
Model-Based Development with Validated Model
Transformation

László Lengyel, Tihamér Levendovszky, Gergely Mezei and Hassan Charaf

Budapest University of Technology and Economics,
Goldmann György tér 3.
1111 Budapest, Hungary

Abstract. Model-Driven Architecture (MDA) as a model-based approach to
software development facilitates the synthesis of application programs from
models created using customized, domain-specific model processors. MDA
model compilers can be realized by graph rewriting-based model transforma-
tion. In Visual Modeling and Transformation System (VMTS), metamodel-
based transformation steps enables assigning OCL constraints to model trans-
formation steps. Based on this facility, the paper proposes a novel validated
model transformation approach that can ensure to validate not only the individ-
ual transformation steps, but the whole transformations as well. The discussed
approach provides a visual control flow language to define transformations
visually in a simple way that results more efficient development process. The
presented methods are illustrated using a case study from the field of model-
based development.

1 Introduction

Model-driven development approaches (e.g. Model-Integrated Computing (MIC) [1]
and OMG’s Model-Driven Architecture (MDA) [2] emphasize the use of models at
all stages of system development. They have placed model-based approaches to soft-
ware development into focus.

MIC advocates the use of domain-specific concepts to represent the system design.
Domain-specific models are then used to synthesize executable systems, perform
analysis or drive simulations. Using domain concepts to represent the system design
helps increase productivity, makes systems easier to maintain, and shortens the devel-
opment cycle.

MDA offers a standardized framework to separate the essential, platform-
independent information from the platform-dependent constructs and assumptions. A
complete MDA application consists of a definitive platform-independent model
(PIM), one or more platform-specific models (PSM) including complete implementa-
tions, one on each platform that the application developer decides to support. The
platform-independent artifacts are mainly UML and other software models containing
enough specification to generate the platform-dependent artifacts automatically by
model compilers.

Lengyel L., Levendovszky T., Mezei G. and Charaf H. (2006).
Model-Based Development with Validated Model Transformation.
In Proceedings of the 2nd International Workshop on Model-Driven Enterprise Information Systems, pages 39-48
DOI: 10.5220/0002474400390048
Copyright c© SciTePress

Transformations appear in many different situations in a model-based development
process. A few representative examples are as follows. (i) Refining the design to
implementation; this is a basic case of PIM/PSM mapping. (ii) Aspect weaving; the
integration of aspect models/code into functional artifacts is a transformation on the
design. (iii) Analysis and verification; analysis algorithms can be expressed as trans-
formations on the design.

One can conclude that transformations in general play an essential role in model-
based development, thus, there is a need for highly reusable model transformation
tools. These tools must make the model transformation flexible and expressive, there-
fore, it should preferably be defined visually. Furthermore they should support con-
trol flow, constraints, parameter passing between sequential rules, and conditional
branching. Moreover, they should be user friendly and simple to use to make the
development as efficient as it is possible.

The approach presented here uses graph rewriting-based visual model transforma-
tion. To define the transformation steps precisely and support the validated model
transformation beyond the structure of the visual models, additional constraints must
be specified which ensure the correctness of the attributes, or other properties can be
enforced. Using Object Constraint Language (OCL) [3] constraints provides a solu-
tion for these issues. The use of OCL as a constraint and query language in modeling
is found to be simple and powerful. We have shown that it can be applied to model
transformations as well [4].

The main contribution of the current paper is the validated online model transfor-
mation. Section 2 presents the motivation on a real word case study. Section 3 intro-
duces the principles of the validated model transformation: the relation between the
pre- and postconditions and OCL constraints propagated to model transformation
steps. Section 3.1 shortly presents the Visual Control Flow Language (VCFL) of the
Visual Modeling and Transformation System (VMTS) [5] that facilitates an efficient
and simple way to define model transformations visually. Using the motivation case
study, Section 3.2 discusses the details of the validated model transformation. The
approach presented here makes possible to require transformation steps as well as the
whole transformations to validate, preserve or guarantee certain properties during the
transformation. Section 4 summarizes the related work and compares VMTS with
other model transformation approaches. Finally, conclusions are provided.

2 Motivation – A Case Study

To illustrate the motivations on a real word example a case study is provided. The
case study is a variation of the “class model to relational database management sys-
tem (RDBMS) model” transformation (also referred to as object-relational mapping).

The requirements stated against the transformation that it should guarantee are the
following properties:

- Classes that are marked as non-abstract in the source model should be trans-
formed into a single table of the same name in the target model. The resultant
table should contain one added primary key column, one column for each at-

40

tribute in the class, and one or more columns for associations based on the
next rule.

- In general, an association may, or may not, map to a table. It depends on the
type and multiplicity of the association.

 Many-to-many (N:N) associations, should be mapped to distinct tables.
The primary keys for both related classes should become attributes of the
association table (foreign keys). Foreign keys do not allow NULL values

 One-to-many (1:N) and associations, using one or more foreign key col-
umns should be merged into the table for the class on the “many” side.

 For one-to-one (1:1) associations, also the foreign key should be buried
optionally in one of the affected tables.

- Parent class attributes should be mapped into tables created from inherited
classes.

The required rules jointly guarantee that the generated database is in third normal
form [6].

At the implementation level, system validation can be achieved by testing. Various
tools and methodologies have been developed to assist in testing the implementation
of a system (for example, unit testing, mutation testing, and white/black box testing).
However, in case of model transformation environments, it is not enough to validate
that the transformation engine itself works as it is expected. The transformation speci-
fication should also be validated.

There are only few and not complete facilities provided for testing offline trans-
formation specifications in an executable style. Related to the expected output there is
nothing that can be guaranteed by these transformations. The transformation should
be tested: not only the syntactical but the semantical correctness is also required. In
fact, the testing requires huge efforts, and even after the testing it is not guaranteed
that the transformation produces the expected output for all valid input. The reason is
that there is no real possibility that the testing covers all the possible cases. But, in the
case of the case study the following issues should be guaranteed by the transforma-
tion: (i) Each table has primary key, (ii) each class attribute is part of a table, (iii) each
parent class attribute is part of a table created for its inherited class, (iv) each many-
to-many association has a distinct table, (v) each one-to-many and one-to-one asso-
ciation has merged into the appropriate tables, (vi) foreign keys not allow NULL
value, and (vii) each association class attribute buried into the appropriate table based
on the multiplicities of its association.

There is a need for a solution that can validate model transformation specifications:
online validated model transformation that guarantees if the transformation finishes
successfully, the generated output (database schema) is valid, and it is in accordance
with the requirements above.

3 Validated Model Transformation

Graph rewriting [7] is a powerful technique for graph transformation with a strong
mathematical background. The atoms of graph transformations are rewriting rules,
each rule consists of a left-hand side graph (LHS) and right-hand side graph (RHS).

41

Applying a graph rewriting rule means finding an isomorphic occurrence (match) of
LHS in the graph the rule being applied to (host graph), and replacing this subgraph
with RHS.

The Object Constraint Language is a formal language for the analysis and design
of software systems. It is a subset of the UML standard [8], and OCL allows software
developers to write constraints and queries over object models. A precondition to an
operation is a restriction that must be true immediately prior to its execution. Simi-
larly, a postcondition to an operation is a restriction that must be true immediately
after its execution.

A precondition assigned to a transformation step is a boolean expression that must
be true at the moment when the transformation step is fired. Similarly, a postcondition
assigned to a transformation step is a boolean expression that must be true after the
completion of a transformation step. If a precondition of a transformation step is not
true then the transformation step fails without being fired. If a postcondition of a
transformation step is not true after the execution of the transformation step then the
transformation step fails. A direct corollary of this is that an OCL expression in LHS
is a precondition to the transformation step, and an OCL expression in RHS is a post-
condition to the transformation step. A transformation step can be fired if and only if
all conditions enlisted in LHS are true. Also, if a transformation step finished success-
fully then all conditions enlisted in RHS must be true [4].

3.1 VMTS Visual Control Flow Language

VMTS is an n-layer metamodeling environment which supports editing models ac-
cording to their metamodels, and allows specifying OCL constraints. Models are
formalized as directed, labeled graphs. VMTS uses a simplified class diagram for its
root metamodel (“visual vocabulary”). Also, VMTS is a model transformation sys-
tem, which transforms models using graph rewriting techniques. Moreover, the tool
facilitates the verification of the constraints specified in the transformation step dur-
ing the model transformation process.

Model-to-model transformations often need to follow an algorithm that requires a
stricter control over the execution sequence of the steps. The VMTS approach is a
visual approach and it also uses graphical notation for control flow: stereotyped UML
activity diagram [8]. VMTS Visual Control Flow Language (VCFL) is a visual lan-
guage for controlled graph rewriting and transformation, which supports the follow-
ing constructs: sequencing transformation steps, branching with OCL constraints,
hierarchical steps, parallel execution of the steps, and iteration.

The branching construct is required, because often, the transformation that we
would like to apply depends on a condition. In VCFL, OCL constraints assigned to
the decision elements can choose between the paths of optional numbers, based on
the properties of the actual host model and the success of the last transformation step
(SystemLastRuleSucceed).

In VMTS, LHS and RHS of the transformation steps are built from metamodel
elements. This means that an instantiation of LHS must be found in the input model
instead of the isomorphic subgraph of LHS.

42

VMTS facilitates a refined description of the transformation steps. When the trans-
formation is performed, the changes are specified by the RHS and internal causality
relationships defined between the LHS and the RHS elements of a transformation
step. Internal causalities can express the modification or removal of an LHS element,
and the creation of an RHS element. XSLT scripts can access the attributes of the
objects matched to the LHS elements, and produce a set of attributes for the RHS
element to which the causality points.

The interface of the transformation steps allows the output of one step to be the in-
put of another step (parameter passing). In VCFL, this construction is referred to as
external causality. This feature accelerates the matching and reduces the complexity.

3.2 Validated Solution of the Case Study

In this section, a validated solution for the transformation Class2RDBMS supported
by VCFL is presented. The case study follows the entity-driven database design and
the existence-based identity implementation [6]. The metamodel for class models is
shown in Fig 1a. A model consists of classes and relations between them (Inheri-
tance, Association and Dependency). The MetaClass attributes describes the follow-
ing. A class can be abstract, and it consists of ClassAttributes and ClassOperations.

The metamodel for RDBMS models is depicted in Fig. 1b. An RDBMS model
consists of one or more tables. A table consists of one or more columns, which are
defined as attributes of the metatype Table.

Fig. 1. VMTS Class diagram and Relational Database metamodels.

An example input and its required output model are depicted in Fig. 2. In the input
model, the classes Inhabitant and Institute are abstract. The relation between the
classes Adult and Institute is N:N. In Fig. 2b, there is a table for each non-abstract
class and there are two connection tables for the N:N relationships (tables
Adult_School and Adult_Company). Each table enlists its columns and their data type.

The control flow model of the case study (Fig. 3) can be divided into three parts
according to the goal of the units. (i) The large loop on the top is responsible for the
table creation and inheritance-related issues. (ii) The step ProcessAssociation proc-
esses the associations. (iii) Finally, the last steps remove the helper nodes and tempo-
rary associations.

43

One of the major challenges is to process the inheritance hierarchy properly, so the
transformation must traverse the inheritance chains, because the parent class associa-
tion should be taken into account recursively by subclasses.

The first step (CreateTable) is depicted in Fig. 4a. It matches a non-abstract class
and creates a table based on it.

Fig. 2. (a) Example input of the case study, (b) Required output of the example input model.

Fig. 3. The VCFL model of the transformation Class2RDBMS.

To require certain properties of the transformation step CreateTable the following
constraints are applied:

context Class inv NonAbstract:
not self.abstract

The constraint NonAbstract is assigned to the pattern rule node (PRN) Class in
LHS of the step CreateTable. This link forms a precondition, it requires the step to
process only non-abstract classes.

context Table inv PrimaryKey:
self.columns->exists(c | c.datatype = 'int' and c.is_primary_key)

44

The constraint PrimaryKey is a postcondition of the step CreateTable, it is as-
signed to the PRN Table. This guarantee type constraint requires the step that all
created table has a primary key of int type.

context Table inv PrimaryAndForeignKey:
not self.columns->exists(c | (c.is_primary_key or
c.is_foreign_key) and c.allows_null)

The constraint PrimaryAndForeignKey of guarantee type is also a postcondition
that necessitates the primary and foreign key columns do not allow NULL values.

context Atom inv ClassAttrsAndTableCols:
self.class.attribute->forAll(self.table.column->
exists(c | (c.columnName = class.attribute.name))

The guarantee type constraint ClassAttrsAndTableCols is linked to the PRN Ta-
bleHelperNode, it requires that each class attribute should have a created column with
the same name in the resultant table.

Fig. 4. Transformation steps (a) CreateTable and (b) ProcessAssociation.

If the step CreateTable was successful, the decision object selects the branch
pointing to the step CreateParentClassHelper, otherwise it selects ProcessAssocia-
tion.

Step AddParentAssociation creates a temporary association that links the subclass
to the neighbors of the parent class. These associations facilitate that the step Proces-
sAssociations processes not only the direct associations of a class, but the association
of its parents as well.

The external causalities defined between the steps ShiftParentClassHelper and
AddParentAssociation are depicted in Fig. 5. The ParentClassHelperNode connects a
subclass with its parent class, but the parent class can also have a parent. The trans-
formation must traverse the whole inheritance hierarchy. The step ShiftParent-
ClassHelper removes the original ParentClassHelperNode and adds a new one which
links the subclass to the parent of the parent class.

The step ProcessAssociation (Fig. 4b) uniformly processes the associations and the
helper parent associations as well. It creates association tables (N:N associations), and

45

completes the already existing tables (1:N and 1:1 associations) with new foreign key
columns. The following constraints are assigned to the step ProcessAssociation:

context Association inv OneToOneOrOneToMany:
(self.leftMaxMultiplicity = '1' or self.rightMaxMultiplicity = '1')
implies self.attribute->forAll (self.class1.helperNode.table.column->
exists(c | (c.columnName = attribute.name)) or self.attribute->forAll
(self.class2.helperNode.table.column->exists(c | (c.columnName = at-
tribute.name))

The constraint OneToOneOrOneToMany guarantees that the attributes of the one-
to-one and the one-to-many association are buried into one of the tables created for
the classes connected by the actually processed association.

context Association inv ManyToMany:
(self.leftMaxMultiplicity = '*' and self.rightMaxMultiplicity = '*')
implies self.attribute->forAll(self.class1.helperNode.table. con-
nectTable.column->exists(c | (c.columnName = attribute.name))

The constraint ManyToMany guarantees that, for each many-to-many type associa-
tion in the resulted model, there is a distinct table. Furthermore, the table contains all
attributes of the association with the same name.

Fig. 5. Transformation step AddParentAssociation and external causalities between steps Shift-
ParentClassHelper and AddParentAssociation.

The last three transformation steps remove the remaining instances of the helper
nodes, and restore the original properties of the class model elements. As a result of
these steps, the input model becomes free of any helper structure.

The constraints assigned to the transformation steps guarantee the requirements
from Section 2. As it is presented, after a successful step execution the conditions
hold and the output is valid that cannot be achieved without constraints.

4 Related Work and Comparison

Many approaches have been introduced in the field of graph grammars and transfor-
mations to capture graph domains; for instance, the GReAT [9], the PROGRES [10],

46

the FUJABA [11], the VIATRA [12], and AGG [13]. These approaches are specific
to the particular system, and each of them has some features that others do not offer.

The GReAT framework is a transformation system for domain specific languages
(DSL) built on metamodeling and graph rewriting concepts. The control structure of
GReAT allows specifying an initial context for matching to reduce the complexity of
the general matching case. PROGRES is a visual programming language in the sense
that it has a graph-oriented data model and a graphical syntax for its most important
language constructs. In FUJABA, a combination of activity diagrams and collabora-
tion diagrams (story-diagrams) are used to express control structures. VIATRA is a
model transformation framework, its attribute transformation is performed by abstract
state machine statements, and there is built-in support for attributes of basic Java
types. AGG is a visual tool environment consisting of editors, interpreter and debug-
ger for attributed graph transformation; attribute computation by Java. The control
structure of AGG is given by layers.

The Model-Driven Architecture offers a standard interface to implement model
transformation tools. The transformation related part of MDA is the Query, Views,
Transformation for MOF 2.0 [14]. Three types of operations are provided: queries on
models, views on metamodels and transformation on models.

Compared to other approaches, VMTS meets the expectations in model-to-model
and model-to-code transformation. VMTS has state of the art mechanisms for vali-
dated model transformation, constraint management and control flow definition. It
has several standalone algorithms and other solutions that make them efficient.

VMTS has a unique constraint management and online transformation validation
support. It provides a high-level control flow language with several constructs that
optimize and make the transformations highly configurable: external causalities, effi-
cient branch selecting, and pivot nodes. The constraint-driven branching mechanism
of the VMTS is unique in the sense that the decision is made not only based on the
actual state of the input model but using system variables (SystemLastRuleSucceed)
as well. If a transformation step fails and the next element in the control flow is a
decision object, then it could provide the next branch based on the constraints. This
VMTS construct accelerates and makes the transformation more efficient and the
control flow model simpler, there is no need to define test rules.

5 Conclusions

Model-based development necessitates the transformation of models between differ-
ent stages of the design process. These transformations must be precisely – preferably
visually – specified. In this paper, a graph-transformation-based technique for speci-
fying such a model transformation is presented. It has been shown that VMTS pro-
vides a high level visual language to define transformations in an easy way. In the
provided control flow approach the transformations are represented in the form of
explicitly sequenced transformation steps. We have shown the fundamental concepts
of the VMTS approach, namely, the metamodel-based model transformation steps,
the external- and internal-causalities for parameter passing, constraint support, and
conditional branching with OCL constraints.

47

The main result of the paper is illustrating online validated model transformation
that applying OCL constraints propagated to transformation steps facilitates to require
the whole transformations to validate, preserve or guarantee certain model properties.

VCFL has already been applied in MDA-based industrial projects successfully,
such as generating user interface from resource model, user interface handler code
from statechart model for Symbian [15], and .NET CF mobile platforms [4].

Acknowledgements

The activities described in this paper supported, in part, by Information Technology
Innovation and Knowledge Centre.

References

1. J. Sztipanovits, and G. Karsai, Model-Integrated Computing, IEEE Computer, Apr. 1997,
pp. 110-112.

2. OMG MDA Guide Version 1.0.1, OMG, doc. number: omg/2003-06-01, 12th June 2003,
http://www.omg.org/docs/omg/03-06-01.pdf

3. OMG Object Constraint Language Spec. (OCL), www.omg.org
4. L. Lengyel, T. Levendovszky, H. Charaf, Implementing an OCL Compiler for .NET, In

Proceedings of the 3rd International Conference on .NET Technologies, Pilsen, Czech Re-
public, May-June 2005, pp. 121-130.

5. The VMTS Homepage. http://avalon.aut.bme.hu/~tihamer/research/vmts
6. Michael R Blaha, and William Premerlani, Object-Oriented Modeling and Design for

Database Applications, Prentice Hall, 1998.
7. G. Rozenberg (ed.), Handbook on Graph Grammars and Computing by Graph Transforma-

tion: Foundations, Vol.1 World Scientific, Singapore, 1997.
8. OMG UML 2.0 Specifications, http://www.omg.org/uml/
9. G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, On the Use of Graph Transformation in the

Formal Specification of Model Interpreters, Journal of Universal Computer Science, 2003.
10. J. Reekers, A. Schürr, Defining and Parsing Visual Languages, Journal of Visual Lan-

guages and Computing, 8, Academic Press, 1997, pp. 27-55.
11. H. J. Köhler, U. A. Nickel, J. Niere, A. Zündorf, Integrating UML Diagrams for Production

Control Systems, ICSE, Limerick Ireland, ACM Press, 2000, pp. 241-251.
12. D. Varró and A. Pataricza, “VPM: A visual, precise and multilevel metamodeling frame-

work for describing mathematical domains and UML”, SoSyM, 2003.
13. G. Taentzer, AGG: A Graph Transformation Environment for Modeling and Validation of

Software, In J. Pfaltz, M. Nagl, and B. Boehlen (eds.), Application of Graph Transforma-
tions with Industrial Relevance (AGTIVE’03), vol. 3062. Springer LNCS, 2004.

14. OMG Query/View/ Transformation. http://www.omg.org/docs/ptc/05-11-01.pdf.
15. L. Lengyel, T. Levendovszky, G. Mezei, B. Forstner, H. Charaf, Metamodel-Based Model

Transformation with Aspect-Oriented Constraints, International Workshop on Graph and
Model Transformation, GraMoT, ENTCS Vol. 152, Tallinn, Estonia, 2005, pp. 111-123.

48

