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Abstract. Model-Driven Architecture (MDA) as a model-based approach to 
software development facilitates the synthesis of application programs from 
models created using customized, domain-specific model processors. MDA 
model compilers can be realized by graph rewriting-based model transforma-
tion. In Visual Modeling and Transformation System (VMTS), metamodel-
based transformation steps enables assigning OCL constraints to model trans-
formation steps. Based on this facility, the paper proposes a novel validated 
model transformation approach that can ensure to validate not only the individ-
ual transformation steps, but the whole transformations as well.  The discussed 
approach provides a visual control flow language to define transformations 
visually in a simple way that results more efficient development process. The 
presented methods are illustrated using a case study from the field of model-
based development. 

1 Introduction 

Model-driven development approaches (e.g. Model-Integrated Computing (MIC) [1] 
and OMG’s Model-Driven Architecture (MDA) [2] emphasize the use of models at 
all stages of system development. They have placed model-based approaches to soft-
ware development into focus. 

MIC advocates the use of domain-specific concepts to represent the system design. 
Domain-specific models are then used to synthesize executable systems, perform 
analysis or drive simulations. Using domain concepts to represent the system design 
helps increase productivity, makes systems easier to maintain, and shortens the devel-
opment cycle. 

MDA offers a standardized framework to separate the essential, platform-
independent information from the platform-dependent constructs and assumptions. A 
complete MDA application consists of a definitive platform-independent model 
(PIM), one or more platform-specific models (PSM) including complete implementa-
tions, one on each platform that the application developer decides to support. The 
platform-independent artifacts are mainly UML and other software models containing 
enough specification to generate the platform-dependent artifacts automatically by 
model compilers.  
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Transformations appear in many different situations in a model-based development 
process. A few representative examples are as follows. (i) Refining the design to 
implementation; this is a basic case of PIM/PSM mapping. (ii) Aspect weaving; the 
integration of aspect models/code into functional artifacts is a transformation on the 
design. (iii) Analysis and verification; analysis algorithms can be expressed as trans-
formations on the design. 

One can conclude that transformations in general play an essential role in model-
based development, thus, there is a need for highly reusable model transformation 
tools. These tools must make the model transformation flexible and expressive, there-
fore, it should preferably be defined visually. Furthermore they should support con-
trol flow, constraints, parameter passing between sequential rules, and conditional 
branching. Moreover, they should be user friendly and simple to use to make the 
development as efficient as it is possible. 

The approach presented here uses graph rewriting-based visual model transforma-
tion. To define the transformation steps precisely and support the validated model 
transformation beyond the structure of the visual models, additional constraints must 
be specified which ensure the correctness of the attributes, or other properties can be 
enforced. Using Object Constraint Language (OCL) [3] constraints provides a solu-
tion for these issues. The use of OCL as a constraint and query language in modeling 
is found to be simple and powerful. We have shown that it can be applied to model 
transformations as well [4]. 

The main contribution of the current paper is the validated online model transfor-
mation. Section 2 presents the motivation on a real word case study. Section 3 intro-
duces the principles of the validated model transformation: the relation between the 
pre- and postconditions and OCL constraints propagated to model transformation 
steps. Section 3.1 shortly presents the Visual Control Flow Language (VCFL) of the 
Visual Modeling and Transformation System (VMTS) [5] that facilitates an efficient 
and simple way to define model transformations visually. Using the motivation case 
study, Section 3.2 discusses the details of the validated model transformation. The 
approach presented here makes possible to require transformation steps as well as the 
whole transformations to validate, preserve or guarantee certain properties during the 
transformation. Section 4 summarizes the related work and compares VMTS with 
other model transformation approaches. Finally, conclusions are provided. 

2 Motivation – A Case Study 

To illustrate the motivations on a real word example a case study is provided. The 
case study is a variation of the “class model to relational database management sys-
tem (RDBMS) model” transformation (also referred to as object-relational mapping).  

The requirements stated against the transformation that it should guarantee are the 
following properties: 

- Classes that are marked as non-abstract in the source model should be trans-
formed into a single table of the same name in the target model. The resultant 
table should contain one added primary key column, one column for each at-
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tribute in the class, and one or more columns for associations based on the 
next rule. 

- In general, an association may, or may not, map to a table. It depends on the 
type and multiplicity of the association. 

 Many-to-many (N:N) associations, should be mapped to distinct tables. 
The primary keys for both related classes should become attributes of the 
association table (foreign keys). Foreign keys do not allow NULL values 

 One-to-many (1:N) and associations, using one or more foreign key col-
umns should be merged into the table for the class on the “many” side. 

 For one-to-one (1:1) associations, also the foreign key should be buried 
optionally in one of the affected tables. 

- Parent class attributes should be mapped into tables created from inherited 
classes. 

The required rules jointly guarantee that the generated database is in third normal 
form [6]. 

At the implementation level, system validation can be achieved by testing. Various 
tools and methodologies have been developed to assist in testing the implementation 
of a system (for example, unit testing, mutation testing, and white/black box testing). 
However, in case of model transformation environments, it is not enough to validate 
that the transformation engine itself works as it is expected. The transformation speci-
fication should also be validated. 

There are only few and not complete facilities provided for testing offline trans-
formation specifications in an executable style. Related to the expected output there is 
nothing that can be guaranteed by these transformations. The transformation should 
be tested: not only the syntactical but the semantical correctness is also required. In 
fact, the testing requires huge efforts, and even after the testing it is not guaranteed 
that the transformation produces the expected output for all valid input. The reason is 
that there is no real possibility that the testing covers all the possible cases. But, in the 
case of the case study the following issues should be guaranteed by the transforma-
tion: (i) Each table has primary key, (ii) each class attribute is part of a table, (iii) each 
parent class attribute is part of a table created for its inherited class, (iv) each many-
to-many association has a distinct table, (v) each one-to-many and one-to-one asso-
ciation has merged into the appropriate tables, (vi) foreign keys not allow NULL 
value, and (vii) each association class attribute buried into the appropriate table based 
on the multiplicities of its association. 

There is a need for a solution that can validate model transformation specifications: 
online validated model transformation that guarantees if the transformation finishes 
successfully, the generated output (database schema) is valid, and it is in accordance 
with the requirements above. 

3 Validated Model Transformation 

Graph rewriting [7] is a powerful technique for graph transformation with a strong 
mathematical background. The atoms of graph transformations are rewriting rules, 
each rule consists of a left-hand side graph (LHS) and right-hand side graph (RHS). 
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Applying a graph rewriting rule means finding an isomorphic occurrence (match) of 
LHS in the graph the rule being applied to (host graph), and replacing this subgraph 
with RHS.  

The Object Constraint Language is a formal language for the analysis and design 
of software systems. It is a subset of the UML standard [8], and OCL allows software 
developers to write constraints and queries over object models. A precondition to an 
operation is a restriction that must be true immediately prior to its execution. Simi-
larly, a postcondition to an operation is a restriction that must be true immediately 
after its execution. 

A precondition assigned to a transformation step is a boolean expression that must 
be true at the moment when the transformation step is fired. Similarly, a postcondition 
assigned to a transformation step is a boolean expression that must be true after the 
completion of a transformation step. If a precondition of a transformation step is not 
true then the transformation step fails without being fired. If a postcondition of a 
transformation step is not true after the execution of the transformation step then the 
transformation step fails. A direct corollary of this is that an OCL expression in LHS 
is a precondition to the transformation step, and an OCL expression in RHS is a post-
condition to the transformation step. A transformation step can be fired if and only if 
all conditions enlisted in LHS are true. Also, if a transformation step finished success-
fully then all conditions enlisted in RHS must be true [4]. 

3.1 VMTS Visual Control Flow Language 

VMTS is an n-layer metamodeling environment which supports editing models ac-
cording to their metamodels, and allows specifying OCL constraints. Models are 
formalized as directed, labeled graphs. VMTS uses a simplified class diagram for its 
root metamodel (“visual vocabulary”). Also, VMTS is a model transformation sys-
tem, which transforms models using graph rewriting techniques. Moreover, the tool 
facilitates the verification of the constraints specified in the transformation step dur-
ing the model transformation process. 

Model-to-model transformations often need to follow an algorithm that requires a 
stricter control over the execution sequence of the steps. The VMTS approach is a 
visual approach and it also uses graphical notation for control flow: stereotyped UML 
activity diagram [8]. VMTS Visual Control Flow Language (VCFL) is a visual lan-
guage for controlled graph rewriting and transformation, which supports the follow-
ing constructs: sequencing transformation steps, branching with OCL constraints, 
hierarchical steps, parallel execution of the steps, and iteration. 

The branching construct is required, because often, the transformation that we 
would like to apply depends on a condition. In VCFL, OCL constraints assigned to 
the decision elements can choose between the paths of optional numbers, based on 
the properties of the actual host model and the success of the last transformation step 
(SystemLastRuleSucceed).  

In VMTS, LHS and RHS of the transformation steps are built from metamodel 
elements. This means that an instantiation of LHS must be found in the input model 
instead of the isomorphic subgraph of LHS.  
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VMTS facilitates a refined description of the transformation steps. When the trans-
formation is performed, the changes are specified by the RHS and internal causality 
relationships defined between the LHS and the RHS elements of a transformation 
step. Internal causalities can express the modification or removal of an LHS element, 
and the creation of an RHS element. XSLT scripts can access the attributes of the 
objects matched to the LHS elements, and produce a set of attributes for the RHS 
element to which the causality points.  

The interface of the transformation steps allows the output of one step to be the in-
put of another step (parameter passing). In VCFL, this construction is referred to as 
external causality. This feature accelerates the matching and reduces the complexity. 

3.2 Validated Solution of the Case Study 

In this section, a validated solution for the transformation Class2RDBMS supported 
by VCFL is presented. The case study follows the entity-driven database design and 
the existence-based identity implementation [6]. The metamodel for class models is 
shown in Fig 1a. A model consists of classes and relations between them (Inheri-
tance, Association and Dependency). The MetaClass attributes describes the follow-
ing. A class can be abstract, and it consists of ClassAttributes and ClassOperations.  

The metamodel for RDBMS models is depicted in Fig. 1b. An RDBMS model 
consists of one or more tables. A table consists of one or more columns, which are 
defined as attributes of the metatype Table.  

 
 

Fig. 1. VMTS Class diagram and Relational Database metamodels. 

An example input and its required output model are depicted in Fig. 2. In the input 
model, the classes Inhabitant and Institute are abstract. The relation between the 
classes Adult and Institute is N:N. In Fig. 2b, there is a table for each non-abstract 
class and there are two connection tables for the N:N relationships (tables 
Adult_School and Adult_Company). Each table enlists its columns and their data type.  

The control flow model of the case study (Fig. 3) can be divided into three parts 
according to the goal of the units. (i) The large loop on the top is responsible for the 
table creation and inheritance-related issues. (ii) The step ProcessAssociation proc-
esses the associations. (iii) Finally, the last steps remove the helper nodes and tempo-
rary associations.  
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One of the major challenges is to process the inheritance hierarchy properly, so the 
transformation must traverse the inheritance chains, because the parent class associa-
tion should be taken into account recursively by subclasses. 

The first step (CreateTable) is depicted in Fig. 4a. It matches a non-abstract class 
and creates a table based on it. 

 

 
 

Fig. 2. (a) Example input of the case study, (b) Required output of the example input model. 

 
 

Fig. 3. The VCFL model of the transformation Class2RDBMS. 

To require certain properties of the transformation step CreateTable the following 
constraints are applied: 

 
context Class inv NonAbstract: 
not self.abstract 
 

The constraint NonAbstract is assigned to the pattern rule node (PRN) Class in 
LHS of the step CreateTable. This link forms a precondition, it requires the step to 
process only non-abstract classes.  

 
context Table inv PrimaryKey: 
self.columns->exists(c | c.datatype = 'int' and c.is_primary_key) 
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The constraint PrimaryKey is a postcondition of the step CreateTable, it is as-
signed to the PRN Table. This guarantee type constraint requires the step that all 
created table has a primary key of int type. 

 
context Table inv PrimaryAndForeignKey: 
not self.columns->exists(c | (c.is_primary_key or 
c.is_foreign_key) and c.allows_null) 
 

The constraint PrimaryAndForeignKey of guarantee type is also a postcondition 
that necessitates the primary and foreign key columns do not allow NULL values. 

 
context Atom inv ClassAttrsAndTableCols: 
self.class.attribute->forAll(self.table.column-> 
exists(c | (c.columnName = class.attribute.name)) 
 

The guarantee type constraint ClassAttrsAndTableCols is linked to the PRN Ta-
bleHelperNode, it requires that each class attribute should have a created column with 
the same name in the resultant table. 

 

 
 

Fig. 4. Transformation steps (a) CreateTable and (b) ProcessAssociation. 

If the step CreateTable was successful, the decision object selects the branch 
pointing to the step CreateParentClassHelper, otherwise it selects ProcessAssocia-
tion. 

Step AddParentAssociation creates a temporary association that links the subclass 
to the neighbors of the parent class. These associations facilitate that the step Proces-
sAssociations processes not only the direct associations of a class, but the association 
of its parents as well. 

The external causalities defined between the steps ShiftParentClassHelper and 
AddParentAssociation are depicted in Fig. 5. The ParentClassHelperNode connects a 
subclass with its parent class, but the parent class can also have a parent. The trans-
formation must traverse the whole inheritance hierarchy. The step ShiftParent-
ClassHelper removes the original ParentClassHelperNode and adds a new one which 
links the subclass to the parent of the parent class.  

The step ProcessAssociation (Fig. 4b) uniformly processes the associations and the 
helper parent associations as well. It creates association tables (N:N associations), and 
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completes the already existing tables (1:N and 1:1 associations) with new foreign key 
columns. The following constraints are assigned to the step ProcessAssociation: 

 
context Association inv OneToOneOrOneToMany: 
(self.leftMaxMultiplicity = '1' or self.rightMaxMultiplicity = '1') 
implies self.attribute->forAll (self.class1.helperNode.table.column-> 
exists(c | (c.columnName = attribute.name)) or self.attribute->forAll  
(self.class2.helperNode.table.column->exists(c | (c.columnName = at-
tribute.name)) 
 

The constraint OneToOneOrOneToMany guarantees that the attributes of the one-
to-one and the one-to-many association are buried into one of the tables created for 
the classes connected by the actually processed association. 

 
context Association inv ManyToMany: 
(self.leftMaxMultiplicity = '*' and self.rightMaxMultiplicity = '*') 
implies self.attribute->forAll(self.class1.helperNode.table. con-
nectTable.column->exists(c | (c.columnName = attribute.name)) 
 

The constraint ManyToMany guarantees that, for each many-to-many type associa-
tion in the resulted model, there is a distinct table. Furthermore, the table contains all 
attributes of the association with the same name. 
 

 
 

Fig. 5. Transformation step AddParentAssociation and external causalities between steps Shift-
ParentClassHelper and AddParentAssociation. 

The last three transformation steps remove the remaining instances of the helper 
nodes, and restore the original properties of the class model elements. As a result of 
these steps, the input model becomes free of any helper structure. 

The constraints assigned to the transformation steps guarantee the requirements 
from Section 2. As it is presented, after a successful step execution the conditions 
hold and the output is valid that cannot be achieved without constraints. 

4 Related Work and Comparison 

Many approaches have been introduced in the field of graph grammars and transfor-
mations to capture graph domains; for instance, the GReAT [9], the PROGRES [10], 
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the FUJABA [11], the VIATRA [12], and AGG [13]. These approaches are specific 
to the particular system, and each of them has some features that others do not offer. 

The GReAT framework is a transformation system for domain specific languages 
(DSL) built on metamodeling and graph rewriting concepts. The control structure of 
GReAT allows specifying an initial context for matching to reduce the complexity of 
the general matching case. PROGRES is a visual programming language in the sense 
that it has a graph-oriented data model and a graphical syntax for its most important 
language constructs. In FUJABA, a combination of activity diagrams and collabora-
tion diagrams (story-diagrams) are used to express control structures. VIATRA is a 
model transformation framework, its attribute transformation is performed by abstract 
state machine statements, and there is built-in support for attributes of basic Java 
types. AGG is a visual tool environment consisting of editors, interpreter and debug-
ger for attributed graph transformation; attribute computation by Java. The control 
structure of AGG is given by layers.  

The Model-Driven Architecture offers a standard interface to implement model 
transformation tools. The transformation related part of MDA is the Query, Views, 
Transformation for MOF 2.0 [14]. Three types of operations are provided: queries on 
models, views on metamodels and transformation on models. 

Compared to other approaches, VMTS meets the expectations in model-to-model 
and model-to-code transformation. VMTS has state of the art mechanisms for vali-
dated model transformation, constraint management and control flow definition. It 
has several standalone algorithms and other solutions that make them efficient. 

VMTS has a unique constraint management and online transformation validation 
support. It provides a high-level control flow language with several constructs that 
optimize and make the transformations highly configurable: external causalities, effi-
cient branch selecting, and pivot nodes. The constraint-driven branching mechanism 
of the VMTS is unique in the sense that the decision is made not only based on the 
actual state of the input model but using system variables (SystemLastRuleSucceed) 
as well. If a transformation step fails and the next element in the control flow is a 
decision object, then it could provide the next branch based on the constraints. This 
VMTS construct accelerates and makes the transformation more efficient and the 
control flow model simpler, there is no need to define test rules. 

5 Conclusions 

Model-based development necessitates the transformation of models between differ-
ent stages of the design process. These transformations must be precisely – preferably 
visually – specified. In this paper, a graph-transformation-based technique for speci-
fying such a model transformation is presented. It has been shown that VMTS pro-
vides a high level visual language to define transformations in an easy way. In the 
provided control flow approach the transformations are represented in the form of 
explicitly sequenced transformation steps. We have shown the fundamental concepts 
of the VMTS approach, namely, the metamodel-based model transformation steps, 
the external- and internal-causalities for parameter passing, constraint support, and 
conditional branching with OCL constraints. 

47



The main result of the paper is illustrating online validated model transformation 
that applying OCL constraints propagated to transformation steps facilitates to require 
the whole transformations to validate, preserve or guarantee certain model properties. 

VCFL has already been applied in MDA-based industrial projects successfully, 
such as generating user interface from resource model, user interface handler code 
from statechart model for Symbian [15], and .NET CF mobile platforms [4]. 
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