
EFFICIENT MECHANISM FOR HANDLING MATERIALIZED
XML VIEWS

Jessica Zheng‡, Anthony Lo‡, Tansel Özyer‡, Reda Alhajj‡, ⊗
‡Department of Computer Science, University of Calgary, Calgary, Alberta, Canada

⊗ Department of Computer Science, Global University, Beirut, Lebanon

Keywords: Materialized views, XML, deferred update, query performance, object-oriented database.

Abstract: Materialized views provide an effective and efficient mechanism to improve query performance. The
necessity to keep consistency between materialized views and the underlying data raises the problem of
when and how to update views efficiently. This paper addresses the issue of deferred incremental update on
materialized XML view. The proposed approach mainly extends our previous work on materialized object-
oriented views. The overlap between XML and the object-oriented paradigm has been the main driving
motivation to conduct the study described in this paper.

1 INTRODUCTION

XML, a mark-up language, is widely used for
publishing and exchanging data on the Web. To
increase the performance of frequently requested
queries against XML documents, the queries can be
defined as XML materialized views to be used
efficiently later. This paper discusses how to
maintain materialized XML views.

When real data in XML documents are modified
by insertion, update and deletion, XML views
derived from the modified XML documents need to
be updated so that they are consistent with the
underlying data. The update of views could be done
immediately after the update of the XML documents
or deferred until the view is accessed.

Deferred update means that the view update
occurs at the time the view is requested. The
objective of the deferred update is to improve the
performance of the database system. Only
modifications that may affect a view will be
considered when doing deferred update on the view.
Let’s take the Library database system as an
example. If a book is added into the database, before
relevant view is to be updated, the book is deleted
from database. This book needs not to be considered
at all when updating related views in a deferred way.

In this paper, an approach to incrementally
update materialized XML view in a deferred way is
proposed. The approach consists of two parts:
1. Modification Information Schema (MIS), which

is defined to keep track of modifications done to

XML data. It contains four parts: a) element
nodes: XML schema is represented in a
hierarchical structure. An element node refers to
a node in the XML schema; b) instances: an
instance refers to an element of the XML
document; c) modification list: each element
node has a modification list, which records
modifications done to instances of element node,
including insertion, update and deletion; d) view:
a view is a virtual element node that contains
information about an XML view.

2. Update algorithm, which describes the process of
how XML views are updated.
The remainder of the paper is organized as

follows. Section 2 discusses related works. Section 3
describes the proposed approach in detail. Section 4
concludes the paper and provides future research.

2 RELATED WORK

XML has received considerable attention. There
have already been developed prototype view
implementations. Papers on implemented views
address also the area of semistructured data, closely
related to XML data. These contributions show
trends, but the subject still requires much more
research and development. Some approaches that
have influenced XML views are discussed below.

Baru (1999) discusses a mapping between XML
schema and relational schema. Informally, the
mapping from the XML schema to the relational

151
Zheng J., Lo A., Özyer T. and Alhajj R. (2006).
EFFICIENT MECHANISM FOR HANDLING MATERIALIZED XML VIEWS.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 151-156
DOI: 10.5220/0002451501510156
Copyright c© SciTePress

schema involves the following steps. The structure
of the XML schema is a hierarchical structure. Each
element in the XML schema is assigned a unique ID.
A table is created for each element. The ID of the
element is set as the primary key of the table. To
represent the relationship between parent element
and child element, the primary key of the parent
element is set as foreign key in the child element.

The technique to derive XML view schema from
a given relational schema is more complicated and
user input is required. The process comprises two
steps. The first step is to transform the relational
schema into a directed graph. The second step is to
use graph-processing technique to find candidate
XML view schemas. The process requires user
guidance to make some decisions. For example, the
graph may have cycles and the user decides on the
root element and the sub-element to break the cycle.

Chen, et al (2002) propose a technique to design
XML views, which are guaranteed to be valid. A
valid XML view is an XML view that does not
violate the integrity constraint and the semantics of
the original XML document. The approach
comprises two parts:
• ORA-SS schema, which is built based on the

XML document. The schema describes the tree
structure of the XML document and the
relationships among elements in the document.

• A set of rules to guide the design of the valid
XML views. An XML view is designed by
applying selection, projection, join and/or swap
operation. The swap operation is to exchange the
position of parent element and child element.
When applying these operations to the design of a
view some rules must remain valid in order to
guarantee the validity of the XML view.

Braganholo, et al (2003) study the problem of
updating relational databases through XML views.
In other words, how to guarantee that translating an
update on an XML view into a set of update on the
underlying relations will not introduce additional
updates to the XML view. Not all XML views over
relational database are updateable. They focus on
Nest-Last XML views and Nest-Last-Project-Select-
Join XML views (NLPSJ view). NLPSJ XML is a
special sub-set of Nest-Last XML.

A Nest-Last XML view is a view expressed in
the nested relational algebra; the nest operator is the
last operator to be applied. Update to Nest-Last
XML views could be translated into a set of
corresponding relational view updates. If the
corresponding relational views are updateable, the
Nest-Last XML view is updateable.

By updating relational databases through XML
views, the approach hides the underlying relational

databases from users. Because the problem of
updating XML views is translated into updating
relational view, we argue that the techniques from
the relational model can be utilized.

Shah and Chirkova (2003) use materialized XML
views to improve query performance over relational
databases. To query XML data from relational
databases, XML query is first translated into SQL
query. Then the SQL query is executed. At last the
result is translated back into XML document. To
reduce the response time of a query, this approach
selects frequently accessed data and translates them
into XML document. When answering a XML
query, the database first checks materialized XML
views to determine whether they could be used to
answer the query. If yes, the answer is extracted
from the view directly. Otherwise the
aforementioned steps are executed to get the result.
This approach assumes the stored data in database
do not change frequently; otherwise it would involve
the overhead of updating XML views frequently.

To decide which data to select, a column called
access count is added into the relation. Initially,
access count is set as null. Each time a tuple is
accessed by a query, the access count value for the
tuple increments by one. When access count value
reaches the predefined threshold value, the data in
the tuple is added into XML views.

This approach could reduce the query response
time if data in XML views is carefully selected.
However, this approach can not guarantee that the
result retrieved from XML views is correct since the
data to be selected is determined only by the access
count value, not by some filtering conditions that
specify the XML view.

Kang and Lim (2002) discuss how to update
XML views over relational databases in deferred
way. XML view is update when the view is
requested by an application. Each update to the
underlying relational database will be recorded to
the update log chronologically for later use by XML
view update. Our approach presented in this paper
has some common points with this approach. Both
update XML views incrementally. However, the
approach we adopted does not constrain the database
engine to relational database only. Instead it could
be applied to any database at the backend.

The approach that will be discussed in this paper
utilizes some techniques from our previous work on
materialized views (Alhajj and elnagar, 1999). The
latter approach is a mechanism to incrementally
update materialized object-oriented views over
object-oriented database. The basic idea is a view is
updated when it is requested. Modification
information is recorded to be used when performing

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

152

view updating. The structure of an object-oriented
database is hierarchical. Each node represents a
class. A class may have inheritance relationship and
composition relationship with other classes.
Inheritance represents the relationship between
parent class and child class. When values of some
attributes of a class are derived from another class,
the two classes have composition relationship.

A view is a virtual class. It is different from base
class, which refers to an original class in the
database. A view may be derived from base classes
and other views. To update a view, it is necessary to
consider all modification information that may affect
the update of the view. Such information consist not
only the modification done to the dependent base
classes and virtual classes, but also the modification
done on other base classes that have inheritance
relationship and composition relationship with the
dependent base classes. Each class maintains a
modification list to keep track of related
modifications.

Since the structure of XML databases has many
things in common with the structure of object-
oriented databases, our main argument for the
approach proposed in this paper is the techniques
proposed by Alhajj and Elnagar (1999) could be
applied with some adjustment to update XML views.
<Library>
 <Holdings>
 <Books>
 <ID> 1 </ID>
 <title> C++ programming </title>
 <due date> Aril 23, 2004 </due date>
 <status> check out </status>
 <Authors>
 <name>John Walmart </name>
 </Authors>
 </book>
 </Holdings>
 <Members>
 <library card #> 2 </library card #>
 <name> Eva Jen </name>
 <phone> 345-456 </phone>
 <Address>
 <city> Calgary </city>
 <street>23 Ave NW</street>
 </Address>
 </Members>

</Library>
Figure 1: Example XML Document.

3 THE PROPOSED APPROACH FOR
XML MATERIALIZED VIEWS

This section describes our model and the algorithm
for deferred incremental update of materialized
XML views. The running example XML document
given in Figure 1 and its schema are to be used to
illustrate the different aspects of our approach.

A basic element refers to elements that have
basic XML data type, such as integer, string, etc. A
basic element does not have any children. A
complex element refers to elements that are
composed by one or more basic or complex
elements. For example, the elements Library, Books,
and Members are all complex, while title in books
and name in members are basic element.

3.1 Modification Information Schema

In our deferred update approach, we defined a
Modification information schema (MIS) to be used
for modelling the XML document and the
modifications done to the XML document. The
recorded information is used in the algorithm for
deferred view update. There are two first class
objects used in MIS: element node and view.
Element node: an element node in the MIS model is
designed to store information about elements that are
defined in the XML document. It keeps the
following:

For each element node defined in the XML
document, four pieces of information are kept in the
corresponding MIS: ChildList, ReferenceList,
InstanceList, and ModificationList.

A ChildList contains a list of the children of the
element. A child of an element can either be a basic
element, which has no child, or a complex element,
which is composed from other element nodes.

If any child of the element references to other
elements, the name of the former child element and
the name of the referenced element(s) are stored in
the ReferenceList.

In InstanceList, we store all instances that belong
to the element. For each instance, its name, unique
identifier, a child list, and a reference list are
maintained.

A ModificationList(M_List) contains a list of
Modification Tuples (M_Tuples). For each view that
depends on the current element/view, there is one
and only one modification tuple in the modification
list. Each modification tuple contains three lists,
which are the Insertion list, the Update list, and the
Deletion list. An insertion list records all inserted
instances of the element node. An update list records

EFFICIENT MECHANISM FOR HANDLING MATERIALIZED XML VIEWS

153

all updated instances of the element node. A deletion
list records all instances that are deleted.
View: for each view, four pieces of information are
kept: DependingNodeList, FilteringCondition,
InstanceList, and ModificationList.

A view is a virtual element node. It is composed
by different elements or views. All elements and
views which the current element depends on are
stored in a DependingNodeList.

A view can also have filtering conditions. The
conditions are defined together with the view. It
allows users to focus on a subset of the instances in
the underlying element. Instances from the target
nodes and satisfying the filtering condition are said
to be instances of the view; and these instances are
stored in the InstanceList.

Since views can be nested, it is necessary to store
modification information for each view dependent
on the current one. This is done by using the already
defined modification list.

The following examples are based on the
example XML document shown in Figure-1 and its
schema. Example of the Element nodes:
Books:
o child list ::= {ID, title status, due date, Authors}
o referenceList::={} o M_list::= M_tuple(view1)}

Authors:
o child list ::= {name}
o referencelist::= {Authors.name:Members.name}
o M_list ::= {M_tuple (view1)}

Example Views:
View1: find overdue books
o Depending node list ::= {Books}
o Filter condition: due date of the book < current

date AND status = checked out
o Instance list::={} o M_list::={M_tuple(view2)}

View2: find members who have overdue books and
who are living in Calgary
o Depending node list ::= {view1, Member }
o Filter condition: address = ”Calgary” AND

due date of the holding < current date AND
status = check out

o Instance list ::= {} o M_list ::= {}

3.2 The Algorithm for Deferred View
Update

Deferred view update means that the view update is
done when the view is requested by an application.
The other well known modes of update are
immediately update after every changes made to the
underlying XML data, and periodical update is
performed at designated time instances. The process
of deferred update consists of the following steps:

Step-1: Each modification to the XML data,
including insertion, updating, and deletion is
recorded.

Step-2: When a view is requested, the recorded
modification information is checked to find which
modifications will affect the view.

Step-3: Generate update information needed by the
view based on the modifications located in Step 3.

Step-4: Update the view based on the update
information.

Next, we elaborate more on each of these steps:
Step-1: Record modification information: MIS
defined in Section 3.1 is utilized to store
modifications made to the XML data. Each element
node maintains a modification list. In the
modification list, M_tuple is created for each view
that depends on the element. M_tuples are ordered in
M_list. When a modification is made to the element
node, the modification information is always stored
in the last M_tuple in the M_list.

Not only modifications done to the dependent
element node affect a view, but also the
modifications made to all descendants of the
dependent nodes affect the view as well. In order to
maintain the modification information for the target
view, all descendants of the dependent element
nodes also need to create an M_tuple for each view
depending on its parent. For example, in the
previous example of element nodes, view1 is
depends on the element Books. Therefore, in the
M_list of Books, there is M_tuple for view1. Since
Authors is a child of Books, there is also M_tuple
for view1 in its M_list.
Step-2: Extract the relevant modification
information: This step will find out all the
modifications that may affect the update process of a
XML view, which is from now on referred to as the
target view. First, all descendents of the dependant
element nodes are located. Second, relevant
modifications done to the dependent element nodes
and their descendents are retrieved. Since it is
possible that the target view depends on views that
depend on other views, the M_list of all views which
the target view depends on directly or indirectly
must be considered.

Consider the case when view2 is updated. Since
view2 depends on view1 and Member, the M_list of
both view1 and Members are considered. In
addition, as view1 depends on Books, the M_list of
Books needs to be considered as well.

To extract the modification information from the
M_list of each element node relevant for the target
view, the following process is executed:

• Locate the M_tuple created for the target view
in the M_list.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

154

• Merge the content of the target M_tuple and
the M_tuples behind it. Since the M_list is
ordered and new changes are appended at the
end of the list. By merging the content of target
M_tuple with the M_tuples behind it, all
modifications that happened since the last
update of the target view are obtained.

• Add content of the target M_tuple into its
immediate predecessor. The content in the
target M_tuple may be required for updating
other views. Therefore, it is necessary to store
it elsewhere in the list because the target
M_tuple will be removed. Correctness of the
model is maintained by storing it in the
immediate predecessor.

• Empty the target M_tuple and move it to the
end of the M_list. This means that the view has
just been updated and no modification has
happened since the target M_list is empty.

Step-3: This step filters the extracted modification
information based on the filtering conditions of the
target view. Each view has its own filtering method
since the filter condition for each view may be
different.
Step-4: Update the XML view based on the filtered
modification information.

The actual algorithms to handle the above
outlined process are inheritanceModification and
UpdateView. The former algorithm is used to find
modification information for a dependent element
node and its children, with respect to the target view.
Algorithm: inheritanceModification
Input: view Vid, element-node Nid
Output: three instance list: I_list, U_list, D_list
Begin

let I_list = insert list contains the inserted instances
let U_list = update list contains the updated

instances
let D_list = deletion list contains the deleted

instances
let M_list(node) = modification list of element node
let M_tuple(Vid) = M_tuple for view Vid
Set I_list = U_list = D_list = {}
child list=findChildren(Nid)
// find all direct/indirect children of Nid
for each node in child list {

 // extract modification of a view since its last
update

 extractModificationFromMTuple(M_Tuple of
current node, Vid)

}
End
Method: extractModificationFromMTuple
Input: M_tuple and Vid
Output: I_list, U_list, D_list
Begin:

let M_tuple(Vid) be at position k M_list(node)

// find all the modification done to node since last
update

// of Vid and add them into I_list, U_list and D_list
while not end of M_list(node) {

I_list += M_list[k].I_list
U_list += M_list[k].U_list
D_list += M_list[k].D_list
k++

} //end of while
If M_tuple(Vid) has immediate predecessor

M_tuple(X) {
Add content of M_tuple(Vid) into M_tuple(X)
Empty the three lists in M_tuple(Vid)
Move M_tuple (Vid) to the end of

M_list(node)
 }

End
The second algorithm, updateView, is a recursive

function for updating the view. It first checks each
dependent element node in the depending node list
of the target view. If the dependent element node is
an element node instead of a view, it uses the
inheritanceModificaiton algorithm to extract all
modification information of the dependent node and
its children. If the dependent element node is a view,
it updates this view first and extracts its modification
information. After all the modification information
is retrieved, that information is filtered. Finally, the
target view is updated based on the filtered
information.

Algorithm: updateView
Input: view Vid, depending node list of Vid
Output: the update version of view Vid
Begin
set I_list = U_list = D_list = {}
for each node in depending node list of Vid {
 if node is a element node {
 // find all the modification done to node since last
 // update of Vid and add them into I_list, U_list and
D_list
 find M_tuple(Vid) in M_list(node)
 if found {
 // inheritanceModification() return three lists
 // I-list(node), U-list(node), D-list(node)
 inheritanceModification()
 I_list += I-list(node)
 U_list += U-list(node)
 D_list += D-list(node)
 } else if not found {
 // recursively find all children of Nid including its
indirect
 // children e.g. grand child, grand-grand child
 child list = findChild(node)
 create M_tuple(Vid)
 add M_tuple(Vid) to the end of M_list(node)
 for each child node in child list {

EFFICIENT MECHANISM FOR HANDLING MATERIALIZED XML VIEWS

155

 create M_tuple(Vid)
 add M_tuple(Vid) to the end of M_list(child

node)
 }
 }
 } else if node is a view {
 updateView(node)
 find M_tuple(Vid) in M_list(node)
 if found {

 extractModificationFromMTuple(M_Tuple of current
node, Vid)

 } else if not found {
 I_list += node's instance list

 create M_tuple(Vid) and add it to end of
M_list(node)

 }
 }//end of if node is a view
}//end of for each
I_list = I_list - D_list
U_list = U_list - D_list
I_list = I_list + U_list
 //filter modification information
call Vid's filter(I_list, D_list)
let M_tuple(X) is the last M_tuple in M_list(Vid)
add the filtered modification information into

M_tuple(X)
Vid's instance list = Vid's instance list - D_list
Vid's instance lsit= Vid's instance list+ I_list
End

4 CONCLUSIONS AND FUTURE
WORK

This paper discussed an approach for deferred
update of XML views. An XML view is updated
only when it is requested. All modifications done to
the underlying XML data is recorded in order for the
system to update the view at a later time. MIS is
developed to keep track of the modification
information. MIS stores not only the modification
information, but also the structure of the XML data
and pointers to the XML data. This paper also shows
how to use the information stored in MIS to update
materialized XML views.

The approach assumes that XML views are
derived from the source XML data, which conforms
to the same XML schema. To apply the approach to
XML views that are derived from heterogeneous
XML data, we are currently considering the
following problems: 1) XML view schema based on
the set of source XML schemas; 2) filtering
conditions for an XML view that spans multiple

XML schemas; 3) reconstructing the query result
based on changes to the XML view schema.

REFERENCES

Baru C., 1999. “XViews: XML Views of Relational
Schemas,” SDSC TR-1999-3, San Diego Supercomp.
Centre, University of California- San Diego.

Chen Y.B., Ling T.W., Lee M.L., 2002. “Designing Valid
XML views,” Proc. of ER, London, UK.

Braganholo V.P., Davidson S.B., Heuser C.A., 2003. “On
the Updatability of XML Views over Relational
Databases,” Proc. of WebDB, San Diego.

Shah A., Chirkova R., 2003. “Improving Query
Performance Using Materialized XML Views: A
learning-Base Approach,” Proc. of the International
Workshop on XML Schema and Data Management.

Kang H., Lim J., 2002. “Deferred Incremental Refresh of
XML materialized Views,” Proc. of CAISE.

Alhajj R. and Elnagar A., 1999. “Incremental
Materialization of Object-Oriented Views,” Data &
Knowledge Engineering, Vol.29, pp.121-145.

Wang L. and Rundensteiner E.A., 2004. “On the
Updatability of XML Views Published over Relational
Data,” Proc. of ER.

Coox S., 2003. “XML Database Schema Evolution
Axiomatization,” Programming and Computer
Software, Vol.29, No.3, pp.140-146.

Gupta A., Mumick I.S., 1999. “Materialized views:
techniques, implementations, and applications,” MIT
Press, Cambridge, MA.

Lo A., Alhajj R. and Barker K., 2004. “Flexible User
Interface for Converting Relational Data into XML,”
Proc. of FQAS, Springer-Verlag, Lyon, France.

Shanmugasundaram J., et al, 2001. “Querying XML
Views of Relational Data,” Proc. of VLDB.

Simanovsky A., 2004. “Evolution of Schema of XML
Documents Stored in a Relational Database,” Proc. of
ACM Baltic DB&IS, Riga, Latvia.

Wang B., Lo A., Alhajj R. and Barker K., 2004.
“Converting Legacy Relational Database into XML
Database through Reserve Engineering,” Proc. of
ICEIS, Porto.

Abiteboul S., 1999. “On Views and XML,” Proc. of
PODS, pp.1-9.

Abiteboul S., et al, 1997. “Views for Semistructured
Data,” Proc. of the Workshop on Management of
Semistructured Data, Tucson, Arizona.

Lacroix Z., 2001. “Retrieving and Extracting Web data
with Search Views and an XML Engine,” Proc. of the
Workshop on Data Integration over the Web, in
conjunction with CAiSE, Switzerland.

Lahiri T., Abiteboul S., and Widom J., 1999. “Integrating
Structured and Semistructured Data,” Proc. of DBPL.

Afrati F., Chirkova R., Gupta S., and Loftis C., 2005.
“Designing and Using Views to Improve Performance
of Aggregate Queries,” Proc. of the International
Conference on Database Systems for Advanced
Applications, Beijing, China.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

156

