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Abstract. An application of artificial intelligence in the field of automatization 
in medicine is described. A computer-aided diagnostic (CAD) system for focal 
liver lesions automatic classification in CT images is being developed. The 
texture analysis methods are used for the classification of hepatocellular cancer 
and liver cysts. CT contrast enhanced images of 20 adult subjects with 
hepatocellular carcinoma or with non-parasitic solitary liver cyst were used as 
entry data. A total number of 130 spatial and second-order probabilistic texture 
features were computed from the images. Ensemble of Bayes classifiers was 
used for the tissue classification. Classification success rate was as high as 
100% when estimated by leave-one-out method. This high success rate was 
achieved with as few as one optimal descriptive feature representing the 
average deviation of horizontal curvature computed from original pixel gray 
levels. This promising result allows next amplification of this approach in 
distinguishing more types of liver diseases from CT images and its further 
integration to PACS and hospital information systems. 

1 Introduction 

The objective of this work is to develop a computer-aided diagnostic (CAD) system 
and validate texture analysis algorithms for classification of focal hypodense hepatic 
lesions.  

Characterization of focal liver lesions on computed tomography (CT) depends on 
correct interpretation of morphology. The aim of this study is to develop a texture 
analysis concept for computer based interpretation of CT images. We concentrated on 
two very common focal liver lesions: hepatocellular cancer and liver cysts. 

Hepatocellular carcinoma is common throughout the world. Its incidence is higher 
in cirrhotic patients. The overall survival rate ranges between 20 and 30 months, and 
is influenced by the local stage of the neoplasm and by the liver function. Successful 
long-term outcome is dependent on its early detection, as well as accurate delineation 
of the number and location of tumor nodules.  
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Computed tomography is also outstandingly suitable for detecting cystic processes 
in the liver. The etiology of cysts is very wide, which means also large differences in 
their clinical relevance.  

Similar works of classification of liver lesions such as tumors and their 
metastases, hepatic cysts, and hemangiomas, exist. They use mostly intensity-based 
histogram methods [1] or second-order texture features [2;3]. Our work differs from 
the previous ones by using an effective feature selection method and network 
(ensemble) of Bayes classifiers which already proved their clinical usability in texture 
analysis and classification of ultrasound images [4]. 

2 Methods 

2.1 Images  

Because most hepatocellular carcinoma receive equal or reduced blood supply from 
both portal and arterial flow compared with surrounding noncancerous parenchyma 
[5] late postcontrast enhancement images were used in our study. They were taken 
approximately 3 - 5 minutes after the bolus contrast administration. The voltage of X-
ray tube was 120 kV. The resolution of the CT image was 512x512 pixels with pixel 
size 0.625 mm. The slice thickness was 2 mm. Standard depth of 16 bits gray level 
was used. 

The images were taken from 20 adult subjects: 15 subjects with hepatocellular 
carcinoma and 5 subjects with nonparasitic solitary liver cysts.  

The total number of CT scans processed in this study was 535 (425 scans with 
hepatocellular carcinoma and 110 scans with cysts).  

Regions of interest (ROI) with pathologic tissue (hepatocellular cancer or cyst) 
were interactively defined by a physician (see Figure 1).  

 

 
Fig. 1. CT images of liver with segmented boundary of hepatic lesions. On the right manually 
drawn boundary (ROI) of hepatocellular cancer, on the left manually delineated cyst in liver 
parenchyma. 

The maximum number of non-overlapping square windows within the boundaries 
was then automatically selected as the texture samples (see Figure 2). Each sample 
was assigned a label according to the patient diagnosis (hepatocellular cancer, cyst). 
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Fig. 2. CT images of liver. On the right detail of hepatocellular cancer focus with fitted texture 
samples (windows of 9 x 9 pixels), on the left liver cyst with embedded texture samples with 
size 7 x 7 pixels.  

2.2 Texture Features 

Image texture features can be computed by combining pixel gray levels in many 
different ways [6]. By transforming the gray levels, it is possible to enhance some 
image characteristics that are specific to a particular type of texture. Since the current 
standard practice of diagnosing hepatic lesions is performed mainly subjectively, 
texture characteristics observable by the human visual system are considered adequate 
for an automatic computer analysis. We also note that psychophysical evidence has 
shown the human visual system is capable of pre-attentive texture discrimination from 
first-order to second-order properties, as defined by the moments of texture primitives 
[7].  

In this paper 22 first-order features were investigated: gray level of pixel (feature 
called raw) and 21 spatial features based on the original gray levels of an image and 
based on four different gray-level transformations [8]. In addition to first-order 
features we also included second-order features in order to capture the spatial 
organization of texture primitives. Therefore, most of the further 108 features used are 
second-order statistical texture features based on co-occurrence matrices, which 
incorporate spatial organization of texture primitives.  

Spatial features 
Some of the 21 spatial features are based on the original pixel gray levels pi,j, while 
others pm

i,j, are based on transformations of the gray levels, where i,j denotes the 
image coordinates of a pixel and m denotes a transformation. These features were 
suggested by Muzzolini [8] and are summarized in this section.  Four gray-level 
transformations obtained from each of S samples of NxN pixels were used and are 
defined as follows: 
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The Kolmogorov-Smirnov distance [9] between Hi(p(m))  and )(pH (m)  is used to 

derive features f1,...,f5, from the transformations p(m). The Hi(p(m)) is an estimate of the 
cumulative distribution function for p(m) computed from NxN sample i by 
histogramming and )(pH (m)  is the robust estimate of the cumulative distribution 
function mean for p(m) computed from Hi(p(m)) over all samples i as follows:  

 
{ },...,S,i)(pH LMS )(pH (m)
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The LMS, Least Median of Squares, is used as a robust statistics instead of a non-

robust mean to suppress the influence of outlying values. LMS computes a value M 
and a range mT for a data set, such that [M-mT; M+mT] is the shortest interval 
containing 50% of the original data. It is a common practice to set the estimate of 
standard deviation r to the value of 2.5 x 1.4826 mT  for the case of normal errors. 
Points in the range M ± r are called inliers and the remaining points are considered as 
outliers. Inliers fall within 98.7% of the samples in a Gaussian distribution. 

The Euclidean distance from (f1,...,f5) to their mean and median, respectively, are 
used to compute features f6 and f7 as follows:  
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Features f8,...,f12 are derived from the transformations p(m) just like features 
(f1,...,f5) except that the average deviation (AD) of the pixel gray level p(m)

i,j is used as 
the measure, where 
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Features f13 and f14 are based on the Euclidean distance from (f8,...,f12) to their 
mean and median, respectively. They are defined exactly the same way as the features 
f6 and f7 with the exception that the subscripts (1,...,5) are replaced with subscripts 
(8,...,12). 

Features f15,...,f19 are based on the transformations p(m), just like features (f1,...,f5), 
except that the standard deviation (SD) of the pixel gray level p(m)

i,j is used as the 
measure, where 
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Features f20 and f21 are based on the Euclidean distance from (f15,...,f19) to the mean 
and median of (f15,...,f19).  

Co-occurrence matrix features. Co-occurrence matrices can be used to obtain 
texture features. For each NxN texture sample W taken from an image I, a set of gray 
level co-occurrence matrices Cd(i,j) is calculated for a given separation vector d

G
as 

follows: 
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where d
G

=(a,b), I( rG ) is the gray level of pixel rG , from the interval of 0,1,…, G-1. 
The image resolution of G = 64 was used, and card X is the size of the set X.  

 
The elements of Cd represent the frequencies of occurrence of different gray level 

combinations at a distance d
G

. In this paper, nine Haralick texture features [6] were 
investigated.  

Twelve separation vectors d
G

= (1,0); (2,0); (3,0); (4,0); (1,1); (2,2); (3,3); (4,4); 
(0,1); (0,2); (0,3); (0,4) were used in the experiments, resulting in twelve different 
gray level co-occurrence matrices for each size of texture sample. Thus D co-
occurrence matrix features (f111-f1129) were generated for each of the sample size. 
These are denoted according to the following notation: "f1dh", where d is the index of 
a separation vector (of a possible twelve) and h is the number of a Haralick feature (of 
a possible nine) giving D=108. For example, f195 is texture homogeneity for vector 
d
G

=(0,1). 
To achieve uniform scale, all features were normalized by their standard deviation 

from zero.  
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2.3 Diagnosing 

Bayes classifier [10] was selected for its best possible ability to distinguish classes 
that overlap in feature space. The classifier uses the decision function )(vdi

G
 over M 

classes 
 )()|()( iii CpCvpvd

GG
= ,    Mi ,,2,1 …=  

to assign a feature vector vG  to class 
iC

 if for that vector )()( vdvd ji
GG

>  for all 

ij ≠ , where )( iCp  is the a priori probability of class iC  (i.e., the probability of 

occurrence of class iC ) and )|( iCvp
G

 is the probability that vG  comes from iC  (this 
as the model probability function and it must be learned from a training set). A priori 
probabilities of 0.5 for both classes (since hepatocellular cancer and cysts are evenly 
included in our experiment) were used for estimating )(vJ

G
.  

The choice of model probability function )|( iCvp
G

 is determined by discrete 
quantization of the feature space.  

2.4 Feature Selection Learning Method 

The purpose of feature selection is to reduce the texture description from D to d 
dimensions, where d<<D. Each sample of the classes (hepatocelullar carcinoma, cyst) 
can be represented in terms of d features and be viewed as a vector in d-dimensional 
space. From the statistical point of view, reduction of feature vector dimension is 
important to determine classifier parameters reliably from a limited amount of data, 
i.e., to limit the expected bias and variance of the classifier. 

The goal in our approach for feature selection is to select a subset of features that 
minimize the expected classification error. It is based on a direct classification error 
minimization and requires a specific choice of classifier. Since the data is sufficient to 
estimate probability density of a feature vector even in high dimension, Bayes 
classifier is used in this approach.  

We successively search for the optimal feature vector v
G

 of length 1+k  by adding 
a new feature in a locally optimal way to the best existing feature vector candidate of 
length k. The quality )(vJ

G
 of a feature vector v

G
 (computed as above) initially 

increases with increasing length of the vector and then starts to decrease due to data 
over-fitting [10]. Therefore, a simple depth-first search for the optimal feature vector 
cannot be used. Our algorithm therefore performs the search for optimal solutions by 
a modified branch-and-bound algorithm [10]. 

The classifier is trained by estimating the conditional probability density for each 
class by optimal histogramming. Optimal histogram resolution according to Scott’s 
rule was used for the corresponding feature vector dimension and the number of 
samples [11]. Our data collection mechanism produces a sufficiently large number of 
samples to obtain statistically meaningful estimates this way. 
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2.5 Subject Classification  

The subject classifier then works in two stages (see Figure 3): In the first stage, 
individual texture samples (e.g., from 7x7 windows) from all images from a single 
subject are classified independently. In the second stage the classifier outputs are 
combined using majority voting to determine the class label for the given subject. The 
reason for using a two-stage classifier is that the primary features exhibit a large 
overlap between the classes. It is well known [12] that classifier combination can lead 
to increased performance even if the individual classifiers are weak. Of the known 
combination methods [13] the best performance was achieved by majority voting in 
our data.  

The subject is thus assigned the label C (hepatocellular cancer, cyst), which 
corresponds to the class of most of its samples. For more detailed description see 
Figure 3. 

 
Fig. 3. The classifier works in two stages: In the first stage, individual texture samples from all 
images of the given scan type from a single subject are classified independently using Bayes 
classifier. In the second stage, the classifier outputs are combined using majority vote to 
determine the class label for the given subject. 

2.6 Evaluation of the Success Rate 

Finally classification success rates were estimated by leave-one-out method for all 
optimal feature vectors found by selection scheme Bayes classifier. Leave-one-out 
means that 1. all images of one subject are removed from training set, 2. classifier is 
learned on the remaining images, and 3. the images that were left out are classified 
using the classifier. The three steps are repeated for all subjects. This method provides 
good estimate of classifier generalization accuracy.  

3 Results 

For practical experiments only the faster feature selection learning method was used. 
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A total of 6,239,480 feature values (130 features for each of 47,996 samples) were 
computed and the different combinations of them were used for classification. The 
best value of 100)( =vJ

G
 was achieved for several texture sample sizes and several 

features.  
All the features suitable for classification (which gave results with leave-one-out 

error less than 0.1) and the corresponding sample sizes are shown in Table 1. 
Originally, also slower Mixture model method was considered, because it should 

give better results. Because even feature selection method provided right diagnosis for 
every patient, we decided not to do so. 

Table 1. Size of texture samples, leave-one-out classification error and the features used for the 
classification. 

4 Discussion and Conclusion 

The results show the excellent discrimination between hepatocellular carcinoma and 
liver cysts can be established on the basis as few as one optimal feature among the 
130 texture characteristics tested.  

From these results the principal descriptive feature can be identified: f10. Feature 
f10, which was chosen among other 130 features, represents the average deviation of 
horizontal curvature computed from original pixel gray levels. This feature gave 
100% classification success rate in all texture samples size (from 7x7 to 19x19 
pixels). 

Also the most effective size of texture sample was determined. We computed 
features for samples from the tiny squares of size 7x7 pixels up to large squares with 
side of 41 pixels. The maximum success of 100% correct classification was achieved 
for texture samples with size 9x9 to 13x13 pixels. Then with the increasing size of 
side the error also increased (for 41x41 samples the total error was 0.25). The failure 
of the large squares can be contributed to the fact that they do not cover the area of 
ROI sufficiently and thus it results in an information wasting (a considerable big 

Size of 
sample 

LOO 
Error Features used for classification 

7x7 0.056 f10, f11, f15, f186, f2, f8, f9, raw 
9x9 0 f10, f15, f20 

11x11 0 f10, f129, f16, f20, f8, f9 

13x13 0 f10, f11, f129, f13, f132, f157,  f16, f172, f187, f2, f20, 
f8, f9 

15x15 0.071 f10, f11, f1117, f1127, f117, f119, f12, f127, f13, f157, 
f16,  f167, f172, f177, f197, f2, f20, f8, f9, raw 

17x17 0.071 f10, f11, f1107, f1117, f117, f12, f13, f16, f197, f2, 
f20, f8, f9, raw 

19x19 0.077 f10, f11, f117, f12, f13, f147, f157, f197, f2, f20, f8, f9, 
raw 
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amount of the tissue, near to the border of segmentation boundaries is not used for 
computing texture features in such case). 

On the other hand it can be seen that there are considerably more texture features 
which are useful for successful classification in larger samples. E.g., three possible 
features in 9x9 samples, six features in 11x11 samples, and thirteen texture features in 
samples of 13x13 pixels. We attribute it to the fact that there is more information 
about spatial organization of texture primitives available in the larger samples. 

We infer that in future research the texture samples with the size 13x13 pixels and 
texture feature f10 (the average deviation of horizontal curvature) will be the most 
useful.  

As the next step it is desirable to include more classes (diagnoses) in the 
classification process. The most important which should be comprised in the very 
next step are hepatic hemangiomas, focuses of liver cirrhosis and various tumor 
metastases. 

On the assumption that the majority of used features were higher order texture 
features (and thus independent on the gray level histograms of the image but 
dependent on spatial organization of texture primitives) we did not perform any image 
preprocessing. Nevertheless the normalization of the images prior to computing the 
texture features (e.g., by comparison with other organs in abdominal cavity or the 
diaphragm) in our future experiments might get even better results.  

Also the other important step, which is necessary to undertake, is to utilize all 
information which is available from 3D CT images and thus using texture features 
which comprise this data. The usability of non enhanced CT images and images in 
earlier stages of contrast enhancement or their combination should be also explored. 

Finally we can conclude that initial implementation of our CAD system is 
promising for automating liver lesion classification and that it may be integrated to 
Picture Archiving & Communications Systems (PACS) and to hospital information 
systems. 
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