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Abstract. Methods for tracking and prediction of abdominal tumor movement
under free breathing conditions are proposed. Tumor position is estimated by
tracking surgically implanted clips surrounding the tumor. The clips are seg-
mented from fluoroscopy videos taken during pre-radiotherapy simulation ses-
sions. After the clips have been tracked during an initial observation phase, mo-
tion models are computed and used to predict tumor position in subsequent frames.
Two methods are proposed and compared that use Fourier analysis to evaluate
the quasi-periodic tumor movements due to breathing. Results indicate that the
methods have the potential to estimate mobile tumor position to within a couple
of millimeters for precise delivery of radiation.

1 Introduction

The National Cancer Institute estimates that 8.9 million Americans have a history of
cancer in 1999 and more than 1,500 Americans die of cancer per day (Cancer Facts
and Figures 2005). In 2005, 253,500 new cases of cancer of the digestive system are
expected. The respective 5-year survival rates for cancer of the liver, pancreas, and
stomach are 8%, 4%, and 23%. Radiation therapy is an important treatment option that
can extend survival and relieve symptoms in many patients.

It is essential in radiation therapy to have accurate knowledge of the position and
volume of the tumor to effectively apply sufficient radiation to the tumor while min-
imizing exposure to the surrounding normal tissue. Treatment is commonly planned
in simulation sessions with fluoroscopy, an imaging method in which X-rays strike a
fluorescent plate that is coupled to a video monitor. Unfortunately fluoroscopy does
not provide a sufficient contrast between abdominal tumors and their surrounding soft
tissues, which have similar densities. In preparation of radiation therapy, radio-opaque
metal clips are therefore implanted around the tumor. The high-density clips can be
observed in the fluoroscopy video as they move with the tumor. The tumors change po-
sition and may deform due to various rigid and non-rigid body movements. Respiration,
in particular, causes significant internal movements of abdominal tumors. Gierga et al.
[12], for example, measured the average magnitude of peak-to-peak tumor motion for
seven patients to be 7.4 mm in the cranio-caudal and 3.8 mm in the anterior-posterior
direction.
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After the planning phase is over, radiation therapy is tsibycperformed without
concurrent imaging of the tumor. Radiation sessions lagtraé seconds to minutes
during which tumor motion is likely to occur. Tpreventor reducethoracic and ab-
dominal tumor movement, breath-hold and controlled biagttechniques have been
proposed [2, 21]. Taompensatéor tumor movements, respiratory-gating and motion-
adaptive radiotherapy have been introduced [14, 18, 25.id&a of the compensating
technologies is to operate the radiation beam dependingetutnor position. Gating
technology can be used to turn the radiation beam on or offiedrer the tumor enters or
leaves the field of the beam, respectively. Tracking teagytan be used to move the
radiation beam with the tumor. The SMART system [18] and tiiztdeatment system
[25] are two sample implementations of motion-adaptiveatigrapy techniques.

The appearance of the new technologies reinforces the reichége analysis
methods that can accurately determine tumor position irtirea during the treatment
delivery process. For a method to be successful, it must wihin the limitations im-
posed by (1) imaging, (2) computing, and (3) actuating pees: (1) The frame rate
of the imaging process directly impacts tracking accurétoys a high rate would be
desirable. However, when fluoroscopy is used as the imagbigpatients are exposed
to radiation, and therefore a high frame rate cannot be gragld-rom the radiation
safety point of view, the tumor should be imaged as infrefjyes possible. (2) For the
method to work in real time, the inverse of the frame ratethirttie time the method can
take to capture a frame, measure tumor position in this frameé accurately estimate
tumor position in subsequent frames. (3) The actuatingga®causes a latency prob-
lem — it takes time to move hardware components and conteaidtiiation beam. The
unigue frame-rate, processing-time, and latency issusguish the tumor tracking
problem from other motion estimation problems in compuision, which typically
rely on high frame rates, do not have latency issues, andfonwestimating position
in the current frame based on measurements in previous $taerg, [8, 9]. The two
methods proposed here address the latency problem by &éatjntlae tumor position
for a large number of subsequent frames. Prediction acgusaevaluated by varying
parameters such as length of the measurement period, sanfiidjuency during the
measurement period, and length of the prediction period.

The proposed methods model and predict a patient’s sinaisbidathing patterns
based on Fourier analysis and least-squares fitting. Aisad§periodic motion can also
be found in the study of the cardiovascular system [1, 3, &d]ia human gait analysis,
e.g., [6,7,15, 16]. Related fields are pattern matchingroétseries, e.g., [10, 19, 20],
and data mining of periodic patterns, e.g., [13]. In radiatbncology, there has been
a relatively recent focus on tracking and prediction of tummmtion [5, 14,18, 22, 24,
25]. Our work is bringing about a connection between thedésfiey introducing new
motion prediction algorithms and applying them to an urgeoblem in radiotherapy.
Both methods have the potential to facilitate real-timeknag of the tumor motion
during the treatment process and allow for precise deligéradiation dose to moving
abdominal tumors.
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Fig. 1. Left: Problem Overview. Right A fluoroscopy image of an abdominaldurfhe six clips
surrounding the tumor are marked by white squares.

2 Clip Tracking and Prediction Methods

An overview of the problem is given in Figure 1, left. The king process is performed
on each frame of the incoming fluoroscopy video stream. Ateriirframek, the clip
positions in the pasL,; image frames are used to model the tumor motion in the
modeling phasel/. The model is then used to predict the tumor motion in the
subsequent frames of prediction ph&ieTracking is initiated by manual selection of a
region containing the clip in the first frame of the fluorosgejueo, see Figure 1, right.
This region is further processed to isolate the clip fronrbgalips that are potentially
included in the region. Each isolated clip is then matchedl tazicked in subsequent
frames using a template of a surgical clip. The template matched to the imageé
by maximizing the normalized correlation coefficient. iag proceeds by finding
the subimage of each subsequent frame that best matchethevitmplate. Breathing
is a quasi-periodic, roughly sinusoidal motion. The motdfrinternal organs due to
breathing is poorly understood. In the ideal case, the matiy) = (x(t), y(t), z(t))*

of the abdominal tumor is due to regular breathing, i.e.iggée in 7', so thatb(t) =
b(t+T) can be inferred from averaging the three-dimensional maifdts surrounding
clips. The motion can then be modeled with a simple sinusaidaeform, for example,

b(t) = m + acos(2xft — 1), )

describing changes in position in the cranio-caudal diwactvith amplitudea, fre-
quencyf = 1/T, phasep, and mean positiom. With a more general, realistic model,
the breathing motioh(t) can be written as an infinite Fourier series

b(t) =m+ i ayp, COS (27;nt — wn) 2

n=1

in “magnitude-angle form” [26], wher& is the period of the signal(t) = b(t +
T),m =1/T fio b(t)dt is the mean or “DC” component @{t), a,, = /b2 + ¢

the magnitudey),, = arctan(§>) the phase offset), = % fOT b(t) cos 2t dt and

en =2 fOT b(t) sin 22 dt. Equation 2 can also be written in terms of multiples of the
breathing frequency,, = %, which yieldsb(t) = m + Y07 | a, cos (27 f,t — ).

The cranio-caudal motioh(t) is measured at discrete poinif] in time during
a finite window L, (see Section 2). If,; is chosen as an integral multiple of the
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Fig. 2. Clip motion modeling using the shape function approach.
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periodT (at least approximately), the discrete-time sequeyiééis periodic inL,
with a discrete Fourier transform (DFT)[n] that is periodic inl /L. The transform
pairs are

La—1 1 Ly—1

y[k;] = Z Y[n]ejZTrkn/LM and Y[n] = E Z y[k}efj%rkn/LM. 3)

n=0 —
The power spectrunt’[n]|? can be used to analyze tﬁeodistribution of the frequency
coefficients of the data. If there is a strong peak in the p@pectrum we may conclude
that there is @ominant frequency,,.x that models the breathing frequency well. This
frequency is thd /T'th frequency coefficient il 5, is a multiple of7” and nearby other-
wise. Thedominant periodl,,.y is the inverse of .. Analysis of the power spectrum
helps us determine whether an individual is breathing inrsisbent pattern and also
whether there is a problem with the system such as jitterdrclip tracking process.

In the following sections we introduce two methods that uearfer analysis to
characterize breathing motion. Both methods model theiderable variations in mean
m, amplitudea, and dominant frequency of tumor motion that we and others, e.g.,
[18], have observed.

2.1 The Shape-function Approach

We developed a general motion model
b(t) =m+aS(®(t)), 4)

where theshapeS is a quasi-sinusoidal function that maps a phase addlg =

f(f 2n f(T)dT — 1 to a position inn-dimensional space, i.€§, : [0,27] — R™ with

n = 1,2 or 3. In our data, significant motion only occurs in the cranioda direction,

so we present our waveform model and prediction algorithnthfe case ofi = 1. Our
approach, however, can also be generalized to model thelitwensional motion of
clip position(z[k], y[k])* in fluoroscopy video. The approach also applies to 1D mea-
surements of air flow [5] and can be generalized to three-aioaal measurements
of the breathing motion obtained by the multiple x-ray inmegsystem described by
Shirato et al. [25].

The shape functiol® models the trajectory of the tumor over a single breathing
cycle. It is used as waveform patterror temporal templatéhat models past move-
ments in order to predict future movements. Figure 2 showssthps of the model-
ing process. To obtain the initial motion modglt), the parameters.y, f1,1, and
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ay are computed from the discrete Fourier transform of the firgt measurements
y[0],...,y[Ly — 1] as described above.

The initial shape functior8; is assumed to be a sinusoid frdirto 27. Accord-
ing to Equation 4, the first motion model is thén(t) = my + aq sin(27 f1t — 1),
where the dominant frequendy is chosen instead of the average frequelicy =
1/t f(f 27 f(7)dr. The tumor positions predicted for future frames 1 tot + Lp are
thenb;(t + 1),...,b1(t + Lp). To obtain a motion modély (t) at timek, the previ-
ous shape functioS;_; is used asS;, and the discrete Fourier transform of the last
Ly, position measurementgk — Ly, + 1],...,y[k] is computed, which yields the
parametersy, fi, ¥r, andmg:

bi(t) = my + ar Sk(27 fit — V). )

The mean squared error (MSE) between this méggl) and the measuremengfc —
Ly +1],...,y[k] is computed to evaluate the accuracy of the model. If the &stoo
large, the model is improved by updating the shape funcdoliows. The most recent
measured positiongt] during a full periodt = k—1/f,+1, ..., k are combined with
an appropriate discretizati@), to yield

Si(®k(t)) = Mw(t) Sk(®x(t)) + (1 — Mw(t)) y[t], (6)

whereX > 0.5 is a constant that gives the shape function more weight themiea-
surements anab(t) is an exponential weighting function that gives recent mesas
ments greater weight than earlier measurements. The motagtel b, (t) = my +
ax S}, (27 fiit — 1y, is then used to predict the neki tumor positions.

2.2 TheHalf-cycle Approach

The half-cycle approach is an alternative method for ptedicabdominal tumor mo-
tion. Instead of using a shape function as a temporal temfitatone breathing cycle,
it uses a sinusoid as a template for half a breathing cycle.agproach computes a
sequence of sinusoids that models the motion history franbtginning of the video,
i.e.,y[0],...,y[k], and is used to predict tumor positiofg + 1], .. ., y[k + Lp]. Each
sinusoid models the data during an inhalation or an exloalgthase.

We consider the meamy, of the datay[0], ..., y[k] to be the “neutral” position of
a clip (or the collection of clips describing the tumor) titeisssumes when inhalation
changes to exhalation and vice versa. The meandominant periodl}, and phase
anglet, are obtained by Fourier analygjf0], ..., y[k] as described above. We then
subtractn,, from the data so that the clip in the resulting sequepgB), . . ., ym[k] IS
shifted to the ideal position 0 mm. Due to the digitizatiortiofe, the neutral position
typically occurs at zero crossings in the data. Not all zeossings, however, corre-
spond to neutral positions because of noise in the measatenwe consider framg
to contain a candidate zero crossing if eithgift.] = 0 or if there is a sign change from
ymlt. — 1] toym[t.]. Phase)y is used to determine the first frartie with a zero cross-
ing. The frame containing the next zero crossing is locatea $mall window around
t., + Ti/2. Subsequent zero crossings are found similarly by seagchia window
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around the frame index obtained from adding the half of theidant period to the
previous zero crossing. To select a single point among akvandidate zero crossings
in the same window, we use a non-maximum suppression digofR3].

Once the zero crossings have been located, half a cycle alimecfunction is fitted
between each pair of crossings. The frequency ofjthecosine template ig; ; =
1/(2(ts,,, — t-,)), the phase is eithef or X, and the amplitude,, ; is computed
using a least squares method:

brjpa Tty

ay,j = arg main Z (acos[2m(t +t2,) frj — Vrj] — Ymlt + tzj])z‘ (7)
t=0

The parameters of the resultiridnalf-cycle cosine functions are then used as models to
predict the parameters of thie- 1st half cycle. In particular, predicted frequengy;+1

is the weighted average of the frequencfgs, . . ., fx, ;. Each frequency is weighted
by its index so that the most recent breathing pattern iswated for most. Predicted
amplitudeay, ;41 is computed similarly frony o, . . ., ax ;. Predicted phasey, ;11 is

3 . .
o if Yy ; is § and 5 otherwise.

3 Resaults

The tracking and modeling methods were tested on fluorosdoey of seven patients
obtained under clinical protocol during simulation sessiprior to radiation treatment.
The patient names used here are fictitious. The videos cmutai total of 23 clips. We
verified by visual inspection that the clips were generaligked reliably.

Radiation exposure time during the fluoroscopy sessiondimésd to about seven
breathing cycles. The length of the videos ranged from 2B&te. For five sequences,
we were able to test our algorithm with a modeling window tbngf L, = 480,
which corresponded to about four breathing cycles. Forleshorter sequences, we
usedL,; = 380. We evaluated the prediction performance of the motion Hsofbe
the remaining breathing cycles. To obtain a sample thatfiic®ntly large for testing,
we moved the modeling windo( = 100 times through the video, each time by one
frame. A length ofL p = 10 was used for the prediction window.

Prediction accuracy of the motion model at tihés computed by averaging the
distances between predicted and eventually measureddataigt) andy(t) over the
length of the prediction window® (k) = Lip Zfi,fp |b(t) —y(t)]. We also compute the
prediction accuracy of modeling the motion in a full videodseraging the results ob-
tained for thek” motion models tested? = + S K | E,(k), where the first prediction
k = 1 starts at framd.; + 1. The average errors for the seven patients was 1.64 mm
using the shape-function approach and 1.04 mm using thechelé approach, which
is considerably lower. However, the average variance irethar was 0.2 mrhfor the
shape-function approach and 0.85 ffar the half-cycle approach, which is consid-
erably higher. Table 1 shows the motion prediction resultmore detail. Examples of
successful prediction using the two approaches are showigime 3.

The average and standard deviations of the 100 shape foscie shown in Fig-
ure 4 for two patients. The graphs show the signal depend#ribe standard deviation
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Table 1. Prediction Results with the Shape-function Approach and the Half-cygheo®eh.

Patient No. Prediction Error Period
of | Average | Variance in Hz
Clips| inmm in mm?
ShapeCycle ShapeCycle ShapeCycle)
Alice |4 2.62 1.63 0.54 1.6 3.45 3.73
Bob |2 1.75 0.76 0.14 0.25 2.90 2.8§
Carol (3 2.81 1.24 0.52 2.14 3.47 3.26
Doug |3 0.78 0.81] 0.03 0.66 3.38 3.52
Eve |7 0.90 0.72 0.05 0.42 2.94 3.24
Frank |2 1.69 159 0.05 0.73 3.38 3.53
Gary |2 0.90 0.52 0.03 0.07 3.19 2.88

of the shape model. In particular, the position model degiatore for phase angles cor-
responding to inspiration than expiration. This indicatest our breathing prediction
in the direction of the cranium is more reliable than in thadz direction.

The methods’ prediction accuracy over longer predictiondeivs was tested for
patient Eve. Eve’s video is the longest among the videos bmsled us to tesf< = 260
predictions. The error for the prediction window lengihs = 1, ...,120 is shown in
Figure 5, top, for the two methods. We also evaluated thegied accuracy of motion
models that were computed over modeling windows with theeskamgth but sparser
sampling. Figure 5, bottom, shows the average predictimr @hen the output of the
tracker is sampled at a rate 86/j Hz for j = 1,2,...,15. The average errors for
sampling rates 10 Hz, 15 Hz, and 30 Hz are approximately timesa

4 Discussion and Conclusions

We have introduced two motion modeling and prediction mastor tracking abdomi-
nal tumor movement. With average errors of 1.64 mm and 1.04thmrmotion predic-
tion methods appear to model the tumor movement rather @etlgoal is to eventually
reduce the error to less than 1 mm in order to facilitate tiead-tracking of the tumor
motion during the treatment process and allow for preci$igaty of radiation dose to
mobile tumors.

In future work, we will examine whether a combination of titapproaches re-
sults in more accurate modeling and prediction performaHoe zero-crossing analysis
in the half-cycle approach may serve to verify the frequeamay phase estimation in the
shape function approach. Longer training times may imppreeliction performance.
Longer sequences may be obtained without exposing pateatiditional radiation by
tracking external markers that are placed on the patiehti®men with a visible-light
or infra-red video camera. Preliminary results [11] sugtfest there is a correlation be-
tween the motion of the clips and such external markers. Qalig to lower the frame
rate as much as possible to limit the imaging radiation dadiwated to the patient.
Our preliminary results indicate that a frame rate of 30 Hx mat be necessary for
reliable prediction of breathing motion. While both methoaaintain low error rates
in the sampling experiment, more testing is needed to etatuacking performance at
reduced frame rates.
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Fig. 3. Position prediction results for Bob (top) and Gary (bottom) using the shap#ion ap-
proach (left) and the half-cycle approach (right). The output fromtttheker is shown in light
gray, the training period..,, for the shape-function approach and the fitted sinusoids in the half-
cycle approach respectively in black, and the predicted positions ingalayk

In addition to accuracy, ease of use is crucial for a new telclyy to become ap-
plicable to the clinical environment. With current techomy, complete patient setup
and treatment in a busy clinic typically fit within a 15-mieuappointment. Our al-
gorithms are therefore incorporated into an easy-to-usgater interface. A human
operator can use a single mouse click to select the imagerrégat contains the clip in
the initial frame. The remaining tracking, modeling, anddiction processes are then
computed automatically.

For our future motion-adaptive radiotherapy system, wa pause frame buffering
to store the images acquired while the operator selectslife in the initial frame.
During this period, the patient keeps breathing and thesafijpve. The tracker must
analyze the buffered frames and then catch up to the incofréinges so that the clip
positions are tracked in real time.
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