff the expression
π$2,$5(R2,L ⊲⊳$1=$1 R2,L) − R3,L is not empty
whereR2,L is σ$3<L(R2) andR3,L is σ$3<L(R3).

4. Case 4 is true for a path labelL iff the expression
π$1,$5(R1,L ⊲⊳$2=$1 R3,L) − R1,L is not empty
whereR1,L is σ$3<L(R1) andR3,L is σ$3<L(R3).

Furthermore, we give intuitive conditions to con-
struct a secure set of labeled relationships for an XML
document. If we ignore the directions of ancestor-
descendant and sibling paths, all these paths form cy-
cles in an XML document. To assign a path labelL
to a relationship between two nodesn1 andn2 in an
XML documentD, we must make sure, for every cy-
cle that includes the path fromn1 to n2, either there is
another path whose labelL′ ≥ L, orn1 andn2 are de-
scendants of some nodes in the cycle andn1, n2 are
not children of the same parent. Both cases ensure
there is uncertainty whether a relationship between
two nodesn1 andn2 exists: the first case by having

INTER-NODE RELATIONSHIP LABELING: A FINE-GRAINED XML ACCESS CONTROL IMPLEMENTATION
USING GENERIC SECURITY LABELS

377

another path missing in the cycle, while in the second
case, the fact thatn1 andn2 are descendants of some
nodes in the cycle introduces uncertainty except when
they are children of the same parent, in which case the
sibling relationship betweenn1 andn2 is leaked.

There is another possible information leak due to
singleton-source disclosure(Kanza et al., 2006). In
short, a user can infer that two nodesn1 andn2 are
related in a documentD when(1) the path from the
root of documentD to noden2 must go through a
node whose literal isA, (2) the only node with lit-
eral A in documentD is noden1. An algorithm
to test singleton-source disclosure has been proposed
in (Kanza et al., 2006) and we will not repeat it here.

8 CONCLUSION

This paper has introduced a fine-grained access con-
trol model for XML data using generic security la-
bels. Our model is based on inter-node relation-
ship labeling and provides finer-grained access con-
trol than traditional node labeling approaches, hence
helps achieve the “need-to-know” security principle
and the “choice” privacy principle. We propose a new
semantics for concealing relationships in an XML
document under the Truman model. To enforce our
model, we provide a new query evaluation algorithm
and suggest algorithms to check/create a set of secure
labeled paths for an XML document.

Our future work includes implementing our model
and validating its effectiveness and performance using
real-life XML access control user cases. An impor-
tant challenge is adapting our mechanism to XQuery,
general XML document graphs and XML schemas.

ACKNOWLEDGEMENTS

We thank NSERC and IBM Toronto CAS for their
support, and Reńee J. Miller for her careful com-
ments.
Trademark : IBM is a trademark or registered trade-
mark of International Business Machines Corporation
in the United States, other countries, or both.
Disclaimer: The views expressed in this paper are
those of the authors and not necessarily of IBM
Canada Ltd. or IBM Corporation.

REFERENCES

Bertino, E., Castano, S., and Ferrari, E. (2001). On specify-
ing security policies for web documents with an xml-
based language. InSACMAT, pages 57–65.

Bertino, E. and Ferrari, E. (2002). Secure and selective dis-
semination of xml documents.ACM Trans. Inf. Syst.
Secur., 5(3):290–331.

Bhatti, R., Bertino, E., Ghafoor, A., and Joshi, J. (2004).
Xml-based specification for web services document
security. InIEEE Computer, volume 4 of37, pages
41–49.

Clark, J. and DeRose, S. (1999). XML Path
Language (XPath) version 1.0. Available at
http://www.w3.org/TR/xpath.

Damiani, E., de C. di Vimercati, S., Paraboschi, S., and
Samarati, P. (2002). A fine-grained access control sys-
tem for xml documents.ACM Trans. Inf. Syst. Secur.,
5(2):169–202.

Fan, W. F., Chan, C. Y., and Garofalakis, M. N. (2004). Se-
cure xml querying with security views. InSIGMOD,
pages 587–598.

Finance, B., Medjdoub, S., and Pucheral, P. (2005). The
case for access control on xml relationships. Tech-
nical report, INRIA. Available from http://www-
smis.inria.fr/dataFiles/FMP05a.pdf.

Fundulaki, I. and Marx, M. (2004). Specifying access con-
trol policies for xml documents with xpath. InSAC-
MAT, pages 61–69.

Gabillon, A. and Bruno, E. (2001). Regulating access to
xml documents. InWorking Conference on Database
and Application Security, pages 311–328.

IBM (2001). Xml access control.http://xml.coverpages.org
/xacl.html.

Kanza, Y., Mendelzon, A., Miller, R., and Zhang, Z. (2006).
Authorization-transparent access control for xml un-
der the non-truman model. InEDBT, pages 222–239.

Miklau, G. and Suciu, D. (2003). Controlling access to pub-
lished data using cryptography. InVLDB, pages 898–
909.

Motro, A. (1989). An access authorization model for re-
lational databases based on algebraic manipulation of
view definitions. InICDE, pages 339–347.

Murata, M., Tozawa, A., Kudo, M., and Hada, S. (2003).
Xml access control using static analysis. InCCS,
pages 73–84. ACM Press.

Oasis. (2005). Oasis exensible access control markup lan-
guage (xacml 2.0).http://www.oasis-open.org/ com-
mittees/xacml.

Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. (2004).
Extending query rewriting techniques for fine-grained
access control. InSIGMOD, pages 551–562.

Rjaibi, W. and Bird, P. (2004). A multi-purpose im-
plementation of mandatory access control in rela-
tional database management systems. InVLDB, pages
1010–1020.

Wang, J. Z. and Osborn, S. L. (2004). A role-based ap-
proach to access control for xml databases. InSAC-
MAT, pages 70–77.

SECRYPT 2006 - INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY

378

