
A REUSE-BASED REQUIREMENTS ELICITATION PROCESS

Sangim Ahn, Kiwon Chong
Department of Computer, Soongsil University, Sangdo-Dong, Dongjak-Ku, Seoul, Korea

Keywords: Reuse-based, Requirements elicitation process, Gap Analysis.

Abstract: Establishing good requirements is important in an initial phase of software development not to make over
time and cost of projects and low quality of software products. In the context of Requirements Engineering
(RE), reuse is effective in particular because it can help to define requirement explicitly and to anticipate
requirement change. We propose a reuse-based process approach to elicit potential requirements from
various stakeholders. To achieve our goal, we present (1) analyzing gaps between requirements maps of
collected and reused in the repository, and (2) potential requirements elicitation process with these maps.
The former is composed of classifying styles of requirements, requirements representation formalism, and
gap analysis using generic gap types. The latter is sequential procedure to look for potential requirements in
addition to Plus Minus Interests(PMI) method. We illustrate our approach through a credit system case
study.

1 INTRODUCTION

There are many reasons for project failure. The main
ones related to requirements are: (1) Most of users
don’t define correctly what they want. (2)
Requirements are changing frequently (3) There is
no enough time to analyze user requirements (4)
Developers don’t understand perfectly user
requirements. These reasons make over time and
cost of projects, and low quality of software
products. Therefore, establishing good requirements
is important in initial software development. The
introduction of reuse in software development aims
reducing the maintenance and development costs,
reducing the deadlines and improving quality. The
reuse was confined at the level of developers, who
used libraries of reusable programs. Today, more and
more works try to integrate it throughout the whole
cycle of production, from the phase of requirements
expression to the phase of maintenance. In the
context of Requirements Engineering (RE), reuse is
effective in particular because it can help to define
requirement explicitly and to anticipate requirements
change(Ian, 2002)(Lauesen, 2002)(Ounsa, 2001).

We propose a reuse-based process approach to
elicit potential requirements from various
stakeholders. A map is a requirements representation
formalization that allows the representation of a set
of functional or non-functional requirements. A

collected requirements map is made based on a
preliminary method such as user interview,
workshops, and observing user work. Whereas, A
reused requirements map is stored in the repository.
In this paper, we suppose that the repository is
already installed and a lot of assets including
valuable requirements of many successful projects
are accumulated in the repository. To achieve our
goal, we present (1) analyzing gaps between
requirements maps of collected and reused in the
repository (2) potential requirements elicitation
process with these maps. The former is composed of
classifying styles of requirements, requirements
representation formalism, and gap analysis using
generic gap types. The latter is sequential procedures
to look for potential requirements in addition to Plus
minus interests(PMI) method. We illustrate our
approach through the finance system case study.

The rest of the paper is organized as follows: In
Section 2, we describe related works with
requirement reuse and a meta-model for generic gap
typology. In Section 3, we discuss gap analysis using
collected and reused requirements maps in details. In
Section 4, we discuss potential requirements
elicitation process. In Section 5, we illustrate our
approach through the finance system case study.
Finally, in Section 6, we draw some conclusions and
discuss research issues for future work.

403
Ahn S. and Chong K. (2006).
A REUSE-BASED REQUIREMENTS ELICITATION PROCESS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 403-409
DOI: 10.5220/0002449604030409
Copyright c© SciTePress

2 RELATED WORKS

2.1 Approaches to Requirements
Reuse

Informal requirement specification is commonly
used in the early phases of software development.
Such documents are usually produced in natural
language. In spite of many problems in their
handling, they are still regarded as one of the most
important communication mechanism between
developers and users. The lack of formality,
structure and ambiguity of natural language makes
requirements documents difficult to represent,
process, and reuse. To overcome these problems,
firstly, requirements statements need to be
formalized to accommodate reuse tasks. Second, a
repository of reusable requirements artifacts is made
to analyze related assets. Third, automated tools are
developed to use in conveniences. Several methods,
techniques, tools and methodologies were suggested
as useful in supporting these tasks(Jacob, 2000).

Table 1 shows many approaches to requirements
reuse, such as text processing, knowledge
management and process improvement. The text
processing approach focuses on the text of
requirements, its parsing, indexing, access and
navigation. They rely heavily on the natural
language grammars and lexicons, statistical text
analyzers, and hypertext. The knowledge
management approach aims at elicitation,
representation and use of knowledge contained in
requirements documents, and reasoning about this
captured knowledge. These methods commonly
focus on the modeling of a problem domain, and
they utilize knowledge acquisition techniques and
elaborate modeling methods. Sometimes they also
utilize knowledge-based systems and inference
engines. The process improvement approach aims at
changing development practices to embrace reuse.

Our approach concentrates on taxonomic
representation, reuse-based process, meta-model to
create a repository and analyze gaps in three above-

mentioned aspects of requirements handling.

2.2 A Meta-Model for a Gap
Typology

The major point of our approach is to model a gap
between requirements specification of collected and
reused in repository. Intuitively a gap expresses a
difference between collected requirements map and
reused requirements map such as the deletion or
addition of a collected requirement’s element in
reused requirements. In functional requirements
domain, gaps are related to actors, use cases,
relationships which transform elements of maps. In
order to facilitate gap analysis, we need to define a
gap typology and a set of gap types related to
elements in maps.

A number of attempts have been made to make
explicit the elements that compose any model to
define meta-models(Colette, 2004)(IRDS,1990)
(Marttiin, 1994)(Plihon, 1997)(Prakash, 1999).
There are different meta-models depending on the
meta-modelling purpose. (IRDS,1990) is a standard
to facilitate the evolution of model representation in
CASE tools, (Prakash, 1999) aims at a formal
definition of a method and (Marttiin, 1994) searches
for a generic repository structure of meta-Case
environments. (Colette, 2004) is targeted to the
identification of key significant transformations that
can occur in a model.

We adopt the meta-model similar to Collett’s
approach. This meta-model is drawn in Figure 1
using UML notations. This figure shows that any
model is made of elements, every element having a
Name, and is characterized by a set of Property. In
the meta-model, there are two orthogonal
classifications of Elements. The first classification
makes the distinction among Use cases, Actor,
Relationship Elements. Use cases elements are
decomposable into fine-grained ones that can be
simple or Use cases elements whereas Actor and
Relationship Elements are not decomposable into
other Elements. The second classification is a

Table 1: Various Approaches to Requirement Reuse.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

404

partition of elements into Link and NotLink. An
element of the type Link is a connector between two
elements, one being the Source and the other the
Target. Elements, which are not links, are referred to
as NotLink. An element is-a another element, might
inherit from another element.

Figure 1: The meta-model for gap typology.

3 REUSE-BASED MAPS

3.1 Styles of Requirements

In requirements specification, a requirements item
may express many types of information. This
information should be divided to analyze
requirements meaning and to reuse for next projects.
We classify requirements into four styles such as
data, functional, quality, and managerial
requirements (Lauesen, 2002).

 Data requirements styles are related to database

and input/output formats. The system has to store the
corresponding data in some kind of database or other
internal objects. Database data is independent of the
interface. However, input and output data appear on
the various interfaces. The data requirement should
in principle specify the detailed data formats for
each interface.

 Functional requirements styles are related to the
functions of system. The function may present how
it records, computes, transforms, and transmits data.
Traditionally, function means that for any given
input and any given system state, it will deliver
some output and set the system state to something
new. In practice, when we give the system a
command, the response may be some visible output,
some invisible change in database contents, and
other variables.

 Quality requirement styles are related to non-
functional requirements such as performance,

usability, and maintenance. Performance means how
efficiently the system should work with the
hardware corresponding response time, accurate
results and stored data amount. Usability means how
efficiently the system should work with the user
corresponding easy learning. Maintenance means
how easy the system should be to repair defects and
add new functionality.

 Managerial requirements styles are related to
delivery time, legal responsibility, and penalties
corresponding contractual issue.

3.2 Generating Maps

From the viewpoint of reuse, the importance of
requirements is function, non-function, fine or
medium granularity, and representation
formalization. That reasons are that the end users see
their problems in this way and the search in the
repository that solve these problems should start
from these bases. In order to deal with these
requirements, it is necessary to make requirements
representation formalize so they are more easily
identifiable, comparable and can be related to each
other(Miguel, 2004).

The most frequent approaches are scenarios, in
diverse variations, goals, and business rules. The
most widely used scenarios are the use cases,
introduced by (Jacobson, 1993) and updated in
UML(Booch, 2005). However, other variations
should be considered, in particular business
processes or workflows. The scenarios are usually
based on natural or structured language. Thus, from
the point of view of reuse, it is convenient that this
type of requirements follow some kind of norm
which allows them to be compared for their
incorporation to new requirements.

From the structural point of view, (Durán, 1999)
breaks down the scenarios (as use cases)into their
elemental parts. This possibility of breaking a
requirement down into its atomic parts is
fundamental in order to exchange, or even
automatically generate, requirements in different
formats, compatible with different tools.

Our approach to generate maps was based on the
linguistic patterns proposed by Durán, and on the
standardization proposed by Miguel. The former can
be used both during elicitation meetings with clients
and users and to create a case graph(CG). The latter
can be used in standard phrases which have been
identified that are usual in requirements
specifications. The structuring of the information in
the form of a template and the standard phrases
proposal facilitate the writing of the requirements.

A REUSE-BASED REQUIREMENTS ELICITATION PROCESS

405

For our purposes, the most interesting templates are
those related to four styles as mentioned above.

Figure 2 shows the reference framework used to
standardize the requirements. It provides a
preliminary definition of the user requirements and
the functionality of the system is modeled from this
by using a case graph (CG). By analyzing the case
graph, business use cases (BUC) and use cases (UC)
are obtained. Finally, the elements of use cases
generated in this way are ready to be used in the
context of requirements reuse. Consequently, the
general framework leads to requirements elements
that are suitable for being associated, through the
repository management interface. In a similar way,
other transformations can be defined in order to
obtain scenarios, data flow diagrams (DFD) or
activity diagrams.

Figure 2: Generating Maps.

3.3 Gap Analysis

Having analyzed gaps of the elements that compose
a map, we should identify the map gap types. The
gap typology is composed of a set of operators
applicable to Element. Each operator identifies a
type of difference between requirements maps of the
collected and the reused in repository. For example,
as Modify is an operator, Use Case Element imply
that there is the name difference between elements.

Figure 3: Map Gap Analisys in functional requirements
style.

The generic gap typology identifies three major

types of difference: style difference, element
difference, and operator difference.

 Style difference is defined with the style of
requirements. They only affect the way users want to
refer to an element. Style is dealing with data,
functional, quality, and managerial requirement.

 Element difference affects elements and defined
with the le of requirements. They only affect the
intention that users want to refer to an element.
Element is dealing with use case, actor, and
relationship.

 Operator difference are the most important as
they correspond to express difference of the set of
elements which composes the map. That is,
operators are used to specify difference between
requirements maps of the collected and the reused in
repository.

Table 2 comprises 4 styles, 3 elements, and 6
operators. These are compounded to analyze gaps.
The definition of each of the gap analysis is
composed of a source and a consequence. The
source identifies the status of the elements involved
in the collected map, and in the reused map. The
consequence is specifying difference between
requirements maps of the collected and the reused in
repository. Therefore, the consequence helps user to

Table 2: Map gap types.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

406

established good requirements. For example, as
operator is Add, the content of source is that use
cases in collected requirement map is only exist, and
the consequence assumes that new use case is add.

4 REQUIREMENTS
ELICITATION PROCESS

The potential requirement elicitation process starts
with the construction of the collected requirements.
The refinement mechanism of map is used as a
means to study gaps at different levels of detail. The
refinement allows us to reduce single gaps expressed
between top-level maps, and to move into a set of
gaps between the refined maps. The process
continues until developers and users affirm the
refined map to be acceptable. Through the
refinement process, the gap granularity issue is
handled. More precisely, the process for eliciting
gaps is an iterative one as follows(Colette, 2004):

The five steps are carried out in a participative

manner. This allows the consideration of different
viewpoints with the aim of reconciling them
cooperatively, in the construction of the collected
requirements maps as well as in the refinement of
gaps. Additionally, in step 4, users are given a gap
report. Users can decide to add or delete elements
and put their PMI(plus minus interest) in
requirements specification. Each iteration is related
to activities which: (We suppose that repository is
already installed with successful projects’
requirements map)
1. First, system analysts gather requirements with

many elicitation methods. They make an initial
requirements specification. Then, they construct
the collected requirements map as input is the
initial requirements specification.

2. Second, they look for similar situation in reused
requirements repository.

3. Third, they analyze map gaps between

requirements of the collected and the reused in
the repository. Then, they make a gap report to
users.

4. Fourth, they carry out the meeting with users to
check the gap report. At that time, users give
analysts own opinion and analyst should reflect
users’PMI(plus minus interest) in the refined
collected map.

5. Finally, system analysts establish the refined
requirements specification. If the refinement is
need, they carry out iteration from 1 to 5 again.

Figure 4: The process of elicit potential requirements.

5 A CASE STUDY

In order to demonstrate the feasibility of our
approach, we illustrate the elicitation process with
reuse-based map through the finance system case
study, especially a credit subsystem. We suppose that
only functional requirements exit in this case study.
To understand situation corresponding a case study
we describe firstly the initial requirements
specification of the credit subsystem. Then, we
illustrate three key activities for one iteration of the
process, except looking for the similar reused
requirements and establishing refined requirements.

5.1 Initial Requirements Specification

The credit system serves various mandatory
functions because it is the basic business part in
financial institution. A credit clerk should guide
corresponding business to customers. A credit clerk
approves a credit relationship after examination if a
customer applies a credit. At this time, the customer
can be individual or employee. It remains the other
businesses such as submission payment bill,
reporting to outside public institutions, and
extending maturity.

The initial requirements specification of the credit

Repeat until all maps have been considered.
① Construct the collected requirements

map.
② Look for the reused requirements map in

the repository.
③ Analyze gap between maps.
④ Add PMI from user.
⑤ Establish requirements.
⑥ Deliberate &Commit.

A REUSE-BASED REQUIREMENTS ELICITATION PROCESS

407

system is as following:
 R1. If customers apply a credit and submit

corresponding documents, a credit clerk carries
out document examining and requests a
approval. An immediate credit approver can
approves firstly the credit, and the final credit
approver approves finally the credit.

 R2. The credit clerk pays loaned money to
customer about approved credit item. At this
time, the content of payment should be
reflected to a account system.

 R3. The credit clerk transfers bill directly three
times per a month about outside customer, and
a salary are deducted automatically if the
customer is employee.

 R4. Customer should pay the loaned money
and interest according to a credit engagement.
The credit clerk receives and handles payment.

 R5. The operator of the credit system requests
payment to customer’s surety when customer
delayed payment.

 R6. The credit clerk carries out balancing
account work.

 R7. The credit system can accessed through
mobile equipments.

5.2 Constructing the Collected
Requirements Map

In this stage, the collected requirements map is
constructed. As mentioned 3.2(Figure 2), First, a
case graph (CG) is build form requirements
specification. Second, business use cases (BUC) are
obtained by analyzing the case graph. Third, use
cases (UC) are obtained by analyzing BUC. Finally,
elements of use cases are obtained. These elements
are 7 use cases, 7 actors, and 12 relationships.

Figure 5: Use Case Diagram for a credit system.

5.3 Analyzing Gap Between Maps

In this stage, the gap analysis is carried out between
the collected requirements map and the reused map.
As mentioned 3.3, this analysis work is compounded
of styles, elements and operators. The source
identifies the status of the elements involved in the
collected map, and in the reused map. The
consequence is specifying difference between
requirements maps of the collected and the reused in
repository. The consequence can be expressed by
operators.

Table 3 shows gap analysis results of the credit
system about use case element. Merge operator is
considered as complex analysis. This case can be
confirmed when first gap analysis is finished and
second gap analysis is carrying out using Delete
operators. We got the gap report that U7 is added
and 2 use cases should be check in case of use case,
the same in case of actors, and 2 relationships should
be check in case of relationship.

Table 3: Gap Analysis Results for use case element.

Source Use
Case The Collected

Map
The Reused

Map
Consequence

U1 Equal
U2 Equal
U3 Add
U4 Merge*
U5 - Merge*
U6 Equal
U7 Add
- Delete
- Delete

5.4 Adding user’s PMI

In this stage, new requirements are added with user’s
PMI(plus minus interest) after the gap report is
check. User’s PMIs are related new business and
security issue as well as the content which is in the
gap report.
These are new requirement from the gap report.

 GR1. The credit clerk carries out finish work of
day and month.

 GR2. The credit clerk issues various certificates
that the customer requires

These are new requirement from security issue.
 SR1. Users can access the credit system after

user id is approved.
 SR2. The length of user’s password is at least 6

when a user login.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

408

6 CONCLUSION AND FUTURE
WORKS

Frequent requirement change is very dangerous risk
when we progress the software development project.
These reasons are not to establishing good
requirements in an initial phase of software
development. It makes over time and cost of projects
and low quality of software products. In the context
of Requirements Engineering (RE), reuse is effective
in particular because it can help to define
requirement explicitly and to anticipate requirement
change.

We proposed the reuse-based process approach to
elicit potential requirements from various
stakeholders. To achieve our goal, we first defined
requirements styles, elements, and operators to
construct the map. We presented analyzing gaps
between requirements map of collected and reused
in the repository. The gap analysis is composed of a
source and a consequence. The source identifies the
status of the elements involved in the collected map,
and in the reused map. The consequence is
specifying difference between requirements maps of
the collected and the reused in repository. Also, we
presented the potential requirements elicitation
process with these maps. This process is sequential
procedures to look for potential requirements in
addition to Plus minus interest(PMI) method. Finally,
we illustrated our approach through the credit
system case study. We believe that our approach
contributes to elicit potential requirements efficiently.
This can reduce requirements changes and reduce
time or cost problem corresponding uncertain
requirements.

We are conscious of the lack of consideration
related to definition of operators and handling of
complex operators such as merge and split. In
addition, association conditions between elements
should be analyzed in details during the gap
elicitation process. These are considered in the
further steps of our research.

REFERENCES

Ian F. Alexander, Richard Stevens, 2002, Writing
Better Requirements, Addison Wesley.

Lauesen, 2002, Sofeware Requirements: Styles and
Techniques, Addison Wesley.

Ounsa Roudiks, Mounia Fredj, 2001, A Reuse Based
Approach for Requirements Engineering, IEEE.

Jacob L. Cybulski1, Karl Reed2, 2000, Requirements
Classification and Reuse:Crossing Domain
Boundaries, LNCS 1844, pp. 190-210.

Colette Rolland, Camille Salinesi, Anne Etien, 2004,
Eliciting gaps in requirements change,
Requirements Eng(2004) 9:1-15.

Information technology-information resource dictionary
system(IRDS) Framework, 1990, ISO/IEC
International Standard.

Marttiin P, 1994, Methodology engineering in CASE
shells:design issue and current practice, PhD thesis,
Computer science and information systems reports.

Plihon V, Rolland C, 1997, Using a generic approach to
support the construction of methods, Proceedings of
the 8th international conference on database and
expert systems applications (DEXA’97).

Prakash N, 1999, On method statics and dynamics,
Inform Syst.

Miguel A. Laguna, Oscar L´opez, Yania Crespo, 2004,
Reuse, Standardization, and Transformation of
Requirements, ICSR, LNCS 3107, pp329-338.

I. Jacobson, M. Christerson, P. Jonsson, G. vergaard,
1993, Object–Oriented Software Engineering:A
Use Case Driven Approach, Addison–Wesley, 4
edition.

G. Booch, J. Rumbaugh, I. Jacobson, 2005, The Unified
Modeling Language User Guide, Addison–Wesley,
2 edition.

A. Durán, B. Bern rdez, A. Ruiz, M. Toro, 1999, A
Requirements Elicitation Approach Based in
Templates and Patterns, WER’99 Proceedings.

A REUSE-BASED REQUIREMENTS ELICITATION PROCESS

409

