
A FRAMEWORK FOR SEMANTIC RECOVERY STRATEGIES IN
CASE OF PROCESS ACTIVITY FAILURES

Stefanie Rinderle1, Sarita Bassil2 and Manfred Reichert3

1DBIS, Dept. DBIS, University of Ulm, Germany,
2Dept. Computer and Information Sciences, Holy Spirit University of Kaslik Lebanon,

3Information Systems Group, University of Twente, The Netherlands,

Keywords: Process Recovery, Exception Handling, Automated Process Change.

Abstract: During automated process execution semantic activity failures may frequently occur, e.g., when a vehicle
transporting a container has a breakdown. So far there are no applicable solutions to overcome such excep-
tional situations. Often the only possibility is to cancel and roll back respective process instances what is not
always possible and more often not desired. In this paper we contribute towards the system–assisted support of
finding forward recovery solutions. Our framework is based on the facility to (automatically) perform dynamic
changes of single process instances in order to deal with the exceptional situation. We identify and formal-
ize factors which influence the kind of applicable recovery solutions. Then we show how to derive possible
recovery solutions and how to evaluate their quality with respect to different constraints. All statements are
illustrated by well–studied cases from different domains.

1 INTRODUCTION

Exceptions in computerized processes are common
(Strong and Miller, 1995). From a process perspec-
tive, critical exceptions often occur during activity ex-
ecution (Elmagarmid, 1992). As an example, take the
container transportation process from Fig. 2. Tech-
nical problems of vehicles or traffic jams may appear
at any time while vehicle V is on the road between
its origin location O and its destination location D.
In such exceptional cases, the execution of activity
move vehicle has to be stopped and an alterna-
tive solution needs to be figured out. The process-
aware information system (PAIS) (v.d. Aalst and van
Hee, 2002) should adequately support users by pro-
viding the context in which the exception has occured
and by proposing recovery strategies to be applied.

If an activity fails during process instance execu-
tion one possibility to deal with this (semantic) fail-
ure is to roll back the instance execution or parts of
it. The classical transaction concept has appeared to
be inadequate in this context since long–term locks
are not applicable in practice. Therefore more appro-
priate approaches have been figured out, e.g., nested
transactions and (semantic) compensation as exten-
sions to classical rollback and ACID transactions (El-
magarmid, 1992). One of the first approaches for the
semantic rollback of processes was offered by Sagas
(Garcia-Molina and Salem, 1987): in case of activ-

ity failure the effects of the failed activity are undone
(i.e., the respective transaction is rolled back) whereas
completed activities are compensated in backward or-
der. More sophisticated approaches use scopes of
control to express a changing compensation behav-
ior depending on the process state (Leymann, 1995;
Leymann and Roller, 2000).

In practice it is not always possible to roll back
a process, e.g., there may be no compensation for
an already accomplished surgery in a medical treat-
ment process or the time for compensation may be
exceeded, e.g., we cannot compensate a flight reser-
vation only few hours before the trip. In this per-
spective, if no backward recovery is possible, a for-
ward recovery solution applying dynamic process in-
stance changes is often favorable. In the literature,
so far no sufficient strategies for forward recovery
have been defined. In most cases forward recovery
comprises dynamic modifications of the process in-
stances, e.g. forward or backward jumps in the flow of
control (Reichert et al., 2003; Mourao and Antunes,
2004). Except the rule–based approach of AGENT-
WORK (Müller, 2004; Müller et al., 2004) it has not
been investigated in sufficient detail how to (automat-
ically) determine reasonable ad–hoc modifications as
forward recovery solutions. Note that at a certain
point during process execution the set of applicable
changes may be very large, but only few of them may
be reasonable to deal with the exceptional situation.

136
Rinderle S., Bassil S. and Reichert M. (2006).
A FRAMEWORK FOR SEMANTIC RECOVERY STRATEGIES IN CASE OF PROCESS ACTIVITY FAILURES.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - DISI, pages 136-143
DOI: 10.5220/0002453201360143
Copyright c© SciTePress

In this paper, we contribute to better support users
in finding adequate forward recovery solutions at the
presence of exceptional situations. We first identify
factors which may influence the right choice of a for-
ward recovery solution. One important factor is to
know the current data context of a failed activity. For
example, if activity move vehicle fails it is cru-
cial to know the position of the vehicle in order to
figure out an alternative solution (cf. Fig. 2). We
may also think of an emergency case occuring while
a physician is filling in a form (e.g., to enter medical
history data of her patient) and forcing her to inter-
rupt her task. In such a case the data already filled in
by the physician should not be lost, i.e., the data con-
text of the activity should be kept in order to resume
it later on. Other influence factors deal with a process
as a whole. If an exception has to be handled, it is a
must to know how far process execution has been pro-
gressed or what the major goals of this process are.
As an example, the major goal of a medical treatment
process could be to successfully operate a patient, and
the completion of a prerequisite activity (e.g., prepare
patient) could be defined as a milestone. If an excep-
tional situation occurs during the execution of this ac-
tivity (e.g., detection of too high blood pressure) the
subsequent surgery could not be launched.

The influence factors identified in this paper stem
from analyzing different process scenarios from the
logistics area, the medical domain, and the automo-
tive sector. We formalize these influence factors in or-
der to draw precise conclusions afterwards and follow
a two–step approach for suggesting forward recovery
strategies to the user. Within the first step possible
dynamic changes of the concerned process instance
are figured out depending on the identified influence
factors. In order to improve the quality of the sug-
gested recovery solutions, in a second step we check
whether the ad–hoc changes are reasonably applica-
ble, i.e., whether they preserve certain constraints or
not (e.g., a given time schedule).

Sect. 2 provides necessary background informa-
tion. In Sect. 3 we formalize factors influencing the
choice of adequate recovery solutions in case of ac-
tivity failures. Methods for deriving forward recovery
solutions and evaluating their quality afterwards are
provided in Sect. 4. In Sect. 5 we discuss related
work and we close with a summary in Sect. 6.

2 FUNDAMENTALS

To provide a formal foundation for our further con-
siderations we first present basic definitions. We use
Activity Nets (Leymann and Altenhuber, 1994) as
process meta model, but our considerations can be
transferred to other process meta models as well. We

extend the defintion of Activity Nets by subdividing
process activities (e.g., Prepare patient for a
surgery, cf. Fig. 1) into smaller work units which we
call atomic steps (e.g., measuring weight/blood pres-
sure of a patient as atomic steps of activity Prepare
patient). We use this distinction for further con-
siderations but it also reflects that work units may be
modeled at different levels of granularity.

Definition 1 (Process Type Schema) A tuple S = (N,
D, CtrlE, DataE, EC, ST, Asn, Aso, DataEextended) is
called a process type schema with:

• N is a set of activities and D is a set of process data
elements

• CtrlE ⊂ N × N is a precedence relation
(notation: nsrc → ndest ≡ (nsrc, ndest) ∈ CtrlE)

• DataE ⊆ N × D × NAccessMode is a set of data links
between activities and data elements (with NAccessMode
= {read, write, continuous-read, continuous-write})

• EC: CtrE �→ Conds(D) assigns to each control edge an
optional transition condition where Conds(D) denotes
the set of transition conditions on data elements of D

• ST is the total set of atomic steps defined for all activities
of the process; we define the following functions on ST:
• Asn: ST �→ N assigns each atomic step to an activity.
• Aso: ST �→ N assigns to each atomic step a num-

ber indicating its relative position with respect to other
atomic steps of a certain activity.

• DataEextended ⊆ ST × D × {read, write} is a set of
data links between atomic steps and data elements

Let us analyze the important issue of process data
(flow) in detail. A first step is to distinguish between
data flow on macro and micro level (cf. Fig. 1), i.e.,
data flowing between process activities (macro level)
and between the atomic steps of one activity (micro
level). We extend this discussion later on. At this
level, we introduce the notion of process instances.

Definition 2 (Process Instance) A process instance I is
defined by a tuple (S, MS , ValS) where:

• S = (N, D, CtrlE, . . .) denotes the process type schema I
was derived from

• MS = (NSS , ESS) describes activity/atomic step and
edge markings of I:
NSS : (N ∪ ST) �→ {NotAct, Act, Run,
Comp, Skipped}
ESS : CtrlE �→ {Not Signaled,
True Signaled, False Signaled}

• V alS denotes a function on D, formally: ValS: D �→
DomD ∪ {Undef}. It reflects for each data element d
∈ D either its current value from domain DomD or the
value Undef (if d has not been written yet).

IS denotes the set of all instances running according to S.

In Def. 2 we abstain from using an execution log
for process instances. In ADEPT, for example, such
an execution log captures start and end events as well
as the data values written by the processed activities

A FRAMEWORK FOR SEMANTIC RECOVERY STRATEGIES IN CASE OF PROCESS ACTIVITY FAILURES

137

Process Schema S:
 : Control flow
 : Data flow
 : Milestone

weight bloodPressure
electro

cardiogramconsent

Inform Sign
Measure
weight

Measure
pressure

Wash
patient Anesthetize Operate

Provide
weight

1 1 1 1 1 0 1 2

A
to

m
ic

st

ep
s

D
at

a
on

m

ac
ro

le
ve

l

Admit
patient

Anamnesis Operate

Monitor

Prepare
patient

C
on

tr
ol

 fl
ow

AndSplit AndJoin

weight bloodPressureconsent D
at

a
on

m

ic
ro

le

ve
l

sensory perception
degree

patForm

nervousness
degree G

lo
ba

l
da

ta

write
report

 Aftercare

patient age family status

Figure 1: Medical Treatment Example.

(Rinderle et al., 2004). This constitutes important in-
formation in the context of backward recovery.

We give further definitions in order to be able to
formalize the influence factors afterwards. A first
important definition is that of milestones. Reaching
a milestone indicates that the process execution has
reached a certain stage, e.g., in the engineering do-
main a certain development stage. The notion of mile-
stones can be also used for defining process goals,
e.g., the surgery of the patient and the documentation
of the medical treatment process (cf. Fig. 1). We de-
fine a milestone as a subset of activites of a process
type schema with their associated activity markings.

Definition 3 (Milestone) Let S = (N, ...) be a process
type schema. Then ms = {(n, State) | n ∈ N’ ⊆ N , State ∈
{Act, Run, Comp}} denotes a milestone for S. The set
of milestones defined on S is denoted by MSS .

When using data flow information for deriving re-
covery solutions it is necessary to distinguish between
different kinds of data. For this purpose, a data clas-
sification schema has been introduced (Bassil et al.,
2005), which puts the frequency of updating activity
data and the relevance of these data into relation. In
the latter dimension, a distinction is made between
data elements only relevant in the context of the appli-
cation and data elements relevant for process progress
as well. A data element produced by any activity is
relevant for the process if there is a subsequent activ-
ity reading this data element. If this is not the case
we call this data element application–relevant. Fur-
thermore, we refine this definition by also consider-
ing data elements that are not linked to any specific
activity but to the overall process or to the application
itself. We denote such data elements as ”global data”.
An example is nervousness degree as depicted
for the medical treatment process in Fig. 1.

The other dimension in the data classification
schema is built by the data update frequency, i.e., how
often a certain data element is updated during activ-
ity execution. A distinction is done between a dis-
crete and a continuous data update of a data element
d by an activity n. Examples for continuously up-
dated data elements are current position and
container temperature for the transportation
process in Fig. 2. By contrast, in Fig. 1, consent
is an example for a discretely updated data element.
This classification only applies when a write or a
continuous-write data link exists between d and n.

Informally, for a discrete data update there are cer-
tain time spans between the single updates, whereas
for continuous data updates the time slices between
the single updates converge to 0. The following func-
tion specifies time slices between data updates: stp :
ST �→ R

+ ∪ {Undef} where stp maps each atomic
step either to a specific point in time or to Undef. As
introduced in (Bassil et al., 2005) we further distin-
guish between a discrete data update of data element d
by activtiy n (if ∃(n, d, write) ∈ DataE) and a con-
tinuous data update of d by n (if ∃(n, d, continuous-
write) ∈ DataE).

In order to correctly deal with exceptional situa-
tions, it is crucial to know the points in time when
the data context of an activity becomes preserved (i.e.,
it is semantically meaningful and it is made persis-
tent). In order to adequately answer this question, it
is important to consider the distinction between con-
tinuous and discrete data updates. The following de-
finition precisely determines the particular safe inter-
rupt points for discrete and continuous data updates,
i.e., those points in time when the respective data are
updated such that subsequent activities reading these
data can be correctly supplied with input data.

Definition 4 (Safe Interrupt Point for Data Up-
date) Let S be a process type schema, let (d, n) (n ∈ N,

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

138

d ∈ D) be a data update, and let ST d
n be the set of atomic

steps associated with n and writing d; i.e., ST d
n := {st |

Asn(st) = n}.

• Discrete Data Update: Let B := {stp(st) | st ∈ ST d
n}.

Then the safe interrupt point td
safe of (d, n) corresponds

to the maximum point in time any atomic step writes d.
Formally:

td
safe :=

�
max(B) : B �= ∅
Undef : otherwise

• Continuous Data Update: Let t1 be the start up-
dating time and tk the finish updating time of d by
n. Then the safe interrupt point td

safe of (d, n)
(t1 < td

safe < tk) corresponds to the time when d be-
comes relevant for subsequent activities. This time is
fixed by the user. If no safe interrupt point is fixed by
the user td

safe = Undef holds.

Informally, the safe interrupt point for a discrete
data update by atomic steps is the maximum point in
time when the last write access to the respective data
element has taken place. Since there is no ”natural”
safe interrupt point for continuous data updates (e.g.,
the GPS continuously updating the vehicle position)
we offer the possibility to define a safe interrupt point
by the user. Based on the safe interrupt points for data
updates the safe point of an activity can be defined as
follows:

Definition 5 (Activity Safe Point) Let S = (N, D, NT,
...) be a process type schema and let I = (S, MS , V alS)
∈ IS be a process instance. Let further {d1, . . . , dk} be
the set of data elements (continuously) written by activity n
∈ N (i.e., ∃ (n, di, w) ∈ DataE, i = 1, . . . , k, w ∈ {write,
continuous-write}) and let td1

safe, . . . , t
dk
safe be the related

safe interrupt points. Then we denote the activity safe point
of n with tn

safe. Formally:

t
n
safe =

��
�

Undef t
di
safe

= Undef ∀i = 1, .., k

max{t
d1
safe

, . . . , t
dk
safe

} otherwise

3 ON FORMALIZING
INFLUENCE FACTORS

In this section we formalize factors that may influ-
ence the selection of recovery solutions coping with
process activity failures. In order to elaborate these
factors we have systematically studied real–world
business processes from different application environ-
ments (Dadam et al., 2000; Bassil et al., 2004).

Influence Factor 1 (Activity Context) If a running
activity is interrupted an important question is
whether we can preserve the (data) context of this ac-
tivity or not. To be able to do so we distinguish be-
tween different kinds of data, e.g., data written in a
continuous or in a discrete way.

Example 1 If a move vehicle activity is interrupted
due to a technical problem, it is to be ensured that the cur-
rent position of the vehicle is known in order to, for ex-
ample, send a replacement vehicle. This can be achieved
using a GPS system which continously writes data element
position (cf. Fig. 2).

In Def. 5 for an activity n we have specified the
concept of its safe point tnsafe. Intuitively, the data
context of a failed activity n could be preserved (i.e.,
all relevant output data of n have been already writ-
ten) either if n was interrupted after having reached its
safe point tnsafe or if n has no write access to any data
element. (The latter is expressed by tnsafe = Undef.)
If the data context of an activity n is preserved all in-
put data of subsequent activities, that are supposed to
read data elements written by n, are actually provided
by n. This influences the set of applicable recovery
solutions. Formally:

Definition 6 (Activity Context aCP) Let S = (N, D,
...) be a process type schema and let I = (S, MS , V alS)
∈ IS be a process instance. Assume that activity n ∈ N
(with safe point tn

safe) is interrupted at time t. Then aCP
indicates whether the data context of n can be preserved or
not. Formally: aCP: I × N × R �→ {T, F}

aCP (I, n, t) :=

�
T t ≥ tn

safe ∨ tn
safe = Undef

F otherwise

Knowing whether the context of an interrupted ac-
tivity n is preserved or not influences the choice of
the adequate recovery solution to a great extent. If the
activity context is not preserved the respective recov-
ery solution must at least deal with the successors of
n which are not correctly supplied with input data.

Influence Factor 2 (Process Data Context) The
process data context of a process instance comprises
all data elements and their current values provided so
far. Evaluating the process data context yields useful
information when looking for an adequate recovery
strategy as the following example shows.

Example 2 Assume that the Prepare patient
activity is supposed to measure, among other things,
the blood pressure (cf. Fig. 1). If it is too high the
subsequent surgery cannot be carried out, i.e., activ-
ity Prepare Patient will be interrupted. One re-
covery solution would be to skip the surgery. How-
ever, taking into account the process data context,
in particular the global data element nervousness
degree shows that the patient is extremely nervous
at the moment. Therefore another recovery solution
would be to ”wait till the patient relaxes”.

Definition 7 (Process Data Context pDC) Let S =
(N, D, NT, ...) be a process type schema and let I = (S,

A FRAMEWORK FOR SEMANTIC RECOVERY STRATEGIES IN CASE OF PROCESS ACTIVITY FAILURES

139

C
on

tr
ol

 fl
ow

current position container temperature

Attach at
P

Move to
O

Load at
O

Move to
D

Unload
at D

Move to P

Report to
customer

…

Process Schema S:
 : Control flow
 : Data flow
 : Milestone

P: parking position; O: origin; D: destination

D
at

a
on

 m

ac
ro

le

ve
l

NSS(Load at O) = Completed

Figure 2: Container Transportation Example.

MS , V alS) ∈ IS be a process instance. Then pDC deter-
mines all data element values written by I so far. Formally:

pDC: IS �→ (D × (DomD ∪ {Undef}))P with
pDC(I) := {(d, V alS(d)) | d ∈ D }

Influence Factor 3 (State Context) The applicabil-
ity of recovery strategies also depends on how far
process execution has progressed. This can be ex-
pressed, for example, by defining milestones (cf. Def.
3). If a certain milestone is passed we may have to
apply different recovery solutions than before.

Definition 8 (State Context statCtxt) Let S be a
process type schema, let MSS be the set of milestones
defined on S, and let I = (S, MS = (NSS , ESS), V alS)
∈ IS be a process instance running on S. Then statCtxt
determines all milestones reached by the execution of I so
far. Formally: statCtxt: I �→ (MSS)P

statCtxt(I) := {ms = {(n1, State1), ..., (nk, Statek)} ∈
MSS | (NSS(ni) = Statei) ∨ (Statei ∈ {Act, Run,
Comp} =⇒ NSS(ni) ∈ {Run, Comp, Skipped})}(♣)

The second part of condition ♣ captures the fol-
lowing situations: if the activity marking associated
with a milestone activity n equals Act or Run the
milestone is reached if NSS(n) equals Act, Run,
or Comp. If a milestone is defined based on an activ-
ity within an alternative branching the milestone may
be never reached. In this paper we handle this case by
agreeing on that a milestone is also reached when the
respective activity is skipped. Of course, other con-
ventions are conceivable as well.

Example 3 Consider the transportation process depicted
in Fig. 2. Milestone mstrans = {(Load at O, Comp)}
has been defined for this process. If an instance I has not
yet reached this state, i.e., NSS(Load at O) �= Comp and
an exception occurs we can still load the goods to another
container/vehicle. By contrast, if the goods have been al-
ready loaded, i.e., NSS(Load at O) = Comp we have to
additionally insert an Unload activity.

Influence Factor 4 (Process Goal) The choice of an
adequate forward recovery solution strongly depends
on the goal of the respective process. Thereby sev-
eral goals with different priorities may exist. In prac-
tice, process goals often correspond to reaching a cer-
tain milestone, e.g., a development stage within an
automotive engineering process. Therefore, in this

paper, we define process goals as the milestones not
yet reached by instance execution so far. Milestones
which refer to activities from alternative branches and
may therefore be not reached are not considered as
process goals in this context (cf. Def. 8). There
may be other possibilities to define process goals, e.g.,
based on the availability of process data. We will ex-
tend our considerations in this direction in the future.

Definition 9 (Process Goal Activities prGoalAct)
Let S = (N, ...) be a process type schema, let MSS

be the set of milestones defined for S, and let I = (S,
MS = (NSS , ESS), V alS) ∈ IS be a process instance
running on S. Let further statCtxt(I) be the state context of
I (cf. Def. 8). We define process goals as those milestones
which have not been reached during execution of I so far.
prGoalAct determines the activities associated with these
process goals:

prGoalAct: IS �→ (N)P

prGoalAct(I) := {n ∈ N | ∃ ms ∈ (MSS \ statCtxt(I)) with
∃ (n, State) ∈ ms}
Example 4 Consider the medical treatment process de-
picted in Fig. 1. The milestones for this process are
ms1

med = {(Operate, Comp)} and ms2
med = {(write

report, Comp)}. Assume that the execution of process
instance I fails during Prepare Patient. Then
both milestones have not been reached so far and there-
fore process goal activities are Prepare Patient and
write report for instance I in the current situation.

There may be further influence factors depending
on the particular application. However, based on the
factors mentioned above different forward recovery
solutions can be already suggested.

4 FORWARD RECOVERY
STRATEGIES

In this section we provide a first contribution towards
the (automatic) derivation of forward recovery solu-
tions taking into consideration the described influ-
ence factors. We proceed in two steps: Firstly we
derive propositions for recovery solutions. Secondly,
we evaluate them with respect to certain criteria.

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

140

4.1 Semantic Recovery Solutions

As motivated in the introduction, in many cases for-
ward recovery can be based on dynamic changes of
the concerned process instance. Table 1 presents a
selection of respective change operations that can be
used in this context.

Table 1: Selection of Process Change Operations.
Change Operation ∆ Effects on Schema S
Applied to Schema S

interruptAct(S, X) interrupts execution of activity X

insertAct(S, X, S, B) inserts activity X between activity sets A, B

deleteAct(S, X) deletes activity X from schema S

jumpTo(S, t) jumps from currently executed activity to t

addDataEdges(S, DE) adds set of data edges DE

When an activity is interrupted it is by far not
trivial to automatically determine an adequate set of
correctly parameterized change operations. (Müller,
2004) proposes a rule–based approach for applying
recovery strategies at the occurence of exceptional sit-
uations. However, this does not completely consider
the information we have about the affected instance,
e.g., regarding its data context or reached milestones.

In the following we provide an approach based on
which this set can be restricted. Our suggestions are
based on the influence factors discussed before.
Suggestion 1 (aCP): Based on the activity context
(cf. Def. 6) we can draw conclusions about the
change operations applicable for an instance I . If
aCP (I, n) = 1 holds the context of n is preserved.
Consequently, no process relevant data will be lost
when interrupting n, i.e., no data flow errors will oc-
cur. Activity n can be safely interrupted and all subse-
quent activities can be executed as planned. By con-
trast, if aCP (I, n) = 0 holds, the input parameters of
subsequent activities may not be correctly supplied.
Then recovery solutions may either bypass these ac-
tivities (by applying jump operations) or insert activi-
ties providing the required data.
Suggestion 2 (prGoalAct): Regarding factor
prGoalAct (cf. Def. 9) it is important to know
whether process goal activities can be still executed.
This, in turn, depends on whether their input data can
be correctly supplied or not by preceding activities.
In this context, we have to consider the successors of
failed activity n (including n). From this we deter-
mine (possibly transitively) which activities provide
input data for process goal actitivities. They can be
correctly provided with input data if the set of activ-
ities providing this data does not contain n or if the
activity context of n can be preserved, formally:

Definition 10 (Provision of Process Goal Activities)
Let S = (N, D, ...) be a process type schema and let I ∈ IS

be a process instance. Assume that activity n ∈ N fails.

Then function pVG denotes whether a goal activity pG ∈
prGoalAct(I) is correctly provided with input data or not.
Formally:
pVG: IS × N × N �→ {T, F}

pV G(I, n, pG) =

���
��

T (n �∈ GPA(n, pG) ∨ aCP (I, n) = 1)

∨WE(Sn, pG) = T

F otherwise

where
• GPA(n, pG) = {m ∈ N | m ∈ (succ∗(S, n) ∪ {n}, ∃ (pG,
d, [read|continuous-read]), (m, d, [write|continuous-write]
∈ DataE, d ∈ D} ∪ GPA(n, m)
• succ∗(S, n): all direct and indirect successors of n in S
• WE(S, n) determines whether activity n of schema S is
correctly supplied with input data or not (Reichert, 2000).
• Sn denotes the induced subgraph of S when deleting ac-
tivity n and all associated data read and data write edges

If pVG(I, n, pG) = T we know that the process goal
connected with activity pG can be achieved, i.e., no
change operations have to be applied for reaching this
goal. Otherwise, if we obtain pVG(I, n, pG) = F for
failed activity n and process goal activity pG a possi-
ble solution would be to insert one or more activities
properly providing the missing input data.

Example 5 Consider the process depicted in Fig. 1.
Assume that for process instance Imed ∈ IS , dur-
ing the execution of its activity Prepare Patient,
an exception occurs (e.g., assume that the patient’s
blood pressure cannot be taken due to an instru-
mental error). Assume further that influence factors
aCP and prGoalAct turn out as follows:

• aCP(Imed, Prepare Patient) = F
• prGoalAct(Imed) = {Operate, Write report}

The set of activities providing input data for Operate
then contains one element, namely the failed activity
Prepare Patient for which the activity con-
text cannot be preserved, i.e., pVG(Imed, Prepare
Patient, Operate) = F. A first solution to treat
this exception would be to insert another activity
TakePressure and to retry measuring the blood
pressure in order to reach the first process goal. In
this context the application of the change operations
insertAct(S, Take Pressure, {Prepare
Patient}, {Operate}) and addDataEdges(S,
{(TakePressure, bloodPressure, write),
(Operate, bloodPressure, read)}) can be
suggested to users. If this is not possible we may want to
bypass goal activity Operate and to achieve the other
process goal activity write report instead. Process
goal write report has no input parameters, i.e.,
pVG(Imed, Prepare Patient, write report) = T
what implies that Write report can be executed in any
case. Therefore a possible solution would be to suggest
change {jumpTo(S, writeReport)}.

There are situations where the activity context may
be preserved and process goals can be reached at first

A FRAMEWORK FOR SEMANTIC RECOVERY STRATEGIES IN CASE OF PROCESS ACTIVITY FAILURES

141

sight. However, when analyzing the application con-
text as well the process goal cannot be always cor-
rectly reached any longer:

Example 6 Consider again the process depicted in Fig.
1. Assume that for instance Imed ∈ IS during execution
of activity Prepare Patient an exception occurs, e.g.,
the patient’s blood pressure could be too high for carrying
out the subsequent surgery. Assume further that influence
factors aCP, pDC, and prGoalAct turn out as follows:

• aCP(Imed, Prepare Patient) = T

• pDC(Imed) = {..(nervousness degree, 5),
(bloodPressure, (180,100))}

• pVG(Imed, Prepare Patient, Operate) = T

Though pVG(Imed, Prepare Patient, Operate)
= T holds the application context (value of blood pres-
sure exceeds the limit) shows that we cannot reach
this goal without exception handling. Analyzing the
application context also reveals that the patient is very
nervous (value of his nervousness degree is very
high). One possible recovery solution would be to
wait until the patient relaxes. This could be achieved,
for example, by inserting activity waitMeasure
between Prepare Patient and {Monitor,
Operate} accompanied by newly inserted data edges
(waitMeasure, nervousness degree, read)
and (waitMeasure, bloodPressure, write).

Analyzing the application context factor may de-
pend on the application semantics, e.g., the blood
pressure being too high. Thus the above recovery
solution can be only figured out semi–automatically.
An automatic treatment would become possible if the
user had specified any limit for the values related to
blood pressure and nervousness degree and deposits a
respective rule within the system.

Finally, we want to analyze the impact of influence
factor state context on finding an adequate recovery
solution. Consider the following example:

Example 7 Consider the process depicted in Fig 2. As-
sume that a container was loaded (i.e., reached milestone).
In case of a problem the proposed solution would be differ-
ent from the situation where the container is still unloaded.
Indeed, in the latter case, we may send the vehicle back to
the parking position P and cancel the processing of the cus-
tomer request. In the former case, it is an obligation to de-
liver the merchandise. Taking into account a defined trans-
portation network, each of the vehicle positions is captured
by a coordinate (x, y). Assume for instance Itrans1 ∈ IS

that during the execution of activity Move to D, a road
traffic problem occurs, i.e., Move to D is interrupted at
position (7, 5.5) measured by the GPS system. Let the in-
fluence factors be as follows:

• aCP(Itrans1, Move(1.5, 3.5) → (13, 8)) = 1

• pDC(Itrans1) = {(current position, (7, 5.5))}
• statCtxt(Itrans1) = {(Load at O, Comp)}

Evaluating the influence factors, in particular the current
position of the vehicle, the traffic problem can be avoided
by changing the already planned route leading to the

destination location. The new solution includes a detour via
another location at position (7, 7). This recovery solution
can be expressed by applying the following dynamic
change operations: {{insertAct(S, Move to (7,
7), {Move to (13, 8)}, {unloadAt(13,
8)}), insertAct(S, Move to (13, 8),
{Move to (7, 7)}, {UnloadAt(13, 8)})}}

Of course, the discussion of different influence fac-
tors especially in conjunction with the definition and
evaluation of rules as proposed in (Müller et al., 2004)
is to be extended. Due to lack of space we abstain
from further details here.

4.2 Evaluating Recovery Solutions

In the previous section we derived forward recov-
ery solutions, i.e., sets of conceivable process in-
stance changes, by considering certain influence fac-
tors. However, some of the suggested ad–hoc changes
may not be applicable, since they may offend against
other constraints (e.g., they may violate a given time
schedule). Thus, the set of forward recovery solutions
presented to the user should be further restricted by
checking their applicability at the presence of these
constraints. In this paper we exemplarily discuss time
and resource constraints.
Temporal Context: The applicability of a particular
forward recovery solution may depend on time con-
straints. For example, assume that our solution im-
plies the insertion of a new activity. The duration to
process this activity may lead to a violation of the in-
tended process end time.
Resource Context: Specific resources (e.g., vehi-
cles, containers, drivers) are often associated with
a specific application (e.g., container transportation)
(Bassil et al., 2004). Those resources enable the ac-
complishment of the process activities (e.g., ”attach
a container to a vehicle”, ”move a container”). Re-
source availability should be taken into account when
checking the proposed recovery solutions.

Checking the validity of both temporal and re-
source constraints when applying dynamic workflow
changes is a very challenging issue. However, there
have been only few approaches regarding this issue
so far (Sadiq et al., 2000). We have been investigating
the interdependencies between processes and tempo-
ral as well as resource constraints in detail. Due to
lack of space we abstain from further details here.

5 RELATED WORK

Related work can be distinguished into approaches
for backward and forward recovery. Backward recov-
ery strategies require to interrupt a running instance
and to (partially) conduct a rollback. As discussed in

ICEIS 2006 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

142

the introduction, advanced transactional concepts like
nested transactions and semantical rollback have been
elaborated (Elmagarmid, 1992). A detailed discus-
sion of transactions applied in the domain of work-
flows is given in (Worah and Sheth, 1997). Ap-
proaches in this context are Sagas (Garcia-Molina and
Salem, 1987) and Spheres of Compensation (Ley-
mann, 1995; Leymann and Roller, 2000). The con-
cept of spheres has been defined such that compensa-
tion can be applied not only on one activity but also
on a group of activities (sphere, scope).

Less attention has been paid to the (automatic)
derivation of forward recovery strategies. Müller et
al. (Müller, 2004; Müller et al., 2004) propose to rep-
resent recovery strategies by rules. They use a com-
bination of F-Logic and Transaction Logic in order to
formalize the interaction between rules and process
instances. If an exception occurs and if a respective
rule is specified recovery solutions can be automat-
ically executed. Based on rules the system behav-
ior in the case of an exception is always hard–wired
within the rule neglecting the context of the respective
process instance.

Regarding the quality improvement of the sug-
gested recovery solutions temporal and resource con-
straints were dicussed within the paper. There are ap-
proaches to specify time within process management
systems, e.g., (Eder and Pichler, 2002; Sadiq et al.,
2000). However, we will check the applicability of
these approaches for our purposes.

6 SUMMARY AND OUTLOOK

In this paper we have elaborated factors which may
influence the choice of an adequate forward recovery
solution. These factors comprise the safe interruption
of activities preserving the data context, the values of
the data elements written so far, certain milestones
within the process, and process goals. All of these
influence factors help the system to propose reason-
able forward recovery solutions to users. We have
discussed further aspects and constraints which have
to be checked in order to improve the quality of the
proposed solutions. All results presented in this pa-
per stem from deep analysis of application scenarios.
Currently, basic concepts are implemented in an ad-
vanced prototype. In the future we will search for fur-
ther factors influencing potential recovery solutions.
We will also focus on the quality checking process,
i.e., we want to elaborate adequate representations for
temporal and resource constraints in order to formally
verify the applicability of recovery solutions.

REFERENCES

Bassil, S., Keller, R., and Kropf, P. (2004). A workflow–
oriented system architecture for the management of
container transportation. In BPM’04, pages 116–131.

Bassil, S., Rinderle, S., Keller, R., Kropf, P., and Reichert,
M. (2005). Preserving the context of interrupted busi-
ness process activities. In Proc. ICEIS’05, pages 38–
45.

Dadam, P., Reichert, M., and Kuhn, K. (2000). Clinical
workflows - the killer application for process-oriented
information systems? In BIS’00, pages 36–59.

Eder, J. and Pichler, H. (2002). Duration histograms for
workflow systems. In Proc. Conf. EISIC’02, pages
25–27, Kanazawa, Japan.

Elmagarmid, A. (1992). Database Transaction Models for
Advanced Applications. Morgan Kaufman.

Garcia-Molina, H. and Salem, K. (1987). Sagas. In Proc.
ACM SIGMOD Int’l Conf. on Management of Data,
pages 249–259, San Francisco, CA.

Leymann, F. (1995). Supporting business transactions via
portal backward recovery in workflow management
systems. In BTW’95, pages 51–70, Dresden.

Leymann, F. and Altenhuber, W. (1994). Managing busi-
ness processes as an information ressource. IBM Sys-
tems Journal, 33(2):326–348.

Leymann, F. and Roller, D. (2000). Production Workflow.
Prentice Hall.

Mourao, H. and Antunes, P. (2004). Exception handling
through a workflow. In CoopIS’04, pages 37–54.

Müller, R. (2004). Event–Oriented Dynamic Adaptation of
Workflows: Model, Architecture and Implementation.
PhD thesis, University of Leipzig, Germany.

Müller, R., Greiner, U., and Rahm, E. (2004). AGENT-
WORK: A workflow-system supporting rule-based
workflow adaptation. DKE, 51(2):223–256.

Reichert, M. (2000). Dynamic Changes in Workflow-
Management-Systemen. PhD thesis, University of
Ulm, Computer Science Faculty. (in German).

Reichert, M., Dadam, P., and Bauer, T. (2003). Dealing
with forward and backward jumps in workflow man-
agement systems. Int’l Journal SOSYM, 2(1):37–58.

Rinderle, S., Reichert, M., and Dadam, P. (2004). Flexi-
ble support of team processes by adaptive workflow
systems. DPD, 16(1):91–116.

Sadiq, S., Marjanovic, O., and Orlowska, M. (2000).
Managing change and time in dynamic workflow
processes. IJCIS, 9(1&2):93–116.

Strong, D. and Miller, S. (1995). Exceptions and excep-
tion handling in computerized information processes.
ACM–TOIS, 13(2):206–233.

v.d. Aalst, W. and van Hee, K. (2002). Workflow Manage-
ment. MIT Press.

Worah, D. and Sheth, A. (1997). Advanced Transactional
Models and Architectures, pages 3–34. Kluwer Acad-
emic Publishers.

A FRAMEWORK FOR SEMANTIC RECOVERY STRATEGIES IN CASE OF PROCESS ACTIVITY FAILURES

143

