
Design and Evaluation Criteria for Layered
Architectures

A. J. Gerber1, A. Barnard2 and A. J. van der Merwe2

1 Meraka Institute
Pretoria
Gauteng

South Africa

2 School of Computing, University of South Africa,
Muckleneuk, Pretoria

Gauteng
South Africa

Abstract. The architecture of a system is an indispensable mechanism required
to map business processes to information systems. The termsarchitecture, lay-
ered architectureandsystem architectureare often used by researchers, as well
as system architects and business process analysts inconsistently. Furthermore,
the conceptarchitectureis commonplace in discussions of software engineering
topics such as business process management and system engineering, but agreed-
upon design and evaluation criteria are lacking in literature. Such criteria are on
the one hand valuable for the determination of system architectures during the
design phase, and on the other hand, provides a valuable tool for the evaluation
of already existing architectures. The goal of this paper is thus to extract from
literature and best-practices such a list of criteria. We applied these findings to
two prominent examples of layered architectures, notably the ISO/OSI network
model and the Semantic Web language architecture.

1 Introduction

Currently, the architecture of a system is an indispensable mechanism used to map busi-
ness processes to the required information system [1]. The term ’architecture’ seems to
defy the creation of a common, agreed definition within the information system appli-
cation domain. Although the conceptarchitecture in software systemswas not formally
defined with the introduction of structured programming, it was implied in the work
of pioneers such as Parnas and Dijkstra [2–4]. These pioneers derived techniques to
model a system as consisting of components. Dijkstra was mainly concerned with pro-
gram clarity and correctness, and hence a program’s structure. Parnas introduced the
concept of ’a family of programs’ rather than a single program [2], as well as ’modu-
larization as a mechanism for improving flexibility and comprehensibility of a system
while allowing shortening of its development time’ [5]. Computer programs became

J. Gerber A., Barnard A. and J. van der Merwe A. (2006).
Design and Evaluation Criteria for Layered Architectures.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
163-172
DOI: 10.5220/0002476001630172
Copyright c© SciTePress



increasingly complex that forced separation of related functionality into sub-programs
or modules, enabling management of complexity and verification of correctness [6].

The implementation of software as modules invoked related issues such as ’low
coupling’,’high-cohesiveness’ and ’the separation of concerns’ that are adopted today
as best practices within system design [6, 7]. The abstraction of software system func-
tionality into modules, together with its interfaces is in essencethe determination of the
architecture of the system.

Furthermore, the termlayered architectureis often used in the vernacular of IT re-
searchers and system architects in the information systemsapplication domain. In the
early 80’s, the concept layered architecture was used by [8]to model the proposed un-
derlying network architecture of the International Standards Organisation’s Open Sys-
tems Interconnection (ISO/OSI model). This model are widely integrated into network
protocols and the Internet protocol TCP/IP, for instance, operates on the network and
transport layers of the OSI model[9]. [10] used a layered architecture to describe a ’real-
time distributed computing system from the functional, design, distribution and execu-
tion viewpoints’. To facilitate the vision of the Semantic Web, Berners-Lee, Hendler
and Lassila [11] described the underlying language architecture as layers. Recently,
Jeckle and Wilde [12] used the ISO/OSI layered architectureto describe a web services
protocol stack. [13] introduced a layered framework for classifying and organising the
descriptive models of an enterprise’s architecture.

As the complexity of software systems grow, there is consensus among researchers
and system architects that the determination of the architecture of a system is crucial
to the successful understanding and development thereof, especially when the system
envisaged is intricate and multifaceted. The conceptarchitectureis commonplace in
discussions of software engineering topics such as business process management and
system engineering, but agreed-upon design and evaluationcriteria are lacking in lit-
erature. Such criteria are on the one hand valuable for the determination of system
architectures during the design phase, and on the other hand, provides a valuable tool
for the evaluation of already existing architectures. The goal of this paper is thus to
extract from literature and best-practices such a list of criteria.

In sections 2 and 3 we provide the reader with an overview of the terms architec-
ture and layered architecture respectively, within the information system application
domain. A list of evaluation and design criteria for layeredarchitectures are compiled
in section 4. We applied this evaluation criteria to the ISO/OSI Network model [8], as
well as the proposed language architecture for the SemanticWeb [11] in section 5. In
conclusion it is our contention that the use of these evaluation criteria provide insight
into the architectural requirements of systems based on layered architectures.

2 Architecture

Bass, Clements and Kazman [1] define the software architecture of a program or com-
puting system as the structure or structures of the system, which comprise software ele-
ments, the externally visible properties of those elements, and the relationships among
them. In this context, an architecture describes elements and how elements relate to
each other. It omits non-relevant information and is therefore anabstractionof the sys-

164



tem. ’External visible properties’ are the assumptions other elements can make of an
element, such as services it provides or performance characteristics. Generally, systems
comprise more than one structure, and no structure alone isthearchitecture. All systems
encompass an architecture as any system can be viewed as a composition of elements
with relationships among them.

[14] states that the architecture of a system is a comprehensive framework that de-
scribes its form and structure, including its components and their organization. Further-
more, ’architectural design represents the structure of data and program components
that are required to build a computer-based system. It considers the architectural style
that the system will take, the structure and properties of the components that constitute
the system, and the interrelationships that occur among allarchitectural components of
the system’ [14, p.255].

Jacobson, Booch and Rumbaugh [15] define software architecture in the Unified
Process methodology as: encompassing the significant decisions about the organization
of a software system; the structural elements and their interfaces that will comprise
the system together with their behaviour as specified in the collaborations among those
elements; the composition of the structural and behavioural elements into progressively
larger subsystems; as well as the architectural style that guides this organization.

[16] identifies two common elements of system architecture,viz. the highest-level
breakdown of a system into its parts and the decisions that are hard to change. He also
states that a system comprises of multiple architectures, and that the view ofwhat is
architecturally significant, can change over a system’s lifetime.

From these definitions, we maintain that an architecture is adescription of the com-
ponents that encompass a system. The description of the components must include its
organization or structure, its defining features or properties, as well as their relationships
together with available interfaces that allows interaction with it. With these definitions
in mind, we argue that the following are important criteria during evaluation of existing
and development of new architectures:

– Architecture is defined within acertain context, where this context determines the
important aspects of a system, the components necessary to realize the system,
the properties of components as well as the relationships between components and
external entities. This relates to the notion of multiple architectures or structures
defined by views as introduced by [1], [16] and [15].

– An architecture is amodelof the system in the given context, where a model is an
abstraction of a real-world representation[17]. It is important to realize that a model
provides a means to viewonly the significant aspects of the entire system.

Due to the progression of the design of architectural models, some architectural re-
currences evolved. These are described asarchitectural patterns[1], also referred to as
architectural styles[14]. A pattern is the description of a problem that occurs repeti-
tively within a specific environment, as well as the core of the solution to that problem
in such a way that the proposed solution can be reused. Patterns are rooted in practice
and are referred to asbest practice descriptions[16]. Examples of the best known ar-
chitectural patterns include, but are not limited to, the client/server architectural pattern
[18, 15], Peer-to-Peer architectural pattern [18, 15], three-tier architectural pattern [18,
15, 16], and the layered architecture or layers pattern [15].

165



From the above it suffice to note that thelayered architectureis regarded as an archi-
tectural pattern or style that organizes functionality into layers. It can thus be regarded
as an instance of an architecture and has to conform to the definitions of an architec-
ture. In addition, layered architectures as a pattern provide best-practice solutions to
recurring problems and is discussed in the next section.

3 Layered Architecture

One of the first examples of a layered architecture is Dijkstra’s experimental layered
operating system, developed at the Technische Hogeschool Eindnoven (THE). The goal
of THE was to design and implement a provably correct operating system, by means of
isolating various aspects of the operating system, into distinct layers [19]. Layers were
isolated so that a specific layer only access its immediate neighbours [20, 14, 21].

The most well-known example of a layered architecture is probably the definition
of network protocols found in the ISO/OSI model. This model defines all the methods
and protocols required to connect computers by means of a network [8]. It separates
the methods and protocols needed for network connectivity into seven different layers
and each higher layer relies on services provided by a lower-level layer. The OSI model
is an example of a closed layered architecture with low coupling because a layer may
only access the layer immediately below it. However, each level introduces a speed and
storage overhead [18, 20, 9, 22]. An example of an open layered architecture (where a
layer can access the layer immediately below it, but also deeper layers) is the Swing
user interface for Java [23].

Several other examples of layered architecture usage exist. The ISO/OSI network
model comprises a formal specification. In contrast, the meaning of layered architec-
tures in most other cases are implied, for instance [10] usesa layered architecture as a
top-level organization to describe different viewpoints of real-time distributed comput-
ing systems, and [24] use a layered approach to assist with data interoperability on the
Semantic Web.

Arguably, layering is a common best practice pattern used bysoftware architects to
break apart complex systems. In a layered architecture, theprincipal elements or com-
ponents are arranged in the form of a layer cake where each layer rests on a lower layer.
Generally, a layer represents a grouping of elements that provides related services. A
higher layer might either use various services defined by theimmediate lower layer only
(closed architecture) or services by all the lower layers (open architecture). However,
the lower layers are unaware of higher layers [16, 18, 25, 20].

According to [16], some of the benefits of breaking a system into layers include:
(1) a single layer is viewed as a coherent whole without knowledge of the other layers,
(2) the implementation of a specific layer can be substitutedwith alternative imple-
mentations of the same basic services, (3) dependencies between layers are minimized,
(4) layers support standardization because they define how layers, as well as their in-
terfaces, should operate, and (5) several higher-level services may reference a service
provided by a lower-level layer.

Since a layered architecture is an instance of an architecture, for completeness it is
necessary to map the elements of a layered architecture to concepts discussed in section

166



2. The layersof a layered architecture map to components, or a grouping ofcompo-
nents, as referred to in section 2. In a layered architecture, the stacking and sequencing
of layers are determined by relationships and organizationof the architectural compo-
nents.

4 Design and Evaluation Criteria for Layered Architectures

From the discussion of architecture concepts in section 2, and the description of layered
architectures in section 3, we extract the following designand evaluation criteria. In the
table below we indicate a possible question to be asked for evaluation purposes by ’Q’.

Criteria Description

Clearly defined
context

The context used to analyze the system determines its important as-
pects, assisting in the identification of the main components required
to realize the system, its properties, its organization, aswell as the
relationships between components.

Q Is it possible to identify the context from the description of the
architecture?

Appropriate level
of abstraction

The architecture model should be at a sufficiently high levelof
abstraction so that the system or subsystem under review canbe
viewed as a whole. Only the aspects of the system that are relevant
at a certain level of abstraction should be visible at that level.

Q Can the system within the context be viewed as a whole?
Q Are there any components/properties/relationships in thearchi-

tecture model that could be removed without losing important
information at this level of abstraction?

Hiding of
implementation
details

This criterium supports the above criterium regarding the level of
abstraction. Implementation details should be hidden in anarchitec-
tural model.

Q Are any implementation details visible in the description of the
components/properties/relationships/structures of thearchitec-
ture?

167



Clearly defined
functional layers

This criterium relates to the determination of the architectural com-
ponents and their grouping into the appropriate layers.

Q Does the layer description specify afunctionof the layer within
the system?

Q Is the layer’s function clear from its description and position in
the architecture?

Q Could the layer be removed without compromising the integrity
of the system?

Appropriate
layering,
including well
defined interfaces
and dependencies

This criterium relates to the organization of the layers. The layers
must clearly build on one another and its relationships and depen-
dencies should be distinguishable, where any layer only accesses
layers below it. This criterium also includes the specification of de-
pendencies or access rules between layers, which is used to deter-
mine whether the architecture is open or closed.

Q Do the layers clearly build on one another?
Q Does a specific layer only require functionality defined by lower

layers and not those of upper layers?
Q Is it possible to determine whether the layered architecture is

open or close?

Modularity

Components and hence layers should be modular. It should be pos-
sible to change the implementation of a layer as long as interfaces
and functionality remains the same.

Q Is it possible to replace the implementation of a layer with an-
other implementation of the same functionality and interfaces
without compromising the integrity of the layered architecture?

5 The Evaluation of Layered Architectures

As mentioned, this criteria can be used to design new architectures or evaluate existing
ones. In order to establish and demonstrate the usefulness of this criteria, we evaluate
two existing architectures in this section. We consider theISO/OSI Model as it is a
conceptual model or layered architecture that is used for the visualization and design
of network functionality. It is furthermore considered to be an established specification,
commonly used for network design. In addition, we consider the more recent proposed
Semantic Web language architecture of [11].

The ISO/OSI modelis a layered architecture that separates the methods and pro-
tocols required for network connectivity into seven different layers. Each higher layer
relies on services provided by a lower-level layer [8, 9]. The layers are ordered from

168



Fig. 1.The ISO/OSI Network Model and Semantic Web Architecture.

bottom to top and include: physical layer, data link layer, network layer, transport layer,
session layer, presentation layer and application layer. See Figure 1.

In 2001 Tim Berners-Lee introduced the vision of theSemantic Web[11]. The pro-
posed Semantic Web is an information space usable by machines rather than humans
as is the case with the current Web. In addition, Tim Berners-Lee proposed a language
tower or layered architecture depicted in Figure 1 [26]. Thehigher level languages
use the syntax and semantics of the lower layers. Several Semantic Web authors have
referred to and adopted this figure (also referred to as the Semantic Web layer cake)
[27–31].

In the table below we evaluate these architectures against the criteria of section 4.

Criteria ISO/OSI Model Semantic Web

Clearly
defined
context

Conform to: The context of
the ISO/OSI model is clearly
defined as the protocol stack
required for network inter-
action between computers.

Conform to: The context is stated to be the
Semantic Web language architecture.

169



Appropriate
level of
abstraction

Conform to: All the layers
required for network inter-
action are identified and the
network is represented as a
whole and no unnecessary
information is displayed on
any layer.

Does not conform to:It is possible to ar-
gue that the whole Semantic Web language
architecture is visible. However, it is ap-
propriate and commendable to remove in-
formation from the model. The top three
layers define functionality, but the rest
of the layers specifyexisting technologies
rather than functionalities. It is not clear
what are the function and interface to ’Dig-
ital Signatures’ as a vertical layer, neither
why ’Unicode’ and ’URI’ appear as two
sections of the bottom layer.

Hiding of im-
plementation
details

Conform to: No unneces-
sary or implementation de-
tail is visible on the architec-
ture description.

Does not conform to: The bottom three
layers as well as ’Digital Signatures’ are
implementation specifications or existing
technologies.

Clearly
defined
functional
layers

Conform to: All the layers
have well-defined function-
ality descriptions, and their
position within the architec-
ture supports this functional-
ity.

Does not conform to:The top three layers
define functionality. It is not clear whether
these are in relation to ’languages’ as
the architecture context specify, or applied
functionality required for the implementa-
tion of the Semantic Web. The bottom lay-
ers specify existing technologies (such as
’XML’ and ’RDF’) rather than the func-
tions embodied by these layers. The func-
tion of ’Digital Signatures’, ’Unicode’ and
’URI’ are also not clear from their position
on the architecture.

Appropriate
layering,
including
well defined
interfaces and
dependencies

Conform to: Each layer
build on the layer immedi-
ately below, implying that
the architecture is closed.
Each layer has an interface
specification.

Does not conform to: The layers do not
clearly build on one another. It is not
clearly specified what the requirements of
upper layers with regard to their lower lay-
ers are, and it is not possible to establish
whether this is an open or closed architec-
ture.

Modularity Conform to: Different im-
plementations of the lay-
ers exist and can be inter-
changed without negatively
influencing the integrity of
the architecture.

Undefined: It is not possible to determine
the modularity of this architecture since the
functionality and interfaces of the layers
are not defined.

Using our proposed criteria, we established that the ISO/OSI model clearly con-
forms to all specified criteria. We can therefore conclude that this existing layered ar-
chitecture is well designed. In contrast, the proposed Semantic Web layered architec-

170



ture does not comply with the majority of established criteria. Further research might
include an adaption of this architecture to conform to the criteria.

6 Conclusion

In this paper we presented an overview of different definitions and use of the term archi-
tecture, as well as features of layered architectures. Following from this investigation,
theory and best-practices, a list of architectural design and evaluation criteria were de-
rived. In order to demonstrate the efficacy of this criteria list, we evaluated two layered
architectures obtained from literature. We contend that this criteria list can assist re-
searchers and system architects to evaluate and design an architecture in general, and a
layered architecture in particular.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley
Professional (2003)

2. Parnas, D.L.: Designing software for ease of extension and contraction. In: ICSE ’78:
Proceedings of the 3rd international conference on Software engineering, IEEE Press (1978)
264–277

3. Weiner, L.H.: The roots of structured programming. In: Papers of the SIGCSE/CSA technical
symposium on Computer science education, New York, NY, USA, ACM Press (1978) 243–
254

4. Dijkstra, E.W.: The end of computing science? Commun. ACM44 (2001) 92
5. Parnas, D.: On the criteria to be used in decomposing systems into modules. Communica-

tions of the ACM15 (1972) 1053 – 1058 accessed 19 October 2005.
6. Parnas, D.L., Clements, P.C., Weiss, D.M.: The modular structure of complex systems. In:

ICSE ’84: Proceedings of the 7th international conference on Software engineering, IEEE
Press (1984) 408–417

7. Schach, S.R.: Introduction to object-oriented analysis and design withUML and the Unified
Process. Irwin McGrawhill (2004)

8. Zimmermann, H.: Os1 reference model-the is0 model of architecture for open systems inter-
connection. IEEE TRANSACTIONS .ON COMMUNICATIONS (1980) accessed 19 Octo-
ber 2005.

9. Hallberg, B.: Networking: A Beginner’s Guide. Second Edition. Osborne / McGraw-Hill
(2001)

10. Simpson, H.R.: Layered architecture(s) : Principles and practicein concurrent and distrib-
uted systems. In: 1997 Workshop on Engineering of Computer-BasedSystems (ECBS ’97).
(1997) 312

11. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. The Scientific AmericanMay
17, 2001(2001) accessed 20 February 2004.

12. Jeckle, M., Wilde, E.: Identical principles, higher layers: Modelingweb services as protocol
stack. In: XML Eurpe 2004, Amterdam. (2004) accessed 15 October2005.

13. Zachman, J.: The framework for enterprise architecture: background, description and utility.
Zachman International Website (2003)

14. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. sixth edition edn.
McGraw-Hill (2005)

171



15. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified SoftwareDevelopment Process.
Addison-Wesley (1999)

16. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2003)
17. Avison, D., Fitzgerald, G.: Information Systems Development: Methodologies, Techniques

and Tools. Third edition. McGraw-Hill (2003)
18. Bruegge, B., Dutoit, A.H.: Object-oriented Software Engineering using UML, Patterns, and

Java. Second edition edn. Prentice-Hall (2004)
19. Dijkstra, E.W.: The structure of the the-multiprogramming system. Commun. ACM 11

(1968) 341–346
20. Nutt, G.J.: Centralized and Distributed Operating Systems. Prentice-Hall International Edi-

tions (1992)
21. Brooks, F.P.: The Mystical Man-month. Addison-Wesley Publishing Company (1975)
22. Popescu-Zeletin, R.: Implementing the iso-osi reference model. In: SIGCOMM ’83: Pro-

ceedings of the eighth symposium on Data communications, ACM Press (1983) 56–66
23. Sun: Swing package for java. Sun Website http://sun.java.com (2003)
24. Cruz, I.F., Xiao, H.: Using a layered approach for interoperability on the semantic web. In:

Proceedings of the Fourth International Conference on Web Information Systems Engineer-
ing (WISE03). (2003)

25. Bachman, C.: Personal chronicle: Creating better information systems, with some guiding
principles. IEEE Transactions on Knowledge and Data Engineering (1989) 17–32

26. Berners-Lee, T.: Semantic web - xml2000. W3C Website (2000) accessed 11 August 2004.
27. Fensel, D.: Language standardization for the semantic web: The long way from oil to owl.

In: Distributed Communities on the Web: 4th International Workshop, DCW 2002, Sydney,
Australia. Volume 2468 / 2002. (2002) 215–227 accessed 15 March 2005.

28. Hendler, J.: Agents and the semantic web. IEEE Intelligent Systems16 (2001) 30–37
29. Oberle, D., Staab, S., Studer, R., Volz, R.: Supporting applicationdevelopment in the seman-

tic web. ACM Trans. Inter. Tech.5 (2005) 328–358
30. Patel-Schneider, P.F., Fensel, D.: Layering the semantic web: Problems and directions. In:

Proceedings of The Semantic Web - ISWC 2002: First International Semantic Web Confer-
ence, Sardinia, Italy. Volume 2342 / 2002., Springer-Verlag GmbH (2002) 16 accessed 15
March 2005.

31. Thuraisingham, B.: Security issues for the semantic web. In: Proceedings of the 27th Annual
International Computer Software and Applications Conference, IEEE (2003) 632 accessed
31 March 2005.

172


