
MOLDING ARCHITECTURE AND INTEGRITY
MECHANISMS EVOLUTION

An Architectural Stability Evaluation Model for Software Systems

Octavian-Paul Rotaru
University “Politehnica” Bucharest Romania

Keywords: Architecture Evolution, Data Integrity, Mathematical Model, Perturbation Theory, Requirements, Software
Architecture, Stability.

Abstract: The architectural stability of a software system is a measure of how well it accommodates the evolution of
the requirements. The link between integrity mechanisms and application’s architecture starts right from the
moment the requirements of the application are defined and evolves together with them. The integrity
mechanisms used will evolve when the application’s requirements are modified. Apart from the possible
architectural changes required, adding a new requirement to an application can trigger structural changes in
the way data integrity is preserved. This paper studies the architectural stability of a system based on an
integrity oriented case study and proposes a mathematical model for architectural evaluation of software
systems inspired from the perturbations’ theory. The proposed mathematical model can be used to mold the
evolution of any software system affected by requirements changes; to find the architectural states of the
system for which a given set of requirements is not a trigger (doesn’t provoke an architectural change); and
to find the architectural configuration which is optimal for a given set of requirements (evolves as less as
possible).

1 INTRODUCTION

“All mankind is of one author, and is one volume;
when one man dies, one chapter is not torn out of the
book, but translated into a better language; and every
chapter must be so translated... as therefore the bell
that rings to a sermon, calls not upon the preacher
only, but upon the congregation to come: so this bell
calls us all: but how much more me, who am
brought so near the door by this sickness.... No man
is an island, entire of itself... any man's death
diminishes me, because I am involved in mankind;
and therefore never send to know for whom the bell
tolls; it tolls for thee.” (John Donne, Meditation
XVII, from “Devotions upon Emergent Occasions”,
1624)

This famous meditation of Donne’s elaborates on
a major idea of the Renaissance, valid in life as well
as in science that people are not isolated from one
another, but mankind is interconnected.

Similarly software systems all over the world are
nowadays interconnected. Home computers, servers,
applications, databases, modules and components
are all connected in a way or the other, they are
interacting and they are influencing each other.

When an Internet user uploads a file to a server
the operation influences the web server in many
ways. An upload routine is employed in order to get
the file on a temporary location; the database access
module is afterwards called in order to store the file
into the database; a mailing daemon will send an
email to the user in order to notify him that the
upload ended successfully; etc. Maybe some other
servers are also notified that the file is uploaded, for
example a search engine in order to index it, or a
load balancing module is inquired to decide what
server to use. The file upload operation can also
influence the load of the server, or can limit its
available space, and these are just a few examples of
what can happen behind the scene.

Not only systems are influencing each other, but
also at a smaller scale different characteristics of a
software system are doing the same.

Usually data integrity is perceived as an a priori
service offered by the database. However, data
integrity assurance is not referring only to the
integrity of the information stored in the database,
but to the integrity of all the data flows transferred to
and from the application or between the different
application’s modules as well.

426
Rotaru O. (2006).
MOLDING ARCHITECTURE AND INTEGRITY MECHANISMS EVOLUTION - An Architectural Stability Evaluation Model for Software Systems.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 426-431
DOI: 10.5220/0002469704260431
Copyright c© SciTePress

There are many available integrity assurance
mechanisms and strategies that can be used by
application. The choice is clearly influenced, even if
not unique, by the specificities of each application.
Apart from the application characteristics, the
environment and the exterior interactions are also
influencing the choice of the optimal integrity
strategy. Finally, it all depends on the requirements,
implemented in the application, that are influencing
the architecture and its interactions, and
consequently the way the data integrity is realized.

Integrity is not a database characteristic, but a
characteristic of any software system. By data
integrity I am designating the integrity of the data in
the entire computational context, seeing the system
as an ensemble from which no piece can be ignored.

2 CASE STUDY

2.1 Overview

The link between integrity mechanisms and
application’s architecture starts right from the
moment the requirements of the application are
defined and evolves together with them. The
integrity mechanisms used will evolve whenever the
application’s requirements are modified. Apart from
the possible architectural changes required, adding a
new requirement to an application can trigger
structural changes in the way data integrity is
preserved.

The architecture’s influence on the integrity
assurance mechanism will be examined based on a
case study on an application that will evolve in time
by varying its functional and non-functional
requirements. At each stage the influence of the
requirements on the architecture and in turn on the
integrity control mechanisms will be evaluated. It is
worth noting that the description of each stage of the
case study will also contain context related
information, and not only the requirements.

The stages can be considered versions created
during the development of the application that are
created keeping in mind only the current
requirements, ignoring the future requirements that
will be introduced at later stages. The way
requirements are incrementally added without
considering the big picture of all the requirements
that will be added in each and every version is not a
good development practice, but it serves the purpose
of this case study. Usually, the development
versioning for an application is decided from the
beginning, choosing the most suitable architecture,

after studying all the requirements and the context,
keeping in mind possible future extensions.

In our case the requirements will be added
incrementally, trying as much as possible to preserve
the existing architecture and to always make the
minimal impact change, treating each version as
being the last one. Practically, while creating this
use case I will put on the hat of a bad application
architect or designer, which has no vision for the
future of the application.

2.2 Stages

2.2.1 Stage I

Requirements: The application is single user
and single instance and it offers only data
visualization services. No data is modified or
inserted by the application. The data transferred
between the application and database is made
through a secured environment.

Consequences: An architecture chosen based on
the above requirements and excluding any future
development, can be only 2-Tier. The logical or
physical separation of functionalities has no
justification in this context. Figure 1 presents the
architecture of the application at this stage.

Figure 1: First Stage’s Architecture.

2.2.2 Stage II

Requirements: The transfer of data between the
application and the database is done through an open
environment and therefore it is required to verify if
the information was transmitted correctly.

Consequences: The physical architecture of the
application stays the same like at Stage I, 2-Tier.

Additionally, the application needs to control the
integrity of the information received from the
database.

Checking the integrity of the transferred data is
affecting both the structure of the database and the
application’s architecture. The introduction of these
additional services will modify the logical
architecture of the application, inducing a new layer
that will handle the data verifications. The

MOLDING ARCHITECTURE AND INTEGRITY MECHANISMS EVOLUTION - An Architectural Stability Evaluation
Model for Software Systems

427

application will now have two functional levels:
Presentation and Verification, as presented in Figure
2.

Figure 2: Second Stage’s Architecture.

2.2.3 Stage III

Requirements: The application should maintain
the confidentiality of the transferred data by
protecting it from unauthorized accesses.

Consequences: Digitally signing the data is not
enough to insure that unauthorized third parties do
not access it. Since the communication is done
through and open unsecured environment, it is
necessary to crypt the information in order to insure
its inviolability. The confidentiality requirement can
be implemented either by using the native support of
the database, if existent, or by implementing an
encryption algorithm.

The algorithm and the encryption key are chosen
depending on the required security degree. Either
symmetric algorithms, like DES, or asymmetric
algorithms, like PGP, can be used. Also, most of the
commercial DBMS’s provide native support for
secured communication protocols like SSL.

Figure 3: Stage III–Candidate Architectures.

Similarly with the digital signature, the

encryption of the transferred date adds a
computational overhead. The physical architecture
of the application remains unchanged, but the logical
architecture of the application can change in order to

accommodate the encryption mechanisms in a
separate Encryption layer (Figure 3, right). The
encryption mechanisms can also be clubbed together
with the data verification mechanisms, forming an
integrity layer (Figure 3, left).

2.2.4 Stage IV

Requirements: The application can be
simultaneously used from different computers
(multi-user).

Consequences: Keeping in mind that the
application only reads data from the database, the
physical architecture can stay 2-Tier. Also, since all
clients read data without modifying it, an exclusion
mechanism is not required. Such a requirement will
not at all influence the application’s architecture.

However, the same requirement added after the
stage in which the application already starts to
modify data will for sure influence the architecture.
This also proves that not only the integrity
mechanisms and the architecture are correlated
having the requirements as a catalyst, but also the
order in which requirements are added to the system
is relevant.

2.2.5 Stage V

Requirements: Additionally, the application
will allow its users to modify the record stored in the
database and to add new records.

Consequences: In this stage it is still not
required to take care of the operational integrity of
data since the effects of each and every operation are
available immediately after being done.

Figure 4: Fifth Stage’s Architecture.

The physical architecture of the application
remains unchanged, while the logical architecture is
affected by the introduction of a new layer dedicated
to the data access.

The separation of all data access related
functionalities into a separate layer is the best
solution that can be applied, the application’s
architecture becoming the one from Figure 4 that

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

428

contains the following layers: Presentation,
Verification, Encryption, and Data Access.

2.2.6 Stage VI

Requirements: The application needs to execute
work units or groups of operations whose result to
be available only if the entire group was processed
successfully. Such an operation group should not
overwrite during its execution data that was already
modified by another.

Consequences: This stage is the first in which it
becomes necessary to preserve the operational
integrity of data. The application’s work units
composed of multiple operations defined in the
requirement are actually translated into database
transactions. The clients will therefore require the
ability to impose locks on the records that they read
with the purpose of modifying so that no other
instance will attempt to simultaneously do it. The
transaction execution can be done either by using the
native database support or by embedding the
transaction mechanisms in the application. Also,
there is a third option of implementing the
transactions as database stored procedures.

In case the transactions are processed using the
native database support or implemented as stored
procedures the 2-Tier physical architecture of the
application remains unchanged. However, if the
transactional support is implemented directly in the
application, its physical architecture will modify,
becoming 3-Tier. The additional tier will be
dedicated to transaction management.

Practically, the choice is about the best
transactional model for the application, the available
options being: TP-Less, TP-Lite and TP-Heavy.

As per the initial assumption that at each stage
the lowest impact solution will be chosen, the native
transactional support of the application will be used,
going for a TP-Less transaction processing strategy.

2.2.7 Stage VII

Requirements: The application needs to cope
with strict performance criteria, related both to the
processing speed and the bandwidth required for
data transfer from and to the database.

Consequences: Such non-functional
requirements will trigger modifications in the way
transactions are processed.

There are situations in which the use of the
native transactional support of the database does not
fulfill the required performance criteria, especially
because of the big amount of data transferred to and
from the client in order to be processed. The data set
resulted after each operation will be sent to the client

who will take the decision of continuing the
transaction or not.

The transaction’s implementation as stored
procedures will diminish the quantity of data
transferred through the physical communication
environment. I/O operations are probably the
bottleneck of any software systems, and they are
even slower if network transfer is also involved.

2.2.8 Stage VIII

Requirements: The application needs to support
a number of clients bigger than the maximum
number of connections accepted by the database.

Figure 5: Eighth’s Stage Architecture.

Consequences: The adoption of the above stated

requirement involves changes in the physical
architecture of the application. The transaction
processing strategy needs to change, going to TP-
Heavy and consequently adding a new tier. The
introduction of the additional tier consisting of a
transaction manager, one of the simplest types of
application servers, will change the physical
architecture to 3-Tier (Figure 5).

A transaction manager is doing a multiplex
operation between n clients and m connections,
where usually n is greater than m using a waiting
queue.

3 MATHEMATICAL MODEL

A software system like the one used for the above
case study mathematically modeled. Apart from
modeling the state of the system as any point of
time, its evolution can also be modeled.

Architecturally, a system evolves only when
exposed to stimuli or events, which in such a case
are new or modified requirements. Depending on the
new or modified requirements, the system will
change or not the architectural state, both physically
and/or logically. Therefore, the evolution of a
software system during successive development
cycles can be modeled as a discrete set of states X,
where Xx∈ is any discrete state of the system.

MOLDING ARCHITECTURE AND INTEGRITY MECHANISMS EVOLUTION - An Architectural Stability Evaluation
Model for Software Systems

429

Let Γ be a discrete set of requirements that can
be implemented in the studied software system and

Γ∈α a requirement that will be implemented in
the system at a certain time, then ()xΓ is the set of
requirements, both functional and non-functional,
that can be implemented in the system at a certain
moment.

It is obvious that not all the potential
requirements can be implemented at any moment,
mainly because of dependencies between them.
Also, some of the requirements can become
impossible to implement at certain moments because
of the way the system evolved, reaching some
technical limitations.

The modeling at the system can be started at any
moment, the initial modeling state of the software
system, 0x , being chosen accordingly.

Considering the implementation of a requirement
from the set of possible ones in a certain state of the
system ()xΓ to be equivalent with the application
of a stimulus to any kind of general system, the
software system will make a state transition
depending both on the current state and the applied
stimulus:

()θ,pn xfx = ,

where Γ∈Γ∈ θ;, pn xx

For any state kx of a system, a requirement

()kxΓ∈α activated in kx has a lifetime ()kxcα .

The lifetime ()kxcα represents the effort required
to implement the requirement, keeping in mind the
state of the system.

To simplify the model, the requirements are
considered to be implemented one after the other, a
new requirement being introduced only if the system
is not inside a development cycle ()kxcα .

Every state kx of the system can potentially
have a requirement or a sequence of requirements
that lead to o a state transition. Let’s call such
requirements’ sequences transition triggers because
they trigger a state transition, and use D as notation
for them. The sum of the lifetimes of all the
requirements from a trigger is the lifetime of the
transition trigger:

() ∑
∈

=
D

kkD xcxc
δ

δ)(.

A trigger is an ordered set. The order of the
requirements inside the set D is strict. A change in
the order of the requirements can provoke the state
transition to happen earlier or not happen at all.

Starting from the points stated above, the
minimum lifetime of between two architectural
states of a system can be defined as being:

() ()
()()⎪⎩

⎪
⎨
⎧ ∅=Δ∞

=
Δ otherwisec

xxif
xxc

jkD xx

jkD
jkD ,min

,,
,

,

*

Where ()jkD xx ,Δ is the set of transition
triggers that will trigger the state transition from
state kx to state jx .

Furthermore, based on the minimum lifetime
between a state of a system and any other state, the
minimum lifetime in a state can be defined as being
the minimum of all the minimum lifetimes between
that state and any other state of the system,
excepting the previous states:

() ()()jD xxcx ,min ** =Κ ,

Where Xx j ∈ .

The minimum lifetime of a system in a state
defines the architectural quality of the system in that
state. As the value of the minimum lifetime of the
system in a certain state is bigger, the system is more
robust, flexible and more resistant to new
requirements’ implementation.

Therefore the architectural flexibility of a system
can be defined in a given context as being
proportional with the minimum lifetime of the
system’s state that corresponds to the evaluated
architecture. An ideal architecture is one that is able
to cope with additional requirements without
changing. It corresponds to an infinite value of the
minimum lifetime of a state.

The lifetime of a requirement, which actually
mean the effort required for its implementation, can
be used as comparison criteria between two systems
with similar functionalities but having different
architectures. The impact of the same requirement
can be different when applied as a stimulus to
different software systems. For example, in one of
the systems the requirement can trigger a state
transition while in other systems the state will
remain unchanged.

4 CONCLUSIONS

The versioned development of an application is used
as a case study, adding a new requirement at each
stage and always tailoring the solution as if no
further development will be done, treating each
stage as the last one.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

430

The case study distinguishes a strong relation
between architecture and integrity, by analyzing the
organizational influence and the impact of the
application’s requirements on the integrity
mechanisms.

Figure 6: Relations between Architecture, Integrity and
Requirements.

The main conclusion that can be drawn from the
case study presented here is the existence of a
dependency triplet, pictured in Figure 6:
Requirements – Architecture – Integrity. The
architecture of the software system and the way data
integrity is realized and controlled are tightly
coupled together, the set of requirements to be
implemented in the system being the catalyst of this
relation.

Adding new requirements at each phase at the
case study triggered architectural changes. The
logical structure of the application was the most
affected by the additional requirements introduced at
every step. The logical layering of the application
doesn’t serves directly the requirements additionally
implemented in a software system, but gives more
clarity to the system’s architecture, makes it more
scalable and introduces a clear separation between
concerns at system level.

The architectural evolution of an application is
studied, stimulated by the introduction of new
requirements at each stage, distinguishing the
bijective relation between architecture and the
integrity assurance mechanisms that are used. The
relation is injective controlled by the stimuli, in our
case the requirements. The integrity mechanisms and
the multi-level data access architectures are
correlated. Integrity assurance proves to be an
integrant part of any architecture.

REFERENCES

Octavian Paul ROTARU, “Database Integrity Assurance
Mechanisms in Multi-Level Architectures. Pattern and
Components in Databases”, PhD Dissertation,
scientific adviser Prof. Dr. Eng. Mircea Petrescu,
University “Politehnica” Bucharest, 2005.

Mehdi Jazayeri, “OnArchitectural Stability and
Evolution”, Ada-Europe 2002, Vienna, Austria.

D. L. Parnas, “Designing Software for ease of Extension
and Contraction”, IEEE Transactions on Software
Engineering, 5(2), pp. 128-138, March 1979.

D. L. Parnas, “Software aging”, Proc. of International
Conference on Software ENgineering (ICSE94),
Sorento, May 1994, pp. 279-287.

M. Shaw, D. Garlan, ”Software architectures: perspectives
on an emerging disciplines”, Prentice Hall, Englewood
Cliffs, NJ, 1996.

Rami Bahsson, Wolfgang Emmerich, ”Evaluating
Softaware Architectures: Development, Stability, and
Evolution”, the Proceedings of ACS/IEEE
International Conference on Computer Systems and
Applications, Tunis, Tunisia, July 14-18-2003 IEEE
Press.

Muhamad Ali Babar, Ian Gorton, “Comparison of
Scenario-Based Software Architecture Evaluation
Methods”, 11th Asia-Pacific Software Engineering
Conference (ASPEC’04), pp. 600-607.

Gasiorowicz, Stephen, 2003. Quatum Physics, 3rd edition.
John Wiley & Sons Inc.

Cohen-Tannoudji, Claude, 1989. Photons and Atoms:
Introduction to Quantum Electrodynamics. John Wiley
& Sons Inc.

MOLDING ARCHITECTURE AND INTEGRITY MECHANISMS EVOLUTION - An Architectural Stability Evaluation
Model for Software Systems

431

