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Abstract: We propose in this paper a new public-key crypto-system, called the non-linear knapsack cryptosystem. The 
security of this system is based on the NP-completeness of the non-linear knapsack problem. We extend the 
system into secret sharing and access control. That is, an encrypted message can be decrypted only when all 
members of a group agree to do so with their secret sub-keys. The secret sharing here is equivalent to access 
control, which establishes multiple identities. That is, when the verifier challenges the prover with encrypted 
messages with public sub-keys, the prover can prove multiple identities using the secret sub-keys. Some 
experimental results are given, which demonstrate the efficiency of our system. 

1 INTRODUCTION 

In the era of ubiquitous computing, the technology 
of RFID (radio frequency identification) is receiving 
much attention. Viewing from another perspective, 
RFID brings up a tagged society, as described in 
Thinking Tags (Borovoy, 1996). Tags can be 
attached to almost everything; from manufacturing 
to retail, from human to animals. The attached tag 
emits a radio signal passively or actively. The tags 
can control manufacturing process up stream, and 
retail process down stream with various pieces of 
information recorded into the tags, which are 
attached to goods and commodities. A typical 
example of a tag attached to a human is seen in 
museums. A visitor to a museum attaches a tag to 
the chest that records his/her characteristics, such as 
gender, age, mother tongue, etc. Also payment 
information for special exhibition rooms is 
important for access control. This tag for a museum 
illustrates the importance of data security. General 
discussions of RFID are given in the recent issue of 
the Communications of the ACM, especially the 
example of museum (Hsi, et. al., 2005), data security 
(Ohkubo, et. al., 2005), and access control (Basker, 
et. al., 2005). 

In this paper we develop a public-key 
cryptosystem suitable for RFID applications. 
Important features of the tag are 

(1) Processing speed 
(2) Its size, i.e., memory requirement 
(3) Privacy and authenticity 
While it is hard to achieve all of these features to 

a great satisfaction, we achieve (1) and (3) by our 
proposed cryptosystem while (2) is kept at a 
reasonable level. 

Since the concept of public-key crypto-systems 
was published (Diffie and Hellman, 1976), there 
have been several concrete systems. They are 
classified into three categories. The first is based on 
the difficulty of factoring the product of two large 
prime numbers. The most famous is the RSA system 
invented by Rivest, Shamir and Adelman (Rivest, et. 
al, 1978). The second is based on the difficulty of 
discrete logarithm computation. A typical system 
here is the cryptosystem by (ElGamal, 1985). The 
difficulties of factoring and discrete logarithm are 
necessary conditions for the security of those 
systems; they have never been proven to be 
sufficient conditions, that is, those systems might be 
broken without factoring or discrete logarithm. The 
third is the knapsack cryptosystem suggested by 
Merkle and Hellman (Merkle and Hellman, 1978). 
This system is based on the NP-completeness of the 
linear knapsack problem. The systems in the first 
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two categories survived crypto attacks, and said to 
be safe for practical use. After the knapsack 
cryptosystem was first published, it was broken by 
Shamir’s algorithm (Shamir, 1982), and later by the 
LLL algorithm (Lenstra, et. al., 1982), and (Lagarias 
and Odlyzko, 1985). To save the knapsack system, 
there have been many modifications for this system, 
such as (Adelman, 1983) and (Chor and Rivest, 
1985). Unfortunately most of them have been 
broken by the above mentioned methods. 

In this paper we propose a public-key 
cryptosystem based on the non-linear knapsack 
problem, a general form of which is known to be 
NP-complete. Although factoring and discrete 
logarithm are believed to be difficult, we have more 
evidence that NP-complete problems are difficult, 
which may boost the security of our proposed 
system. Also the non-linear property of the system 
will resist crypto attacks on the linear knapsack 
cryptosystems. However we have not proven that 
breaking our cryptosystem is NP-complete. 
Although our system is a general purpose one, we 
focus on its use for authentication, especially as 
application to access control. The authentication 
method to which we compare our system is the 
batching version by (Genaro et. al., 2004) of 
Schnorr’s authentication scheme (Schnorr, 1991).  

In terms of computing time, ignoring the 
alphabet size, our system can encrypt and decrypt 
the given message in O(n2) time where n is the size 
of the message. The RSA system and Schnorr’s 
authentication system require O(n3) time to deal with 
n-bit integers if we use the standard O(n2) algorithm 
for multiplication and division of n-bit integers. 

2  LINEAR KNAPSACK 
CRYPTOSYSTEM 

Let a1,…,an be n positive integers and x be a binary 
vector x=x1x2…xn. Given an integer C, compute x 
that satisfies 
                               n 
                        C = Σ aixi              (1) 
                              i=1 

If xi=(0) 1, we see ai is (not) chosen to make C. 
This is like we pack some of items i whose size is ai 
into a knapsack of size C. This problem is known to 
be NP-complete. Note that ai are large integers given 
by n bits. Sequence {ai} is said to be super 
increasing if  

               i-1 
                Σ aj < ai  for i=1, …, n 
               j=1 

A super increasing sequence {ai} is chosen for a 
secret key. If {ai} is super increasing, the knapsack 
problem becomes easy and can be solved in O(n2) 
time as follows: We examine ai for i=n,n-1,…,1. If 
an>C, we cannot choose an. Otherwise we need to 
choose an and decrease C by an, since we cannot 
make C with a1,…,an-1. The same reasoning proceeds 
for n-1,…,1 with C decreased as necessary.  

The time of this algorithm is O(n2) as C:=C-ai is 
executed at most n times, and each takes O(n) time. 
A multiplier w and a prime number p are chosen as 
part of secret key such that gcd(w, p)=1. The 
sequence {ai} is converted to {ai’} by ai’=aiw mod p.  

After this conversion, sequence {ai’} is no longer 
super increasing, looking like random. This 
sequence {ai’} is published as the public key. The 
sender encrypts his binary message x=x1x2…xn as 
follows: Compute  

                               n 
                       C’ = Σ ai’xi         (2) 
                              i=1  

This knapsack problem seems difficult. After 
receiving C’, the receiver computes C=C’w-1 mod p 
and solve (1) for x=x1x2…xn by the decryption 
algorithm. 

3 NON-LINEAR KNAPSACK 
CRYPTOSYSTEM 

To overcome the weakness of the linear knapsack 
cryptosystem, we propose a non-linear cryptosystem 
in this section. Let fi(x) be a non-linear function of x, 
and x be an m-ary vector x=x1x2…xn, that is, each xi 
is regarded as a symbol of the alphabet {1,2,…,m}. 
Given an integer C, compute x that satisfies 
                               n 
                        C = Σ   fi(xi)               (3) 
                              i=1 

This problem is known to be NP-complete. In the 
linear knapsack problem, our decision was a binary 
one like whether to choose item i. In the present 
non-linear one, each item has m kinds such that the 
size of the j-th kind of item i is fi(j). The problem is 
to make C by choosing appropriate kinds of items 
1,…,n. 

We first make an easy knapsack problem, by 
creating integer values fi(x) from bit patterns. We 
prepare mask patterns using the following 
parameters: 

      n : number of items 
      m : number of kinds of each item 
      l : number of mask bits for each item.  
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The block size for encryption corresponds to n, 
and m plays the role of alphabet size for the plain 
text. The mask pattern of item i, mask(i), has ln bits 
of which l bits are 1 and the rest are 0, and satisfies 
the following condition. Let “&” be the bit-wise 
“and” operation in the following. 

      mask(i) & mask(j) = (000 … 0), all 0 for i≠j. 
      bitwise union of all mask(i), i=1,…,n, is 

(111…1), all 1. 
Let value(i, j) be a vector not greater than 

mask(i) as a binary vector, where order x<=y for 
x=x1…xn and y=y1…yn is defined by xi<=yi for 
i=1,..,n. This mapping from j to value(i, j) is denoted 
by fi(j). We use the same notation for its numerical 
value. That is, fi(j) = value(i, j).  

Lemma. mask(i) & fi(j) = fi(j).  
               mask(i) & fk(j) = (00…0), all 0, for 

k≠i. 
Example. n=4, m=3, l=2. There are four items 

(1, 2, 3, 4). 
mask(1) = (01001000), mask(2) = (10010000) 
mask(3) = (00100001), mask(4) = (00000110) 
item {kind}   --->{value(i, j) in binary sequence} 
                             {numerical value in decimal} 
  --------------------------------------------------------- 
1 {1, 2, 3}--->{00001000, 01001000, 01000000} 
                                 {8, 72, 64} 
2 {1, 2, 3}--->{10010000, 10000000, 00010000} 
                                 {144,128, 16} 
3 {1, 2, 3}--->{00000001, 00100000, 00100001} 
                                 {1, 32, 33} 
4 {1, 2, 3}--->{00000100, 00000110, 00000010}    
                                 {4, 6, 2} 
----------------------------------------------------------- 
A secret key is chosen as mn integers as follows: 
      A = (f1(1), f1(2), …, f1(m)) 
             (f2(1), f2(2), …, f2(m))  
              …  
             (fn(1), fn(2), …, fn(m)) 
The knapsack problem with this definition of fi(j) 

is easy, since the kind of each item can be sieved by 
the mask of the item. 

Example.  A = (8,     72,   64) 
                          (144, 128, 16) 
                          (1,     32,   33)  
                          (4,     6,       2) 
Let p > 2ln be a prime number, w be such that 

gcd(w, p)=1, and w-1 be the multiplicative inverse of 
w mod p. Let B be obtained by operating “w times 
mod p” on each component of A. We express this by 
B = Aw mod p, and thus A = Bw-1 mod p. 

Example.  p=283, w=200, w-1 mod p = 75.  
      B = (185, 250, 65) 
             (217, 130, 87) 
             (200, 174, 91) 

             (234, 68, 117) 
The correspondence from kinds to values in B is 

denoted by f’i(j)=value’(i, j). That is, f’i(j)=fi(j)w 
mod p and fi(j)=f’i(j)w-1 mod p. 

Example. f’1(1) = value’(1, 1) = 185, etc.  
Encryption. Let x=x1x2…xn be an m-ary 

sequence of length n to be encrypted. The 
cryptogram C is computed by 

                                n 
                        C =  Σ   f’i(xi) 
                               i=1 
Decryption. Compute M=Cw-1 mod p 

Compute yi=fi
-1(mask(i)&M) for i=1,…,n.  

Let y=(y1, …, yn) be the decrypted message. It is 
straightforward to prove y = x. The inverse function 
fi

-1 is implemented by a hash table. 
Example. x = 1 2 3 1. This message is encrypted 

as follows:  
      C’=f1’(1)+f2‘(2)+f3‘(3)+f4’(1) 
          =185+130+91+234 = 640 
      C = C'w-1 mod p = 640*75 mod 283 = 173 
      Binary expansion of 173 = 10101101 

173&72 = 8    kind 1,   173&144 = 128  kind 2 
173&33 = 33  kind 3,   173&6 = 4          kind 1 

We note that the bit pattern in each mask must be 
random and that it will be safe not to use all binary 
vectors covered by the masks, as small values such 
as 1 will expose the multiplier w. More security 
considerations will be given in Section 5. 

4 ENCRYPTED SECRET 
SHARING 

(Encrypted) secret sharing is the property of a group 
that only when the members of the group agree, they 
can (decrypt) read some messages.  

Let a message X be embedded in a vector x = (X, 
R1,…,Rn-1), where Ri are random messages. We 
assume all are integers less than a large prime p, and 
all operations are done with “mod p”. If we multiply 
this vector with a regular (n, n) matrix S to compute 
c=xS, where c=(C1,…,Cn), we can distribute the 
secrecy of X into n pieces of information c. By 
putting them together, and computing x=cS-1, we can 
read X. If any Ci is missing, we can not read X. In 
this framework, there is no encryption; if c and S are 
intercepted, X can be read by outsiders. Normally 
shares are not encrypted. See (Shamir, 1979). 

We combine our non-linear knapsack 
cryptosystem and the above mentioned secret 
sharing in this section. We first describe our method 
for two members A1 and A2 in the group. Let f1

i(j) 
and f2

i(j) be defined by  
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f1
i(j) = fi(j)w1 mod p,  f2

i(j) = fi(j)w2 mod p 
f1

i(j) and f2
i(j) are the public keys for A1 and A2. 

{fi(j)} corresponds to the master key and w1 and w2 
correspond to sub keys. The sender can use these 
public keys, regarding A1 or A2 as single users. A1 
and A2 can decrypt their incoming messages using 
w1 and w2, and {fi(j)}. Note that {fi(j)}, w1, w2 , and 
p are co-owned within the group. Suppose the sender 
wants to send an encrypted message for the group 
members to read at the same time. The sender 
chooses a random number (or random message) R. 
Let message x=x1x2…xn be encrypted into two 
cryptograms C1 and C2 by 

              n                         n 
    C1 =  Σ   f1

i(xi) + R ≡  (Σ   fi(xi)w1 + R) mod p 
             i=1                     i=1 
              n                         n 
    C2 =  Σ  f2

i(xi)  + R ≡  (Σ   fi(xi)w2 + R) mod p 
             i=1                     i=1 
In the above, the right-hand side of “≡” is given 

only for explanation purpose; the sender does not 
know p, and the “mod p” operation is done at the 
receiver side. From this simultaneous linear 
equation, the receivers compute 

               n 
     M =   Σ fi(xi)  =  (C1 – C2)(w1 – w2)-1 mod p 
            i =1 
This can be done only when w1 and w2 are 

known.  After this, using the previous decryption 
procedure, the receivers, namely the group members, 
recover x = x1x2…xn.  

 
Example.  w2=190, p=283, w2

-1=213, R=100 
  {fi(j)} = (   8,    72,   64) 
            (144, 128,   16) 
                (   1,   32,    33) 
           (   4,     6,     2) 
  {f1

i(j)}= (185, 250,  65) 
               (217, 130,  87) 
            (200, 174,  91) 
            (234,  68, 117) 
  {f2

i(j)}= (105,  96,  274) 
            (192, 265, 210) 
            (190,  137,  44) 
             (194,     8,   97) 
Let x = (1, 2, 3, 1) 
   C1 = 185 + 130 + 91 + 234 + 100 = 640 + 100  
        = 740 = 200M + R mod 283 
   C2 = 105 + 265 + 44 + 194 + 100 = 608 + 100  
        = 708 = 190M + R mod 283 
   32 = 10M mod 283, M = 32*10-1 mod 283  
       = 32*85 mod 283 = 173 
 
This two-member secret sharing system can be 

generalized into k members in the following. We go 

with k=3 for illustration. Let us have one more 
multiplier w3, and public key f3

i(x), derived from 
fi(j). After choosing a plain text x=x1x2…xn, the 
sender computes      

   n                  
C1=Σ f1

i(xi) +R1 + R2  ≡(Σ fi(xi)w1+R1+R2)mod p 
      i=1              
       n                  
C2=Σ f2

i(xi)+R1+2R2 ≡(Σfi(xi)w2+R1+2R2)mod p 
      i=1               
       n                  
C3=Σ f3

i(xi) +R1+3R2 ≡(Σfi(xi)w3+R1+3R2)mod p 
     i=1             
From this the receivers compute 

C1 -2C2 + C1 ≡ (w1 -2w2 + w3)M mod p 
M ≡ (C1 -2C2 + C3)(w1 -2w2 + w3)-1 mod p 

Using the matrix/vector notation and omitting 
“mod p”, we have 

     C1 =  Mw1+ R1 + R2  
     C2 =  Mw2+ R1 + 2R2    
     C3 =  Mw3+ R1 + 3R2        
(C1, C2, C3)   =  (M, R1, R2)  | w1   w2  w3 |  
            |  1     1    1  | 
            |  1     2    3  | 
We call this matrix the verification matrix and 

denote it by V. Vertical bars are used for expressing 
matrices. The verification matrix minus the first row, 
denoted by V*, is shared by the sender and the 
receivers. V* = |  1     1    1  | 

                    |  1     2    3  | 
This V* is chosen just for illustration. As long as 

its rank is k-1, any matrix will do. 
Plain text x, and random messages R1 and R2 are 

generated by the sender. In V, we have w1,…,wk in 
the first row, and some constant values for the rest. 
The verification matrix must be regular. If the rank 
of V* is k-1 and we generate w1,…,wk random, the 
probability that the matrix is singular is low.  The 
users can check this in advance. 

The inverse matrix V-1 is given by 
|  1    2w3 -3w2    w2 - w3 | ( w1 -2w2 + w3)-1      
| -2    3w1 - w3     w3 - w1 | 
|  1     w2 -2w1     w1 - w2 |     

Let dij be the (i, j) cofactor of the verification 
matrix V. Then V-1 = (dij)T|V|-1, where |V| is the 
determinant of V. Thus the first column, (I1,…,Ik)T, 
of the inverse matrix is given by  

      (d11, …, d1k)T|V|-1.     (“T” for transposition) 
If (I1,…,Ik) is pre-computed, we can compute M 

by the inner product of  (C1,…,Ck) and (I1,…,Ik)T, 
taking O(k) operations of multiple precision 
numbers. To compute M we do not need the whole 
inverse matrix. 
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The rank of the (k-1, k) sub-matrix, V*, must be 
k-1. Otherwise M can be computed with less than k 
equations.  

Example.         C1 =  Mw1+ R1 + R2                 
                         C2 =  Mw2+ R1 + R2           
                         C3 =  Mw3+ R1 + 3R2           
We have C1 – C2 = (w1 – w2)M and M = (w1 – 

w2)-1(C1 – C2). That is, we can compute M without 
the knowledge of C3. 

We can use this system for secret sharing with 
threshold. That is, if an encrypted message is sent to 
k receivers, and they can decrypt the message only 
when t members agree. We make the matrix V* of 
rank t-1. Then we can solve the simultaneous 
equation of size t, and get M. 

Example.         C1 =  Mw1+ R                 
                         C2 =  Mw2+ R           
                         C3 =  Mw3+ R           
If any two of the three members agree, M can be 

solved. 
 We can use the above secret sharing for access 

control. A user is granted several access rights, by 
receiving w1,w2,…. A typical application is entrance 
fees in a museum. If a customer pays fees for 
entering several exhibition rooms, those 
w1,w2,…will be provided. The server at each door 
will challenge the visitor with some secret message 
to see if it is decrypted and sent back to the server.  

5 ANALYSIS 

We define the size of a number by the number of bits 
or digits to express it. To prevent crypto-attack by 
exhaustive search, we propose to have the size of n 
around 50 or larger. The size of mask is given by 
O(ln). The size of modulus p and multiplier w is of 
the same order.  

The summation in (3) takes O(ln2) time. The 
bitwise “and” operation for decryption takes O(ln) 
time each, resulting in O(ln2) time in total. The 
multiplication and division take O(l2n2) time, which 
is dominant. For the choice of secret keys, we 
suggest to choose random l/2 bits for 1 and the rest 
for 0 for each fi(j). The number of kinds, m, cannot 
be large to avoid the equal-sum event described later 
in this section. In the experiment, we set m=l/2. 

Possible attack on our system can be considered 
from two angles. The first is to compute the secret 
key from the public key. If we try all possible w-1 on 
B, and see if each row can represent some mask 
pattern, it will take at least O(2ln) time, which is not 
practical. If l is small, say 2 or 3, we generate all 
possible secret keys in polynomial time, and by 
comparing those with public ones, we can guess p 

and w in polynomial time, whereby secret keys can 
be guessed.  

 The other attack would be to solve the difficult 
knapsack problem. Although our non-linear 
knapsack problem has low density solutions, the 
attacking methods such as the LLL method are 
based on the linearity of the knapsack problem, and 
not directly applicable to our system. The direct 
exhaustive search will cost O(mn) time.  

 Now we discuss how to set up the secret key. If 
we use just a few of 2l bit patterns except all  0 in the 
mask(i) for the kinds of item i, that is, we use them 
sparsely, we introduce a super-increasing property 
on some of those kinds, which may become 
vulnerable to Shamir’s crypto-attack. For example, 
if there is only one 1 in the l-bit pattern for fi(j)’s, 
they are super-increasing.  

If we have l mask bits, it would be safe to use l/2 
ones for the function fi(j) for each item i and kind j. 
If we use all such bit patterns, we invite crypto-
attack in the following way. Suppose we have four 
values (a, b, c, d) for fi(j) such that 

a+b=c+d    (*).  
Let (a’, b’, c’, d’) be the corresponding public 

key values. It is straightforward to see  
a’+b’-(c’+d’)=kp     (**)  

for some k. Let us call this situation where we have 
several secret key at the left-hand side and right-
hand side of the above equation (*), the equal-sum 
event. If we find another set of such four public key 
values with k’p for the right-hand side of the above 
equation (**), the value of p can be revealed by the 
Euclidian algorithm, which will in turn break the 
whole system. To prevent this situation from 
happening, we suggest to choose random l/2 bits for 
1 and the rest for 0 for each fi(j). The number of 
kinds, m, cannot be large to avoid the above 
situation.. This is because the number of the equal-
sum events is given by 

       m   m-i 
       Σ    Σ C(m, i)C(m-i, j) = 3m,                    
     i=0   j=0 
where C(m, i) is the binomial co-efficient of i out 

of m. The probability of two l-bit sequences are 
equal is 2-1, and the probability of one equal-sum 
event is bounded by this value. Thus the probability 
of the above situation is bounded by (3m2-l)2= (21.58m 

– l)2. For l=20 and m=10, this probability is about 
1/300. We need to multiply this probability by n, the 
number of items. Then the probability is about ¼. 
For security we would need to exhaustively check 
the equal-sum event after the secret key is set up. In 
this parameter setting, we hit an equal-sum event 
once every four attempts, in which case we generate 
the secret again until we have no equal-sum event.  
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6 EXPERIMENTAL RESULTS 

As we mentioned above, we can use the secret 
sharing scheme for access control with multiple 
identities authentication. The following are our 
experiments on timing results based on the method 
in Section 4, compared with the timing results on the 
batch Schnorr scheme (Genaro, et. al., 2004) with 
the same number of identities. As for the selections 
of security parameters, they chose the following 
setting: 
      Number of identities: d = 32  
      Prime number q: let q be 200 bits 
      Prime number p: let p be about 1500 bits 
      Microchip PIC16LF628 microcontroller 
      Runnig time: about 2 seconds on 

The implementation of our scheme is in the C 
language on a Linux machine with a Celeron 
processor with 2.2 GHz. In order to treat two 
schemes under the same condition, our selections of 
security parameters are set as follows:  

      Number of identities: d = 32 
      Number of items: n = 75 
      Number of kinds: m = 10 
      Number of mask bits for each item: l = 20 
Each mask pattern’s length: ln = 20*75 = 1500 
Prime number p: p > 2ln. So p > 21500, p is of 451 

decimal digits, which has a comparable size with the 
batch Schnorr scheme. 

Those parameters are set to match the 
performance measurement of the batch Schnorr. For 
our experiment we did encryption/decryption of a 
file with about 50 characters as a challenge with the 
total time of 0.057 sec. The memory requirement for 
the above selections of security parameters is 0.134 
MB. 

7 CONCLUDING REMARKS 

We presented a new crypto-system based on the 
non-linear knapsack problem. At the moment, there 
is no attacking method for this crypto-system. The 
computational complexity of our system is low, and 
thus very efficient in practice. Also the simple 
structure is suitable for hardware implementation, 
especially as the bitwise “and” operation can be 
executed by a logic array in parallel. Only one 
problem is that the key size is rather large, that is, 
O(lmn2), whereas that of RSA is O(n). As the cost of 
memory chip is going down, this disadvantage will 
not be a great obstacle to our system. 

We extended our system for encrypted secret 
sharing. This became possible as our non-linear 

system is not exactly “non-linear”, but “super-
linear”, in the sense that we have non-linear 
functions at the bottom, which are gathered by the 
linear operation of summation. We incorporated 
linear algebra into this linear part at the top. There 
can be more generalizations from various angles. 
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