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Abstract: Workflow systems are being used by business enterprises to improve the efficiency of their internal processes
and enhance the services provided to their customers. Workflow models are the fundamental components
of Workflow Management Systems used to define ordering, scheduling and other components of workflow
tasks. Companies increasingly follow flexible workflow models in order to adapt to changes in business
logic, making it more challenging to predict resource demands. In such a scenario, knowledge of what lies
ahead i.e., the set of tasks that are going to be executed in the future, assists the process administration to take
decisions pertaining to process management in advance. In this work, we propose a method to predict possible
paths of a running instance For instances that deviate from the workflow model graph, we propose methods
to determine the characteristics of the changes using classification rules.

1 INTRODUCTION

Workflow management systems are widely being
used by many business companies to automate their
processes, and refine and improve the services they
offer to their customers. Workflow process mod-
els define the ordering, scheduling and dependencies
of the workflow tasks, enabling process automation,
maintenance, diagnosis etc. The efficiency of a busi-
ness’ internal and external processes plays a vital role
in determining the competency of its services.

Today, workflows need to be flexible (Sadiq et al.,
2005a; Sadiq et al., 2005b) in order to accommodate
varying business process requirements and provide
fast and reliable services. In addition, since workflow
models are designed manually, they may not incorpo-
rate the complete set of business logics that drive the
processes and, thus, often result in suboptimal service
performance. Furthermore, frequent changes in busi-
ness requirements trigger corresponding changes in
the definition of the process workflow (van der Aalst
et al., 2003; Casati et al., 1998). Due to these reasons,
the process instances do not always follow the work-
flow graph model. Even in cases when the instances
follow the graph model, the complexity of the work-
flows makes it very difficult to predict the future state
of a running instance accurately.

In our work, we consider workflow systems that
follow flexible models, as described in (van der Aalst
et al., 2003; Sadiq et al., 2005a). We propose a
method for predicting the behavior (i.e., determine the
future tasks) of a long running process instance, by
analyzing the data stored in the workflow log of the
corresponding process. For the instances that do not
follow the graph model, we identify the likely con-
ditions for the deviations that happen. We use these
conditions to change the workflow models, where ap-
propriate.

Predicting the future of running instances helps in
assessing their future resource requirements and in
scheduling their execution efficiently. As a motivat-
ing example, consider the graph model shown in Fig-
ure 1. Let us assume that the administrator is re-
quired to schedule the upcoming tasks at the stage
ST of execution. Let R1 be the resource requirement
(e.g., cpu, memory, disk) for the sub-process marked
as S1; where the load on resource R1 is constrained
by its maximum value R1max. Suppose there are n
instances waiting at stage ST and the administrator
has to verify if all these instances can be scheduled
to proceed, without overloading R1. Such a scenario
is very frequent in any resource constrained business
environment. A pessimistic approach would be to as-
sume the worst case scenario and ensure that the sum
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Figure 1: (a) S1 requires resources R1 and S2 requires
resources R2. ST is the stage where the future activ-
ities are predicted. (b) Tasks A10, A11 and A12 are
added to the process model when the frequency of the in-
stances S, A1, A2, A10, A11, A12, E is sufficiently high in
the workflow log. The characteristic of this instance is de-
termined as Output(A2) = X and a choice node is added
to capture it.

of the resource requirements of all the n instances is
less than R1max at any point of time. This could be
achieved by doing offline analysis of all the processes
and their corresponding resource requirements. How-
ever, as stated, this is a pessimistic approach, and may
end up under-utilizing the resources. Furthermore,
it does not take into account the possibility that S2
could be chosen at C1. Our approach is to predict
how many of the n instances are likely to follow the
S1 path. Predicting the path will enable us to schedule
the execution of the instances accordingly and, thus,
achieve better resource management.

As stated earlier, in a flexible workflow environ-
ment, the instances in the workflow log or the pre-
dicted path of the current instance need not adhere
to the workflow model graph. For example, some
instances in the workflow log corresponding to the
process shown in Figure 1 may have the following
task execution order: S,A1, A2, A10, A11, A12, E.
If the frequency of occurrence for such instances is
found to be high, then the initial graph model has to
be modified to adapt to this change. Characteristics
of such instances, i.e., executed if Output(A2) = X ,
are identified and the model graph is modified accord-
ingly.

For our work, we assume that an initial workflow
graph model that corresponds to the process execution
is given. We require that the workflow log contains
the ordered set of events of each execution and the
input/output data values of these events.

In this paper, we propose the following:

Fork Join MergeChoiceTask

Figure 2: Workflow Graph Constructs.

• We denote the possible set of instances of a work-
flow model graph as workflow instance types.
Given a running process, we propose to predict
the behavior of this instance type. We apply a
classification algorithm to the workflow log, con-
sidering the instance types as classes, and predict
the instance type of the running process instance.
The prediction is performed based on the output
values of the set of activities executed so far.

• For evolving workflows, some of its instances
do not adhere to the workflow graph. We pro-
pose to learn such changes over time and esti-
mate their characteristics (i.e, the conditions un-
der which the instances deviate from the work-
flow graph model). This can assist in the process
re-engineering step where the process model is re-
designed to adapt to the changes and thus improve
its performance.

2 PRELIMINARIES

In this section, we give a brief overview of the
workflow graph model used in this paper and give de-
finitions for the workflow log and workflow instance
types. We model the processes using workflow graph
technique similar to that described in (Greco et al.,
2005). This is homomorphic to the other models
proposed in the literature (van der Aalst and van Hee,
1996; Georgakopoulos et al., 1995).

Definition (Workflow Graph GP ): The con-
trol flow graph GP of a process P is a tuple
(A,S,E,CF ) where A is the set of activities, S ∈ A
is the starting activity, E ∈ A is the final activity,
CF ⊆ (A−E)× (A−S) is the set of edges defining
the control flow sequence between the activities. The
activities can refer to a task in the process or any
router nodes, choice or fork.

Figure 2 illustrates the building blocks of the work-
flow model. Their descriptions are as follows:
Task Nodes (T) represent the individual tasks needed
to accomplish the process. Fork Nodes represent the
AND split. The fan-out paths that split from a fork
node synchronize later using the Join node. The Join
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Node waits until all the control flow in-transitions of
the node are triggered, before proceeding with the
next activity. Choice Node (or Decision Point) rep-
resent the XOR split, having mutually exclusive/ al-
ternative paths out of it. Merge Node merges the ex-
clusive paths out of the Choice node into one path.
It is triggered when any one of the control flow in-
transitions is fired.

Input data container Input(a) (a ∈ A) and output
data container Output(a) (a ∈ T ) of a node a are
defined as:

• ∀a ∈ A, Input(a) is a set of data items Vi that a
consumes, where Vi ⊆ Workflow Data

• ∀a ∈ T , Output(a) is a set of data items Vo that
a writes to, where Vo ⊆ Workflow Data

where Workflow Data is the set of data items for the
process under consideration (Sadiq et al., 2004).

An instance of a workflow process is a single real-
ization of the process. Collection of the instances pro-
duced by a process workflow is referred to as work-
flow log.
Definition (Workflow Log L): For a process P , a
workflow trace wt is a string (Ti.V

j
o )∗ representing

the sequence of tasks and their outputs, where Ti is
the identifier for task that was executed and V j

o is the
jth value recorded(output) by the task. Workflow Log
of process P , LP is thus defined to be a set of traces
wt, i.e. LP = {wt}.

Instances of a workflow graph model may process
different sets of activities due to the presence of the
choice nodes. All possible workflow instances of a
process can be classified into workflow instance types
as described in (Gruber, 2004).
Definition (Workflow Instance Types): A workflow
instance type refers to the workflow instances where
at each choice node, the same successor node is cho-
sen.

Thus the workflow instances of a workflow in-
stance type contain exactly the same set of activi-
ties. We denote the set of possible instance types
of a graph model G as EG. For the workflow
graph model shown in Figure 1(a), following are the
instance types: (S,A1, A2, A3, A5, A6, A7, E) and
(S,A1, A2, A3, A4, (A8)||(A9), E). Note that more
than one type of trace can be associated with an in-
stance type. For example, (S, A1, A2, A3, A4, A9,
A8, E) and (S, A1, A2, A3, A4, A8, A9, E) are the
traces that belong to the second instance type above.

3 PROBLEM DEFINITION

In this paper, we consider the problem of predicting
the future execution of an active workflow instance,
which will enable efficient resource management and

better understanding of the future requirements of the
instance. Our approach is based on analyzing the
workflow log and predicting the future execution in
terms of the instance types (as defined by (Marjanovic
and Orlowska, 1999)). Predicting the future of the ac-
tive instance lc in terms of the possible instances or
the possible instance types implicitly takes into ac-
count the correlation between the tasks that are exe-
cuted in sequence i.e., whenever A5 is executed, it is
followed by task A6 in the process model shown in
Figure 1. This will not be true if we predict the future
as the set of tasks that will be executed in future.

The number of possible instances in a workflow is
typically exponential and we seldom have sufficient
data to train for all possible instances. Though the-
oretically it can be equal, the number of possible in-
stance types is far less than the number of instances in
most of the workflows in business enterprises.

Therefore, we propose to forecast the future of
an active instance by predicting its possible instance
types. In particular, the problems we consider in this
paper are the following:

Problem 1 (Prediction of Paths) Assume a
process P , its control flow graph GP and the set of
process instances LP . For the current instance lc, and
the current task Ti that is being executed as a part of
lc, our goal is to predict the set of tasks that are most
likely to be executed toward completion of lc.

We address the problem by applying classification
techniques to the workflow log - analyze traces with
similar output values as in lc and predict the future
tasks. In our approach to solving the above prob-
lem, we classify the possible traces in LP according
to their Instance Types. We predict the future set of
activities in terms of the instance type that the current
process instance is likely to be in.

In current business enterprises, processes follow
flexible workflows where the workflow graph models
serve as a guidance for the process execution. This
flexibility in workflow systems is necessary to allow
refinement and accommodate process logics that were
missed in the design phase. In such scenarios, in-
stances can deviate from the process definition pro-
vided by the graph model. Such deviations could ei-
ther be exceptions, i.e., a rare occurrences, or evo-
lutions i.e., the instance adapting to a change in the
process logic. In the latter case, it becomes necessary
to periodically discover such instances and restructure
the graph model accordingly.

When a set of instances deviates from the initial
process definition, we determine whether it is an ex-
ception, or if it calls for a change in the graph model.

Problem 2 (Capturing Evolution of Models) If a
set of paths deviate from the workflow definition in
GP , find the conditions under which the deviation oc-
curs and determine if it is an evolution of the workflow
that will require adaptation of the graph model.

BUSINESS PROCESSES: BEHAVIOR PREDICTION AND CAPTURING REASONS FOR EVOLUTION

5



If an instance from the workflow log does not
match any of the instance types in EGP

we consider
that as a deviation. For deviating instances that occur
frequently, we identify their characteristics in terms
of classification rules. This serve as input to work-
flow graph restructuring. Essentially, we keep track
of the exceptions, and if the frequency of an excep-
tions is high we assume that the workflow model has
to be updated.

4 PREDICTION OF PATHS

In this section, we explain our method for predicting
the instance types, for a given active instance lc. We
illustrate the problem with an example process model
and explain the algorithm.

We consider the Order Processing Workflow model
graph shown in Figure 3. The workflow illustrates the
tasks involved in processing orders for items bought
by customers. After verification of billing informa-
tion of an order, the order is sent to inventory con-
trol system. If the item that is ordered is not in the
inventory, it is shipped from suppliers A or B or
C, with A being the highly preferred supplier, then
B followed by C. To minimize the resources used
for transportation of goods from a supplier, it is nat-
ural for the dealer (who deals with the supplier) to
wait for as many orders as he could handle (for short,
SupplierMax), before contacting the supplier. How-
ever, waiting for the orders to arrive incurs delay in
processing the previous orders. For example, let us
consider the dealer who deals with the supplier B.
Assuming equal probabilities for all choices at each
choice node, only 25% of the orders arrive at sup-
plier B, which implies considerable wait time before
BMax is reached.

In such situations, it might be of interest to deter-
mine in advance how many of the current orders are
likely to arrive at B. The dealer can estimate the time
taken to reach Bmax and thus decide between sending
the order list to the supplier and waiting for further
orders. This illustrates one situation where predict-
ing the future activities assists in improving process
efficiency.

Let us consider the problem of estimating if a given
order will be ordered at supplier B, for the current task
Ti = RBI . IT is a set of instance types consisting of
all the instance types corresponding to the workflow
log. Thus, IT can contain some instance types that
are not defined by the workflow (this is possible due
to previous exceptional instances).

Let there be n traces in the corresponding work-
flow log L, each denoted by l1, l2, l3, ..., ln and the
current trace be denoted by lc. For lc, let the log so
far consist of:

(S, LOG AUTH.isEmployee = yes, LOG AUTH.discountRate =

10%, ROI.orderNo = 3456, ROI.itemId = 56, ROI.itemCount = 2,

RBI.isBillingAuth = yes)

We define sub-trace Pre(task, trace) of a trace as
follows:
Pre(task, trace): For a task Tk executed during
process instance lr, we define Pre(Tk, lr) to be the
set of tasks in trace lr that are executed preceding
task Tk.
We consider two sub-traces Pre(Tk, lr) and
Pre(Tk, lr′) to be symbolically equal i.e.,
Pre(Tk, lr) � Pre(Tk, lr′), if either the sub-traces
are identical or if for all tasks a, b ∈ Pre(Tk, l′r)
such that a is executed before b in Pre(Tk, l′r) and
b is executed before a in Pre(Tk, lr), a is executed
parallel to b according to the graph GP .

As the first step, we extract all the traces lj from
log L that consist of task Ti and where Pre(Ti, lj) �
Pre(Ti, lc). For the example under consideration, let
the following be two of the traces in LP :
Trace a: (S, LOG AUTH.isEmployee = yes, LOG AUTH.discountRate

= 15%, ROI.orderNo = 3401, ROI.itemId = 24, ROI.itemCount = 1,

RBI.isBillingAuth = yes, SEND INV.status = available, GET INV.status =

ready, PACK.status = ready, SEND.status = complete)

Trace b: (S, ROI.orderNo = 3413, ROI.itemId = 32, ROI.itemCount = 3,

RBI.isBillingAuth = yes, SEND INV.status = notAvailable, SEND A.status

= ready, GET A.status = complete, PACK.status = ready, SEND.status =

complete)

Thus, Pre(PBI, lc) will be symbolically equal
to the sub-trace Pre(Ti, a) but not the sub-trace
Pre(Ti, b).

From the set of traces lm in L that consist of task
PBI and where Pre(PBI, lc) � Pre(PBI, lm), we
extract the sub-traces Pre(PBI, lm) and denote the
set as L′. For each instance lm in L′, we add the in-
stance type of lm to the set of instance types IT , if it
is not already present in IT . We extract those items in
lm corresponding to tasks in Pre(PBI, lm) and form
the training set TrainingSet.

A sub-trace from Trace a with the information
about its instance type (given below) is an example
of a record in TrainingSet.
(S, LOG AUTH.isEmployee = yes, LOG AUTH.discountRate = 15%,

ROI.orderNo = 3401, ROI.itemId = 24, ROI.itemCount = 1) : IT1.

where IT1 is S, LOG AUTH, ROI, RBI, SND INV, GET INV, PACK,

SEND, E.

We apply a classification algorithm to the set
of sub-traces from TrainingSet with the instance
types in IT as classes. The outputs of the tasks
in Pre(PBI, lm) are considered as the classifica-
tion attributes. In particular, we apply decision tree
algorithm C4.5 (Quinlan, 1993) to generate classi-
fication rules, because it can handle missing items
in the TrainingSet gracefully. We apply the rules
to the current instance lc and forecast the instance
types of lc as the instance type with the highest ac-
curacy. For example, the classification rules gener-
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EMP? : Is employee of the company?
LOG_AITH : Authorize Login Information
ROI : Receive Order Information
RBI : Receive Billing Information

IS_INV? : Is in inventory?
SEND_INV : Send to Inventory Control

IS_IN_A? : Is available in Supplier A?

GET_A : Get item from Supplier A
SEND_A : Send item requirement to Supplier A

IT1: S, LOG_AUTH, ROI, RBI, SEND_INV, GET_INV, PACK, SEND, E

IT2: S, LOG_AUTH, ROI, RBI, SEND_INV, SEND_A, GET_A, PACK, SEND, E

IT3: S, LOG_AUTH, ROI, RBI, SEND_INV, SEND_B, GET_B, PACK, SEND, E

IT4: S, LOG_AUTH, ROI, RBI, SEND_INV, SEND_C, GET_C, PACK, SEND, E

IT5: S, ROI, RBI, SEND_INV, GET_INV, PACK, SEND, E

IT6: S, ROI, RBI, SEND_INV, SEND_A, GET_A, PACK, SEND, E

IT7: S, ROI, RBI, SEND_INV, SEND_B, GET_B, PACK, SEND, E

IT8: S, ROI, RBI, SEND_INV, SEND_C, GET_C, PACK, SEND, E

S EMP?

LOG_AUTH

ROI RBI SEND_INV

Y

N

IS_INV?

IS_IN_A?IS_IN_B?

GET_A

SEND_A

N

Y

N
SEND_C

SEND_B

GET_C

GET_B

E SEND PACK

Y

Y
N

GET_INV

Explanation of Symbols

Instance Types

Figure 3: Example Process Model: Order Processing.

ated for the process model under consideration are:
If ROI.itemId < 50 and ROI.itemId > 10 and
ROI.itemCount < 10: IT1 (with accuracy=55%)
If ROI.itemId < 100 and ROI.itemCount > 50:
IT3 (with accuracy=67%)

Returning to the problem discussed in the previous
section, we see that it can be solved by predicting the
instance types of all the current orders, and estimat-
ing the number of orders that are likely to be in in-
stance type IT . For example, suppose O is the set
of orders that are likely to be in instance type IT3 or
IT7, and the accuracy of each of the orders oc ∈ O
is acc(oc). The dealer can wait for the orders, if∑

oc∈O acc(oc) > thr where thr is a user defined
threshold value.

Algorithm in Figure 4 refers to the steps involved in
training and predicting the instance types of a current
instance lc. IT , the set of instance types correspond-
ing to the workflow log, is given as input to the algo-
rithm. In steps 3 to 5 of the algorithm (a), the work-
flow log is scanned and new instance types, if any, are
added to IT . In the algorithm, part (a) correspond to
training the classifier. If prediction is performed fre-
quently, after a particular stage of process execution,
then the classifier need not be trained for every pre-
diction. Instead, already created models can be used
to predict the possible instance types (with steps in
part (b)).

As seen above, we group possible instances of a
workflow graph into instance types, and therefore we
do not keep the information about the execution order
of the tasks that are executed in parallel to each other.
Thus, our method is suitable for applications (such as
that explained in Section 1) where execution order of
the tasks executed in parallel i.e., A8 and A9 in Figure
1, is insignificant.

Given: Process P , its workflow model graph GP , workflow log LP
and the set of instance types IT corresponding to workflow log LP

(a) Train the classifier for a task Ti and current trace lc.
1. Let L′

P ⊆ LP be the set of traces that consists of task Ti and
where the set of tasks executed before Ti is same as that in lc,
i.e, L′

P = [lm|lm ∈ LP and Pre(Ti, lm) � Pre(Ti, lc)].
2. for each trace lm in L′

P
3. elm ← Instance Type of lm
4. if elm /∈ IT
5. IT = IT ∪ [elm ]
6. l′m ← Items in lm that correspond to tasks in Pre(Ti, lm)
7. TrainingSet← TrainingSet ∪ [l′m]
8. Apply a decision tree algorithm to TrainingSet considering the

elements in IT as classes.

(b) Predict the instance type of the current instance lc.
1. Using the classification rules generated by (a), classify the current

instance lc into one of the instance types, with certain
accuracy as determined by the classifier.

2. elc ← The instance type with highest accuracy for lc
3. Return elc

Figure 4: Algorithms for training the classifier and Predict-
ing the instance type of a current instance.

5 CAPTURING EVOLUTION

When an instance of a process P deviates from its
workflow graph GP , i.e., if extra tasks are executed or
some existing tasks are skipped, then the instance will
not belong to any of the instance types in EGP

. Such
instances are possible due to two reasons (a) Changes
in the process definition, (b) Business logics that were
not captured initially by the workflow graph. The set
of traces LP are analyzed periodically to check for
any such deviations.

In the example shown in Figure 3, let us assume
that the company decided to purchase a new item with
itemId = X from a supplier D. Thus, the orders
for item X do not follow the given workflow and are
routed to supplier D. That is, if ROI.itemId = X
in lc, then the predicted instance type of lc is differ-
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ent from the instance types in EGP
. Let us refer to

this new instance type as enew. If the number of such
instances is not significant (as determined by the mod-
eler), then we consider it as an exceptional behavior.
However, if the frequency of such instances is suf-
ficiently high i.e., frequency(enew)

|LP | > threshold, we
extract the corresponding classification rule generated
by the decision tree algorithm. For example,
If ROI.itemid = X then InstanceType = enew (Rule I)

In such cases, the modeler can modify the existing
workflow graph to capture the deviation. Figure 5
shows the process workflow model when the initial
model is restructured to capture the above rule.

Algorithm in Figure 6 describes the steps involved
in determining reasons for process evolutions. The
classifier is retrained (step 1-2), and the rules corre-
sponding to new instance types are analyzed to ver-
ify if they indicate process evolution. The workflow
model is modified to adapt to the changes. The issues
related to structural changes in graph models, and dy-
namic and smooth migration of running instances to
the new graph model are discussed in depth in litera-
ture (Rinderle et al., 2004; van der Aalst and Basten,
2002; Casati et al., 1998). The technique we describe
in this paper for determining the reasons for evolu-
tions is orthogonal to how the graph model is modi-
fied, verified for correctness, etc.

When an initial workflow model G is modified to
G′, the set of instance types IT is updated as follow-
ing:
E1: The set consisting of those instance types in EG that are valid for G′

E2: The set consisting of those instance types in EG that are invalid for G′

Enew : Set of new instance types in G′.

E3 : Instance types that were exceptions wrt to G and are still exceptions

wrt G′

Initially, IT = E1 ∪E2 ∪Enew ∪E3. We update IT
as IT = IT −E2 and the set of instance types E′ for
G′ as E1 + Enew.

Thus, we make sure that no obsolete instance types
are present in IT , and it is updated with the new
instance types corresponding to the changes in the
graph. When the workflow graph is modified, (a) the
updated set of IT is used for predicting the paths, and
(b) the traces in the workflow log, corresponding to
instance types in E2, are removed before building the
models. We keep the traces corresponding to E3 in
the workflow log because there is a chance that these
traces will become frequent later, requiring another
change.

6 EXPERIMENTAL EVALUATION

In this section, we present our preliminary results for
prediction of future paths in a workflow model. We
generate the workflow graph models for our experi-

Given: Process P , its workflow model graph GP , workflow
log LP and the set of instance types IT corresponding
to workflow log LP . For the instances that are not in EGP

,
find the corresponding classification rules
1. Apply a decision tree algorithm to LP considering

the elements in IT as classes.
2. Rules←Classification Rules obtained from the decision tree
3. for each rule r in Rules
4. enew ← Instance type associated with r
5. if enew /∈ EGP
6. Calculate support(enew)
7. if support(enew) > threshold
8. Modify GP to accommodate rule r
9. Return modified graph model

Figure 6: Determining reasons for process evolution.

ments using an incremental method described below.
The graph generation procedure takes the following
as inputs: number of nodes to be present in the graph
and probabilities of adding a task node, a fork-join
structure and a choice-merge structure at each itera-
tion. Initially a simple sequence structure with a sin-
gle task node encompassed between a start and an
end node is generated. During further iterations of
incremental additions, a random task node is chosen
from the graph and is converted to either a sequence of
task nodes or a fork-join structure or a choice-merge
structure, with the given probability. The incremental
graph generation assures that the generated model is
free of structural conflicts (Aalst et al., 1994; Sadiq
and Orlowska, 2000).

We compare the performance of our technique with
an alternative simpler technique where we use the cur-
rent partial execution of the process to predict, for
each future task, if it will be executed or not. The fun-
damental difference with our approach is that in this
technique each future task has to be predicted individ-
ually. To solve this Task Correlation problem, we
can extend recent work on workflow mining ((Grigori
et. al. 2001), (Subramaniam et. al. 2005)) which pro-
vide efficient techniques for predicting whether spe-
cific nodes in the workflow will be taken in the future.
Essentially, in this approach we have to build and train
separate classifiers to predict each task.

We present our initial results of comparing the ac-
curacy and the speed of the two approaches, Task
Correlation TC and Instance Type Correlation ITC.
For our experiments, we considered a sample process
model with 13 task nodes and 6 instance types as
shown in Figure 7(a). We used the decision tree al-
gorithm C4.5 for generating the classification rules.
Figure 7(b) shows the training time, query time and
the accuracy of the two methods. Training time is the
time taken to build the models, and it is determined by
the number of models to be trained and the number of
attributes in the training data (in this case, it is propor-
tional to the number of tasks that are executed before
the point of prediction i). Figure 7(b) shows the total
training time (for all the tasks and for all the models)
for the two approaches. We observe from the values
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Figure 7: (a) Process model graph used for the experiment (b) Comparison of the total training time, average query time and
the average accuracy of the two approaches TC and ITC.

that ITC is much faster than TC with respect to the
training time. This is due to the fact that the num-
ber of decision trees to be built for TC is more than
that of ITC. For example, for task A2, the number
of decision trees required to be constructed for TC
methods is 11 (one for each of the future tasks, with
executed and not executed as classes), whereas it is 1
for our method.

For ITC, query-time is the time taken for an active
instance lc to be classified into one of the instance
types. For TC, it is the sum of the time taken to
classify each of the future tasks as executed or not
executed. In Figure 7(b), we compare the average
query-time of the two approaches. The average query
time for ITC is lesser than that of TC, because only
few decision trees need to be built for each task, with
method ITC. Furthermore, we observed that the val-
ues for TC ranges from 0 seconds to 83 seconds, with
the average of 0.3338 seconds. Figure 7(b) also shows
the average of the accuracy of the classification rules
generated by the two methods. The accuracy of ITC
and TC are comparable as seen from the figure.

7 RELATED WORK

Mining of the workflow logs has been applied in var-
ious phases of WfMS. A summary of the ongoing re-
search in process mining is given in (van der Aalst
et al., 2003). Methods of automating the process
model construction through event data capture of the
on going process were illustrated in literature (Cook
and Wolf, 1995; Cook and Wolf, 1998). Another
approach of process discovery proposed in (Agrawal

et al., 1998) makes use of logs of past unstructured ex-
ecutions of the given process to construct the model.
Event data analysis and process mining has been ap-
plied to model rediscovery in (Weijters and van der
Aalst, 2002). In (Herbst and Karagiannis, 1998), the
authors propose machine learning techniques to ac-
quire and adapt workflow models by analyzing event
data in the workflow log.

In (Grigori et al., 2001; Castellanos et al., 2005),
the authors propose methods to predict the future be-
havior of a workflow instance in terms of pre-defined
metrics, for example, resulting in exception or not etc.
However, predicting possible paths of a running in-
stance is not addressed in these works.

Workflow evolution has been discussed in many re-
search papers (Casati et al., 1998; van der Aalst and
Basten, 2002; Rinderle et al., 2004). These works dis-
cuss and propose frameworks for workflow schema
modifications and how workflow instances can (dy-
namically) adapt a newly evolved workflow schema.
All of them assume prior knowledge of the struc-
tural changes due in the evolving workflow. Issues
related to process quality of flexible workflows is ad-
dressed in (Sadiq et al., 2005a). In (Rinderle et al.,
2005), the authors propose a case based reasoning ap-
proach to learning process evolution. However, this
method is useful only for processes where there is a
user involvement at each level of the process - to in-
teract with the CCBR system. Thus, it is only semi-
automated and relies on the user input for extracting
reasons for changes. Thus, none of them consider the
problem of automatically determining the semantics
for evolutions by analyzing the workflow log.
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8 CONCLUSION

In this paper, we have proposed a method to predict
future paths of a running instance of a workflow by
analyzing past workflow logs. For those instances
that deviate from the workflow models, we identify
the possible conditions under which the deviations oc-
cur. Providing insights about what modifications are
required to a workflow can be a significant input to
the the workflow evolution.
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