
AROUND THE EMPIRICAL AND INTENTIONAL REFERENCES
OF AGENT-BASED SIMULATION IN THE SOCIAL SCIENCES

Nuno David
Instituto de Ciências do Trabalho e da Empresa, ISCTE/DCTI, Lisboa, Portugal

Helder Coelho
Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa (FCUL), Portugal

Keywords: Agent-based social simulation, epistemological perspectives, program verification, intentional verification.

Abstract: The difficulties in constructing and analyzing simulations of social theory and phenomena, even the most
simplified, have been underlined in the literature. The experimental reference of simulation remains
ambiguous, insofar as the logic of its method turns computer programs into something more than a tool in
the social sciences, defining them as the experimental subject itself. The goal of this paper is to construct a
methodological perspective that is able to conciliate the formal and empirical logic of program verification
in computer science, with the interpretative and multiparadigmatic logic of the social sciences. This is a
condensed and revised version of David et al. (2006). We demonstrate that the method of simulation implies
at least two distinct types of program verifications, which we call empirical and intentional verification.
Furthermore, we clarify the experimental reference of simulation by demonstrating that the process of
intentional verification is contingent upon both the behaviors of the programs and the observed social
phenomena.

1 SCIENTIFIC KNOWLEDGE
AND COMPUTER PROGRAMS

The role of simulation has acquired a renewed
importance in the social sciences. From an
interdisciplinary perspective, the discipline of
Agent-Based Social Simulation (ABSS) finds its
origin in the intersection of the social and the
computer sciences (see e.g. David et al., 2004).
Whereas from an interdisciplinary viewpoint the
discipline stresses the encounter of two distinct
scientific logics, there are undoubtedly good reasons
to maintain methodology in the research agenda.

For some, the use of formal models, resulting
from the computational nature of simulation, has
been considered not only an addition to the
established methods but the basis for the emergence
of proper social sciences. Even so, the difficulties in
constructing and analyzing simulations, even the
most simplified, have been underlined in the
literature, which raises some interesting questions

around the kind of scientific knowledge that
simulation is providing.

On the one hand, the experimental reference of
simulation remains ambiguous, insofar as the logic
of its method turns computer programs into
something more than a tool in the social sciences,
defining them as the experimental subject itself – it
is programs, and not the social phenomena they
presumably represent, that are executed and tested.
On the other hand, the formal tradition of the classic
theory of computation creates a semantic gap
between the formal interpretation of program
executions, derived from the Church-Turing thesis,
and the stakeholders’ informal interpretations,
acquired through direct observation of simulations.

These difficulties suggest the elaboration of an
alternative vision as to the role played by computer
programs in scientific knowledge. How are we to
reconcile the methodologically diverse and
multiparadigmatic social sciences with a computer
science that has been able to attain a larger

31
David N. and Coelho H. (2006).
AROUND THE EMPIRICAL AND INTENTIONAL REFERENCES OF AGENT-BASED SIMULATION IN THE SOCIAL SCIENCES.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - AIDSS, pages 31-38
DOI: 10.5220/0002463800310038
Copyright c© SciTePress

consensus in regard to the conception of scientific
truth or validity?

This paper aims to present a theory of
computation for simulating social theory and
phenomena, especially with reference to its
epistemological basis, limits and particular kind of
scientific credibility. We demonstrate that the
method of ABSS implies at least two distinct kinds
of program verifications, which we call empirical
and intentional verification.

The method of this paper is that of philosophical
analysis. This is a condensed and revised version of
David et al. (2005). We address questions that are
presently found important in the field, such as:
“what kind of credibility can the execution of a
computer program ensure for analyzing a social
phenomenon?”

By demonstrating that it is the intentional
verification of programs that is doubly contingent
with both the behaviors of the programs and the
social phenomena, we clarify the experimental
reference of simulation, and identify a new category
of knowledge we can acquire about computer
programs.

2 BACKGROUND: CAUSAL
CAPABILITY OF PROGRAMS

The role of this section is to introduce an assumption
about computer science epistemology, namely that
the semantic significance of computer programs
conveys a causal capability which affects the
performance of machines if those programs are
compiled, loaded and executed.

In computer science, the notion of scientific truth
or validity has been related to an old debate, which
confronts researchers advocating the use of formal
methods for verifying programs and those defending
the use of empirical methods. By the end of the
Eighties, the debate became especially eloquent after
James Fetzer published the article “Program
Verification: The Very Idea.” Fetzer’s (1988) aim
was to reject the idea of formal verification as a
means of verifying programs, demonstrating that
computer programming is also a branch of applied
mathematics ruled by empirical research.

Fetzer’s argument consisted of distinguishing
programs as encodings of algorithms from the
logical structures that they represent. The causal
capability of programs becomes clear once we
realize that, rather than one model, we use many
models in the implementation of a single program.

Let us think of a computer program as a textual and
static entity, which may be read, edited, printed.
Given the existence of high-level programming
languages, we can think of a program as a model of
a potential solution of a problem, where the
language functions as a model of an abstract
machine.

Thus, insofar as programs are written in
languages that model abstract machines, it remains
the case that there may or may not be a suitable
correspondence between the commands that occur
within the language and the operations that are
performed by some physical machine. In fact, high-
level programming languages are related to physical
machines by means of compilers and interpreters.
The advantage of programming by means of high-
level languages is that there is a one-many
relationship between the commands that can be
written in a high-level language, and the counterpart
operations that are performed by a machine
executing them, on the basis of their translation into
machine language. The function of interpreters and
compilers is to create a causal mechanism so that
programs written in high-level languages may be
executed by target machines whose operations are
causally affected by machine code, which usually
consists of sequences of zeros and ones.

Low-level programming languages therefore
play two roles: first, that of an abstract machine, in a
way analogous to high-level languages but where,
second, unlike high-level languages, there is a one-
to-one causal relationship between the commands
that occur within a programming language and the
operations performed by a target machine. The
programming language stands for a virtual machine
that may be understood as an abstract entity, which
may or may not be causally connected with a target
machine.

Figure 1: Programs and languages as models, according to
Fetzer (1999).

From this point of view, the implementation of a
program can be seen as the action of embedding
models in other models, where the notion of

HIGH
LEVEL

LOW
LEVEL

PROGRAMS MACHINES

Program

Program in
Machine Language

High-Level
Abstract Machine

Low-Level
Abstract Machine

Target Machine

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

32

embedding may be envisioned as a logical or a
causal relation. Figure 1 reproduces Fetzer’s (1999)
notion. The thin arrows represent a possible relation
between a program and the abstract machine
represented by a programming language. The thick
arrow represents an actual relation between a low-
level program and a target machine. The series of
three dots stands for the possible existence of
compilers and interpreters that effect some causal
connection between programs/machines at different
levels.

Although the figure shows the set of models in
the general case of computer science, it would be
possible to identify additional levels of model
embedding for the specific case of simulation – for
instance, by realizing the existence of simulation
platforms, as well as their corresponding simulation
languages. At any rate, the causal connection
between a simulation program and a target machine
can be identified at various levels, e.g., through
simulation platforms, compilers or interpreters.

3 INTENTIONAL CAPABILITY
OF PROGRAMS

Our aim is to show that ABSS programs possess an
intentional capability that surpasses their causal
capability. Our argument is organized into four
parts. We first show that the experimental reference
of simulation involves more complicated aspects
than ordinary computer science. We then define the
meaning of intentional capability of programs. Next,
we concretize our argument with canonical
examples of simulations found in literature. Finally,
we analyze the role of the intentional capability of
programs in ABSS.

3.1 The Experimental Reference of
ABSS

A question remaining in the epistemology of ABSS
consists in characterizing what a scientific
experiment consists of. If computer science is
regarded as an empirical science, then the
experimental reference of any theory about the
computation of a program in an abstract machine
consists in executing that program in a target
machine. In the software production process, this
phase is known as program verification. Thus, for
the classical theory of computation, the role of
verification is to ascertain the validity of certain
outputs as a function of given inputs, regardless of

any interpretation given in terms of any theory or
any phenomenon not strictly computational. Another
kind of experimental evaluation, which may be
confounded with the latter, is called program
validation. The role of validation is to ascertain that
the execution of a program behaves according to the
relatively arbitrary expectations of the program end-
users.

As we have mentioned, the implementation of a
program involves a sequence of models embedded in
a target machine. Each one of these models can
suggest an alternative interpretation for verifying
and describing the behavior of the program. For
instance, the vocabularies of the low-level abstract
machine (e.g., memory registers, bit logical
operations) are neither identical to the vocabularies
of the high-level abstract machine (e.g., complex
data structures, objects, graphics) nor to the
vocabularies of the model specification (e.g., agents,
grid, movement, segregation rules). From a strict
formal point of view the consistency between the
abstract machines is incommensurable. From an
empirical point of view, the relative consistency can
be tested against the behavior of the program.

But even the empirical perspective does not seem
to be able to provide any criterion to decide upon
which embedded model should be used to describe
both the behaviour of the program and the social
phenomena (that such program presumably
represents). This dilemma suggests that the logic of
the method of ABSS highlights the presence of
intentional aspects in programming and interaction
with computers.

3.2 Definition of Intentional
Capability of Programs

The intention of someone in implementing a
program is to produce processes in a target machine,
according to a certain specification, which should be
meaningful for a group of people observing the
machine. Presumably, the role of the observer is to
idealize something that should be in accordance with
the specification intended meanings. Whether the
observer’s idealizations can actually be represented
by a theory, regarded as some form of abstraction, is
not so clear. But even in the worst case, if the aim is
to infer consequences from a specification, or
establish additional premises thereon, then the
execution of a program presumes the construction of
a new theory that should disclose something more
than the theory that was considered in the first place.

This is in line with the whole idea of computing:
the belief that the execution of a program consists in

AROUND THE EMPIRICAL AND INTENTIONAL REFERENCES OF AGENT-BASED SIMULATION IN THE
SOCIAL SCIENCES

33

manipulating representations, which give rise to yet
other representations. Accordingly, insofar as new
representations may be formed during or after
program executions, we will use the term
“representations a posteriori” so as to distinguish
them from the program specification.

Using these terms, the arguments presented in
the preceding sections can be reformulated. Among
the models embedded in the target machine, there
are no definite reasons to choose a specific set of
representations a posteriori in terms of one model or
another. If those representations are to be justified as
valid formal consequences of the specification, they
must be tested for empirical adequacy. Nevertheless,
this depends on a fundamental condition: according
to the classic theory of computation, both the
specification and the representations must be
formulated in a first-order language. Should this
condition be granted, we could say – in a certain
sense – that the execution of a program deduces
representations a posteriori from its specification.

That being so, one way of looking upon
specifications and representations a posteriori is to
see them as describing laws, i.e. material conditions
of necessity between events or properties about the
behavior of programs, whose test for empirical
adequacy is related to two tacit methodological
conditions: Firstly, that the intended meanings of the
specifications and representations, with reference to
the behavior of the program in the target machine,
be shared by the simulation implementer and the
observers. Secondly, presumably, in the case of
ABSS, that the intended meanings of the
specifications and representations, with reference to
the actual social phenomenon, be shared by the
simulation observers. Two remarks should be made,
nevertheless. The former condition is the only one
relevant to regard simulation as an automated
procedure of formal inference, whereas the latter is
irrelevant to that effect. Consequently, that same
condition is the only one relevant to regarding
program verification within the scope of a logic of
empirical adequacy.

The way to comply with these conditions can
vary, however. Insofar as we have suggested that
they are satisfied more or less tacitly, we should
presume that the expressability of the specification
language, as well as the expressability of the
representations a posteriori, is also evaluated tacitly.
But once we realize that almost all specifications
and representations in ABSS are formulated in a
rather informal way, there is no other alternative but
to presume that the relevance of such structures must
be established through explicit and verifiable

methods. Unless the specifications and
representations have been formulated in the formal
language of the execution model, it is not
appropriate to assume that any specification or any
representation a posteriori can be translated, without
loss of generality, to a first-order language.

Thus, for example, in Schelling’s (1978) model
of ethnic residential segregation, there should be a
considerable consensus around a first-order language
capable of expressing the specification and a
posteriori representations disseminated in the
literature, where such terms as “ethnicity”,
“segregation” or “tolerance” should convey the same
meanings to the simulation implementer and to the
community of observers. This may be achieved
following one of two procedures: (i) explicitly, by
showing that the specification and representations a
posteriori can be, without loss of generality,
expressed by a first order language, or (ii) implicitly,
according to any validated methodology able to
grant that effect.

The tendency in the literature is just the opposite,
however. In the first place, the published articles
remark that the meanings of specifications in
relation to the target machine lose extensive
generality to what is intended originally. In the
second place, the published articles do not report any
attempt to formulate representations a posteriori in a
first-order language. This is sufficient to encumber
the possibility of understanding the execution of a
program as a process of formal inference that
validates its results empirically. The acceptance of a
social simulation by a community of observers
depends on interpretative aspects that go beyond
empirical adequacy, for the semantic significance of
computer programs conveys not only a causal
capability, but also an intentional capability.

By intentional capability we understand the
following: (i) the recognition that since computation
is a symbolic phenomenon, or representational, or
semantical, it is intentional insofar as we assume that
the behaviors of computers stand for other things in
the world (Smith, 1996), (ii) the recognition that
programs implemented in computers possess a
causal capability that affects the behavior of
computers, whereby the simulation implementer has
the intention of submitting behaviors that stand for
other things in the world for a community of
observers, who may or may not accept those
intended meanings, (iii) the recognition that the
simulation implementer and the observers’ intended
meanings will remain intentional insofar as the
propositions used for interpreting the observed
behavior of programs are not verified empirically.

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

34

3.3 Examples of Intentional
Capability of Programs

We argue that ABSS involves more outstanding
intentional aspects than ordinary computer science.
We illustrate three concrete examples from the work
of Axelrod (1997) and Epstein & Axtell (1996). The
examples will be used in order to show that program
verification is supported in the published articles by
means of persuasive descriptions, which are
different in kind from the ones supporting program
verification in ordinary computer science.

First Example: Axelrod (1997)
The immediate origin of the tribute model, as well as
Axelrod’s culture dissemination model (1997), is a
concern for how nation-states form. Axelrod’s
interest was heightened by the demise of the Soviet
Union and Yugoslavia (p.121). In the tribute model
(pp.121-144), the intended meaning for each actor is
a nation-state, having as fundamental characteristics
its wealth and a list of neighbors. World geography
is regarded as a unidimensional space arranged on a
line, resulting in two constant neighbors for each
nation. The model is described as follows (p.128,
our italics):

“The basic units of the model are ten actors
arranged on a line. The actors can be thought of as
independent political units, such as nations… In
each year, three actors are chosen one after another
at random to become active…The selection of actors
to be active is based upon the notion that ambitious
leaders and potential disputes arise at random…”

The initial wealth of each actor is chosen from a
“uniform distribution between 300 and 500.” These
parameters, like all the others in the model, are
described by the author as “somewhat arbitrary and
selected for convenience” (p.128). The basic
ingredient of the model is based on the notion of
“commitment.” When wealthy nations threaten less
wealthy nations with war, the latter are compelled to
pay tribute to the former, increasing the levels of
commitment between the nations. The simulation
suggests that high levels of commitment encourage
the formation of new political actors, alliances
regarded as sets of nations that act jointly for the
benefit of common interests.

Details about the implementation of the model
are not described in the article. The notion of
commitment seems to define a meaning only to the
observers of the target machine. Somewhat tacitly,
the observers must infuse specific meanings into the
specific behaviors of the executing programs. Unlike
soft artificial intelligence, it does not seem to be a

goal of the author to show that the notion of
commitment means anything for the executing
programs themselves. The tribute model “…assumes
that actors develop more or less strong commitments
to each other based upon their prior actions. These
commitments can be thought of as the result of
psychological processes or the result of political
rules of thumb.” (p.127, our italics).

Summing up, the first goal of Axelrod is to
suggest that his model is representative of the
problem of the emergence of new political actors,
even though he assumes its simplicity very openly.
The second is to suggest that the behaviors of the
executing programs may be thought of as specific
actors and commitments, as well as the result of the
emergence of new political actors.

Hence, it is insofar as the behavior of the
executing programs should be thought of as an arena
of commitments, alluding to other things in the
world – and that it is not found necessary to presume
that the notion of commitment actually means
anything for the actors considered in the executing
programs – that it becomes unnecessary to show that
the executing programs are actually representative of
that notion. It follows from here that the propositions
formulated to interpret the behavior of the program
executions, in terms of the notion of commitment,
are not verified empirically. From this point of view,
the program code does not prove relevant for the
observer, but it is rather the intention underlying its
implementation that prevails.

Some implementation details are given more
explicitly in other models. The goal of the culture
dissemination model (pp.148-177) is to analyze the
phenomenon of social influence, and explain how
local convergence can generate global polarization,
for example, explaining the emergence of regions in
the world that share identical cultural values. Actors
are distributed among constant co-ordinates in a
grid. The culture of each actor is a set of five
numbers, which we will call a quintet of numbers.
Each position in the quintet represents a cultural
feature, which can be thought of as anything by the
simulation observers, such as the color of a belt that
is worn (p.154), a gastronomic or sexual appetite.
Each cultural feature can take the values of ten
integers, ten for each feature invariably. For
example, an agent with the culture given by the
quintet “23637” means that the first feature has
value 2 and the fourth has value 3. Again, these
values can be thought of as any cultural trait in the
scope of any cultural feature, such as blue or pink
for the colour of a belt.

AROUND THE EMPIRICAL AND INTENTIONAL REFERENCES OF AGENT-BASED SIMULATION IN THE
SOCIAL SCIENCES

35

The intended idea of social influence is that
actors who have similar cultures should be likely to
interact and become even more similar. In the actual
program this is specified through a mechanism
called bit-flipping, upon which the probability of
interaction between two actors is set proportional to
a measure of similarity between two quintets. Thus,
at the point where the program specifies that two
actors interact, a feature upon which its traits differ
is selected and set equal to a same trait, resulting in
two actors holding the same trait for the same
feature.

Inasmuch as simplicity is openly assumed by the
author, it becomes interesting to analyze the
simplicity of model in comparison with the scientific
literature that is used to describe it. For instance, it is
usual to view culture as a system of symbols which
depend on the many interconnections between the
many traits that make up a culture, by which people
confer significance on their own experience (p.152).
According to Axelrod, his model has an advantage
over others, insofar as its bit-flipping mechanism
takes into account that the effect of one cultural
feature depends on the presence or absence of other
cultural features. Paradoxically, he states that “the
emphasis is not on the content of a specific culture,
but rather on the way in which any culture is likely
to emerge and spread” (p.153).

It becomes clear that the influence mechanism in
the model, as well as the dissemination and
emergence of culture, does not depend on the
experience of the actors as to the particular
significance of the features and traits that make up
their cultures. The observer of the simulation must,
somehow arbitrarily, infuse the behavior of the
executing programs with additional meanings, like
the ones alluded to by Axelrod, such as “value
adoption”, “the color of a belt”, “influence” and
“culture.”

Second Example: Epstein and Axtell (1996)
The semantic gap between specifications, programs
and representations a posteriori is rather patent in
Epstein and Axtell’s sugarscape model (1996). The
work analyses a series of phenomena involving
concepts such as culture dissemination, racial
segregation, friendship, sexual reproduction,
epidemiology, and a variety of economic models.
The goal is to “grow” histories – or proto-histories
(p.8) – of artificial societies, so as to simulate the
emergence of natural civilizations, by demonstrating
formally and deductively that certain specifications
are sufficient to generate the phenomena in which
the researcher is interested.

One of the book’s aims is to grow an entire
history of an artificial civilization, where concepts
like sex, culture and conflict are explored. The
storyline is presented with the following text:

“In the beginning, a small population of agents is
randomly scattered about a landscape. Purposeful
individual behavior leads the most capable or lucky
agents to the most fertile zones of the landscape:
these migrations produce spatially segregated agent
pools. Though less fortunate agents die on the
wayside, for the survivors life is good: food is
plentiful, most live to ripe old ages (…)” (p.8, our
italics)

Our italics in the text serve the purpose of
pointing out the semantic richness of some terms in
the text, notwithstanding the descriptive richness of
the whole storyline. However, the need to implement
the model in the target machine implies decreasing
the level of expressiveness from the storyline to the
program specification, and from the specification to
the program code, resulting in very simple rules. For
example, each agent in the simulation is associated
with a set of characteristics, such as fertility, visual
acuity or gender. A typical rule in the model could
be:

Agent sex rule (p.56):
– Select a neighbouring agent at random;
– If the neighbour is fertile and of the opposite sex

and at least one of the agents has an empty
neighbouring site (for the baby), then a child is
born;

– Repeat for all neighbours.
These characteristics are specified in the program

exclusively by bits in a binary word. For example, if
the first bit in the binary word is equal to one, then
the agent is male. The observer should somehow
infuse the behaviour of the executing programs with
the intended meanings of “female,” specifically all
agents that have the bit turned off.

An aim in Epstein and Axtell’s research is to
explain how transmission of culture can eventually
produce spatially distinct tribes with different
cultures. As in Axelrod’s model, they use a bit-
flipping mechanism. A culture is a binary string of
bits that can take the values of either zero or one.
From here it follows the observation of friendship
networks (p.79): when an agent is born it has no
friends, but agents who become neighbors and are
close culturally are defined to be friends. Cultural
closeness is measured by the Hamming distance,
which is obtained by comparing the binary strings
position-by-position and totaling the number of
positions at which they are different.

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

36

In a small subscript, Epstein and Axtell write
(p.79):

“We offer this definition of ‘friendship’ as a
simple local rule that can be implemented
efficiently, not as a faithful representation of current
thinking about the basis for human friendship.”

Nevertheless, by drawing connections between
friends, Espstein and Axtell offer a set of graphical
figures illustrating friendship networks in the
simulation, and comparing them to socio-political
patterns, such as connections between individual
dissidents of repressive regimes (p.80). Again, the
authors are the ones who lead the observer to
represent the executing programs with such words as
“friendship”, “culture” or “sexual gender.” This
problem is explicitly raised by the authors, who ask
at some point in the book (p.52): Had the rules that
specify the agents’ behavior not been described,
would anyone be able to guess that the agents follow
this or that rule? And their answer is:

“We do not think we would have been able to
divine it. But that really is all that is happening.”

If the question seems appropriate for us, it does
seem that the answer is based on a subtle confusion.
Let us consider Axelrod’s culture dissemination
model, where the executing programs are illustrated
by a grid of ten-by-ten (10x10) quintets of integers,
ranging from zero to nine, in constant variation
according to the bit-flipping rule. Figure 2 illustrates
what two iterations of the simulation could be, with
a set of four-by-three (4x3) cultures.

74271 87274 34872 74271 87274 34872
38493 89393 29384 38493 89293 29384
93948 38283 28383 93948 38283 28383
35998 72533 34383 33998 72333 34383

iteration n iteration n+1

Figure 2: Agents interacting are marked with a square.

Epstein and Axtell’s misunderstanding becomes
clear here. In fact, it would be possible to find out
that the agents follow this or that rule, for the
implemented rule is very simple. By simple
observation of the simulation, we would be able to
formulate the rules that govern its behavior. It does
seem to us, however, that the rules resulting from
this empirical inquiry would not be composed by the
vocabulary of the original ones. Instead of terms
such as “culture” or “friendship,” we would find sets
of integers adorned by logical or mathematical
operations or, possibly – in the case of Epstein and
Axtell’s model – by the names that stand for the

colors of certain pixels or characters observed on the
screen.

And we could say, all in all, “that really is all
that is happening.”

By all means, the intentional significance of the
original rules surpasses the causal significance of the
new rules, insofar as the interpretation of the original
rules does not result from an empirical inquiry.

3.4 The Role of Intentional
Capability of Programs

Whereas a model is built and analyzed on the basis
of observation and experimentation, it may be
considered a representation of reality. However, in
ABSS, most representations a posteriori result from
an experimental process, even though they do not
need to represent contingent conditions of necessity
between facts about the program behaviors.

The implementer’s role, in this new context,
seems to be significantly strengthened. His role is to
foster interpretations that exceed the limited
empirical expressiveness of the model, according to
the opinion of a limited community of observers.
Those interpretations should be in accordance with
the intention that underlies the implementation, and
only in that scope should they be acquired
experimentally. Hence, apart from the empirical
facts about the behavior of programs, the role of
both the implementer and the observers is to
negotiate and ascribe contingent conditions of
intentionality to the simulation outcomes.

Summing up, there are two complementary
scientific logics at stake in ABSS, one based on the
formal and empirical logic of program verification,
in which necessity conditions about the behavior of
programs are specified and verified empirically, and
another based on the experimental logic of program
verification, in which intentionality conditions about
the behavior of programs are specified and verified
experimentally, albeit not empirically, according to a
limited community of observers.

We shall establish a parallel between the roles of
empirical and intentional verification of programs.
The role of empirical verification is to exercise the
construction of programs in order to achieve
empirical adequacy between program executions and
the causal meaning of those programs. The role of
intentional verification is to exercise the
construction of specifications and programs in order
to achieve experimental adequacy between program
executions and the intentional meaning of those
programs, in the context of some limited community
of observers.

AROUND THE EMPIRICAL AND INTENTIONAL REFERENCES OF AGENT-BASED SIMULATION IN THE
SOCIAL SCIENCES

37

The role of the community of observers, while
acting freely, is to negotiate the intentional
conditions meant by the implementer, as well as to
reject, accept or interpret other conditions, according
to both the behavior of the program executions and
the social phenomena. Whereas the set of
representations used in ABSS may be interpreted
empirically or intentionally against the program
executions, the conditions of intentionality are the
ones that are liable to a doubly contingent
interpretation.

For example, in Schelling’s model, whether or
not an observer is willing to describe the program
behaviors with the term “segregation” depends on
his inclination to consider aggregations of like-
colored agents in the grid. The level of aggregation
might be expressed as some qualitative or
quantitative measure. However, insofar as the term
“segregation” becomes interpreted according to the
social phenomenon, the verification of the program
execution behaviors becomes subjected to an
intentional logic. For instance, the following
proposition reveals essentially empirical contents:

“There is a critical value for parameter C [the
minimum proportion of like-colored agents], such
that if it is above this value the grid self-organizes
into segregated areas of single color counters. This is
lower than 0,5” (Edmonds, 2003, p.123).

And this leads Edmonds, with the social
phenomena in mind, to conclude something that
conveys a logic of intentional verification of
programs, now liable to a doubly contingent
interpretation:

“Even a desire for a small proportion of racially
similar neighbors might lead to self-organized
segregation” (p.123, our italics).

4 CONCLUSIONS

The experimental reference of agent-based social
simulation (ABSS) becomes clear once we realize
that the knowledge acquired from the simulations is
an outcome of doubly contingent exercise that, in
spite of not being empirical, is an outcome of an
experimental exercise.

In any case, there is a question that prevails:
what kind of credibility can each verification
category ensure? With respect to intentional
verification, the answer may become clearer once
we realize that the existence of yet another kind of
program verification results from the encounter of
the formal and empirical logic of computer science
with the multiplicity of methodologies in the social

sciences, which cannot be dissociated from the
multiparadigmatic logic of the interpretation of
human social action – intentional verification is
characterized by the acquisition of subjective
elements from the programs.

Contrary to artificial intelligence, where the lack
of expressiveness of formal models has been an
obstacle to scaling up programs, this lack of
expressiveness is instrumental to the method of
ABSS. Hence, from an epistemological perspective
our theory solves a semantic dilemma by deflating
it: It releases the social simulation researcher from
the semantic conflict between the formal perspective
of computation and the informal or negotiated
perspective of computation. However, the
responsible use of a simulation suggests that not
even the social simulation researcher should invoke
his neutrality as to his own evaluation of the
simulation results.

REFERENCES

Axelrod, R. (1997). The Complexity of Cooperation –
Agent-Based Models of Competition and
Collaboration. P.U. press.

David, Nuno; Marietto, Maria; Sichman, Jaime; Coelho,
Helder (2004). “The Structure and Logic of
Interdisciplinary Research in Agent-Based Social
Simulation”. Journal of Artificial Societies and Social
Simulation (JASSS), 7(3).

David, N.; Sichman, JS; Coelho, H. (2005). “The Logic of
the Method of Agent-Based Simulation in the Social
Sciences: Empirical and Intentional Adequacy of
Computer Programs”. Journal of Artificial Societies
and Social Simulation (JASSS), 8(2).

Edmonds, B. (2003). “Towards an Ideal Social Simulation
Language”. Multi-Agent-Based Simulation II, LNAI,
v.2581, Springer-Verlag, pp.105-124.

Epstein, J.; Axtell, R. (1996). Growing Artificial Societies:
Social Science from the Bottom Up, MIT press.

Fetzer, J. (1988). “Program Verification: The Very Idea”.
Communications of the ACM, v.31, pp.1048-1063.

Fetzer, J. (1999). “The Role of Models in Computer
Science”. The Monist, 82(1), La Salle, pp. 20-36.

Schelling, T. (1978). Micromotives and Macrobehavior,
W. W. Norton & Company.

Smith, C. (1996). “The Foundations of Computing”.
Smith’s introduction to a series of books that report his
study of computing in the books The Age of
Significance: Volumes I–VI. Available at
<http://www.ageosig.org/people/bcsmith/papers>.

ICEIS 2006 - ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS

38

