
A SUPPORTING TOOL TO IDENTIFY BOTH SATISFIED
REQUIREMENTS AND TOLERANT THREATS FOR A JAVA

MOBILE CODE APPLICATION

Haruhiko Kaiya, Kouta Sasaki, Chikanobu Ogawa and Kenji Kaijiri
Shinshu University

4-17-1 Wakasato, Nagano, 380-8553 JAPAN

Keywords: Security Policy, Security Requirements, Java, Requirements Analysis.

Abstract: A mobile code application can be easily integrated by using existing software components, thus it is one of the
promising ways to develop software efficiently. However, using a mobile code application sometimes follows
harmful effects on valuable resources of users because malicious codes in such an application can be activated.
Therefore, users of mobile code applications have to identify both benefits and risks by the applications and
to decide which benefits should be gotten and which risks should be tolerated. In this paper, we introduce a
tool to support such users. By using this tool, the users can identify security related functions embedded in
each mobile code automatically. The users can also relate these functions to each benefit or risk. By defining
a security policy for mobile codes, some functions are disabled, thus some benefits and risks are also disabled.
By adjusting the security policy, the users can make decision about the benefits and the risks.

1 INTRODUCTION

Mobile code technology is useful because it is easy to
integrate a software service on the fly. It is also easy to
maintain and update mobile code components in such
a service because codes are basically downloaded
and linked in its runtime. In addition, alternative
codes can be easily selected for meeting requirements
changes because we can reuse fine-grained software
components in ad hoc manner. For example, suppose
there are many alternative codes for data communica-
tion, and their efficiency and license cost are different
with each other. An integrator will select a code that
is not so fast but cheap normally, but he/she in urgent
situation can replace the code into another that is very
fast but expensive on the fly.

However, there are several problems in using mo-
bile codes, and one of the significant problems is
about malicious codes. If behaviors of malicious
codes are not restricted, valuable resources can be
leaked and/or destroyed. For example, your credit
card information could be stolen. We call such harm-
ful effects by malicious codes as threats in this pa-
per. Therefore, we have to identify which require-
ments should be satisfied and which threats should
be avoided when we integrate a mobile code appli-
cation. In addition, we think it is impossible both to

satisfy all requirements and to avoid all threats com-
pletely. In fact, we have compromised with software
systems with unsatisfied requirements and tolerant
threats. Therefore, we have to also decide trade-offs
between satisfied requirements and tolerant threats.

We have already proposed a method to identify
trade-offs between them caused by Java mobile code
applications (Kaiya et al., 2003; Kaiya et al., 2004).
However, we cannot effectively examine our method
without supporting tools, because the method requires
tiresome but systematic tasks. In this paper, we will
introduce a supporting tool and the plan to apply the
tool into security education.

The rest of this paper is as follows. In the next
section, we briefly introduce the mechanism of Java
security architecture. In section 3, we will explain
how to use our tool. In section 4, we will explain why,
where and how to apply our tool. Finally, we conclude
our current results and summarize future plan.

2 JAVA SECURITY

Java security architecture is based on the sandbox se-
curity model (Java, 1998). There are many security
related features in Java security architecture, but we
only focus on the permission and the security policy.

444
Kaiya H., Sasaki K., Ogawa C. and Kaijiri K. (2006).
A SUPPORTING TOOL TO IDENTIFY BOTH SATISFIED REQUIREMENTS AND TOLERANT THREATS FOR A JAVA MOBILE CODE APPLICATION.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 444-448
DOI: 10.5220/0002445604440448
Copyright c© SciTePress



Player.class

Judge.class

ObjectJanken.class Property

File

Client Machine

Application

yamada

murata

Download

Read 

Write

Security Policy

Download

Download

Code Provider A

Code Provider B

Code Provider C

Other Machine

Network 
Connection

Establish

Figure 1: Environment for a Java application.

Each permission correspond to the right to access sys-
tem resource(s) such as files, network connections,
running processes and so on. To grant the pieces of
the right to a Java application, the security policy is
given to the application. Figure 1 shows an example
of the environment for a Java application. An appli-
cation in this figure consists of three pieces of codes
and it accesses a file and a property, and establishes a
network connection to another machine.

When inadequate policy is given to an applica-
tion, malicious codes can be activated, thus security
threats can be made. For example, data can be ille-
gally leaked because the policy inadequately grants
the right for files and network connections.

To avoid the threats caused by malicious codes,
codes are distinguished with respect to both the site
where a code is placed and the signature, and re-
stricted in different ways. If a code is downloaded
from a trusted site or a trusted agent signed the code,
we may believe the code does not cause any threats.

However, we cannot or do not always use only
trusted codes in fact, e.g., some kinds of free soft-
ware. In addition, even the trusted codes cause se-
curity threats because of their bugs or our inadequate
usage. Therefore, application integrators have to in-
vestigate which requirements are satisfied and what
kinds of threats can be caused by a mobile code ap-
plication by themselves.

3 USAGE OF OUR TOOL

This tool supports application integrators to identify
which requirements are satisfied by a mobile code ap-
plication. In addition, the tool also supports to iden-
tify threats caused by the application. Because reuse
of mobile codes is intended, threats can be avoided by
tightening up the security policy and/or by replacing
a mobile code including malicious parts with another
compatible code. In some cases, some requirements
cannot be satisfied because of the tightened policy,
thus we have to sometimes give up some requirements
or to accept the threats. This tool also supports to find

such trade-offs.

3.1 Major Functions

Our tool provides the following six functions. By us-
ing such functions in a requirements analysis process,
integrators can identify the achievement of require-
ments and threats, and decide trade-offs between re-
quirements and threats.

3.1.1 Network Deployment Function

Our tool consists of several internal windows as
shown in Figure 2, and a top left window called “Vir-
tual Network Window” is an analogical model of a
deployment of computers each of which provides mo-
bile codes. In addition, permissions that are required
by such codes are automatically extracted from source
codes or byte codes, and listed in a middle window
called “Permission Table”. XML based representa-
tion for Java source codes (JavaML) and its support-
ing tool 1 and Java decompiler 2 are used in this func-
tion. By using this function, users can understand
what kinds of security related functions could be acti-
vated by each mobile code.

3.1.2 Policy Edit Function

Based on the deployment of mobile codes shown in
the “Virtual Network Window”, our tool can automat-
ically generate a security policy that grants all permis-
sions required by all codes. The generated policy is
shown in the right top window in Figure 2, and users
can freely edit the policy. Users may also edit a policy
from scratch, but users can easily arrive at intended
policy by removing the granted permissions from the
generated policy.

3.1.3 Policy Check Function

According to the policy in “Policy Editor”, each
permission in “Permission Table” is automatically
checked whether it can work or not under the policy.
The column labeled by “Check” in “Permission Ta-
ble” shows the results.

3.1.4 Requirements Edit Function

Users can list their requirements on the left bottom
window called “Requirements Window” in Figure 2.
The requirements are simply itemed as shown in the
figure. Each requirement is basically categorized into
the following four types.

1http://www.badros.com/greg/JavaML/
2http://jode.sourceforge.net/

A SUPPORTING TOOL TO IDENTIFY BOTH SATISFIED REQUIREMENTS AND TOLERANT THREATS FOR A
JAVA MOBILE CODE APPLICATION

445



Requirements
Window

Information 
for each Requirement

Information 
for sub Requirements

Virtual Network Window Policy Editor

Permission Table

Figure 2: A Snapshot of Our Tool.

1. Unrelated: A requirement which is not related to
security related permissions.

2. Granted: A requirement which requires security re-
lated permissions, and the permissions are granted
in a current situation, i.e., code deployment and
policy.

3. Revoked: A requirement which requires security
related permissions, but the permissions is not
granted. As a result, the requirement is given up.

4. Threatening: When there are some granted per-
missions that are not required by requirements and
such permissions could enable some mobile codes
to perform unintended and harmful functions, we
call such functions as threats or threatening require-
ments. Threats are also listed in the “Requirements
Window”.

The graphical icon for each requirement on “Require-
ments Window” is decided according to the type of
the requirement.

3.1.5 Requirements Check Function

Users can decide the types of each requirement. If
users identify that a requirement requires permis-

sion(s) on the “Permission Table”, users can make
relationship between the requirement and the permis-
sion(s). Related requirements for each permission can
be found in the right most column on the “Permission
Table”. Related permissions for each requirement can
be found in a window called “Information for each
Requirement”.

A requirement is regarded to be satisfied when its
related permissions are all granted. On the other hand,
a requirement is regarded to be revoked one when
there is a permission that is required by the require-
ment but is not granted in the current situation.

3.1.6 Threat Check Function

Some granted permissions sometimes do not relate to
any requirements. Users can explore the possibility
of threats by examining such permissions and their
effects. If a threat can be activated by such permis-
sions, users can add a threat on the “Requirements
Window”, and make relationship between the require-
ment and the permissions. The threat is regarded to be
satisfied when current permissions enable the threat to
be made.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

446



3.2 Typical Process

By removing some lines from a policy e.g., in “Pol-
icy Editor” in Figure 2, granted permissions are de-
creased in general, and vice versa. When granted
permissions are changed, satisfied requirements and
threats are also changed. The requirements, threats
and the policy are decided by repeating such changes.
Finally, integrators have to decide which requirements
may be abandoned and which threats can be tolerable
with respect to the users’ needs.

4 APPLICATION IN EDUCATION

Even though we frequently meet real threats for com-
puters thanks to the Internet, there are few educa-
tional exercises for security threats and their avoid-
ance at least in our country. Consequently, students
do not clearly understand the importance of security
requirements. On the other hand, our requirements
for software can be rarely satisfied without security
related functionalities, thus we have to find trade-offs
between our requirements and threats that should be
accepted.

By using Java, we can easily implement and ac-
tivate malicious mobile codes, and also avoid such
threats by using Java security policy mechanism. In
fact, a bootstrap program for Java mobile code appli-
cation can be written in less than 150 lines of code.
Thus, Java mobile codes and security system seems
to be suitable for students to learn the importance of
security requirements.

We have planed to put a course into practice for stu-
dents. The objective of the course is to make our stu-
dents to understand the importance for analyzing se-
curity requirements and threats. Another objective is
to confirm the usefulness of our tool, e.g., whether our
tool contributes to identify requirements and threats
and to find tradeoffs among them.

5 CONCLUSIONS

In this paper, we introduced a supporting tool to iden-
tify both the achievement of requirements and threats
for Java mobile code application. We have applied
our tool in security requirements education.

Mobile codes seem to be a little bit singular, but we
can find important application areas for mobile codes.
For example, embedded systems normally have only
limited resources, such as disks, thus, mobile codes
can be applied to such domain. Currently, we mainly
intended to use our tool in educational settings. How-
ever, we believe our tool can be also applied to prac-
tical software integration.

There are several limitations of our tool. One lim-
itation comes from the intended platform, Java. Java
security policy is too simple to specify complex se-
curity policy, e.g., we cannot write revoke rules in a
policy. Because of such simplicity, we cannot apply
our tool to generic software systems. Another limita-
tion is its usability. Users of our tool do not have to
know Java language itself, but they have to know the
syntax of security policy, even though the policy syn-
tax is much easier than Java’s. Finally, our tool does
not explicitly support the selection of alternative mo-
bile codes now. This is a problem when we apply our
tool into practice, thus we will extend our tool from
this point. However, we do not think it is a problem
in our educational setting mentioned in 4 because one
of the objectives of our educational course is to make
our students to understand the importance of analyz-
ing security requirements and threats.

Threatening requirements mentioned in 3.1.4 are
very similar to obstacles in KAOS (van Lamsweerde,
2004). Their difference is that threatening require-
ments do not have to obstruct existing requirements
but obstacles are basically identified by obstructing
existing requirements or goals. Thus, threatening
requirements in this paper is not easy to be identi-
fied by KAOS approach. Misuse case approach is
also useful method to identify security requirements,
but its weakness was argued in (Sindre and Opdahl,
2005). Our tool can partially overcome such weak-
ness, for example, the process navigated by our tool
is not open-ended but systematically terminated if the
user can compromise on a specific policy and its con-
sequences; giving up requirements and/or accepting
threats. Software Fault Tree (Helmer et al., 2002)
is also systematic approach, but it is specialized for
the requirements analysis of intrusion detection sys-
tems. A system called SoftwarePot (Kato and Oyama,
2003) can be also applied to the problems we focused.
In SoftwarePot, applications are executed in some
kind of sandbox, and users have to decide whether
an access to the valuable resources should be granted
or not in each time. We think SoftwarePot approach
seems to be practical, but it does not contribute to
improving users’ understanding about security prob-
lems.

REFERENCES

Sun Microsystems, Inc. (1998). Java Security Architecture
(JDK1.2). Version 1.0.

Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L.,
and Lutz, R. (2002). A Software Fault Tree Approach
to Requirements Analysis of an Intrusion Detection
System. Requirements Engineering, 7(4):207 – 220.

Kaiya, H., Sasaki, K., and Kaijiri, K. (2004). A Method

A SUPPORTING TOOL TO IDENTIFY BOTH SATISFIED REQUIREMENTS AND TOLERANT THREATS FOR A
JAVA MOBILE CODE APPLICATION

447



to Develop Feasible Requirements for Java Mobile
Code Application. IEICE Trans. Inf. and Syst., E87-
D(4):811–821.

Kaiya, H., Sasaki, K., Maebashi, Y., and Kaijiri, K. (2003).
Trade-off Analysis between Security Policies for Java
Mobile Codes and Requirements for Java Application.
In 11th IEEE International Requirements Engineering
Conference, pages 357–358.

Kato, K. and Oyama, Y. (2003). SoftwarePot: An En-
capsulated Transferable File System for Secure Soft-
ware Circulation. Lecture Notes in Computer Science,
2609:112 – 132.

Sindre, G. and Opdahl, A. L. (2005). Eliciting security
requirements with misuse cases. Requirements Engi-
neering, 10(1):34 – 44.

van Lamsweerde, A. (2004). Elaborating Security Require-
ments by Construction of Intentional Anti-Models. In
Proceedings of ICSE’04, pages 148–157.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

448


