The Software Infrastructure of a Java Card Based
Security Platform for Distributed Applications

Serge Chaumette, Achraf Karragnd Damien Sauveroh

LaBRI, Laboratoire Bordelais de Recherche en Informatique
UMR CNRS 5800 — Université Bordeaux 1
351 cours de la Libération, 33405 TalermepeEx, FRANCE.

Abstract. The work presented in this paper is part of the Java CrdGrid
project carried out at LaBRI, Laboratoire Bordelais de Recherche en Informa-
tique. The aim of this project is to build a hardware platform and the associated
software components to experiment on the security features of distributed ap-
plications. To achieve this goal we use the hardware components that offer the
highest security level: smart cards. We do not pretend that the resulting platform
can compare to a real grid in terms of computational power, but it serves as a
proof of concept for what a grid with secure processors could be and could do.
As of writing, the hardware platform comprises 32 card readers and two PCs to
manage them. The applications that we run on our platform are applications that
require a high level of confidentiality regarding their own binary code, the input
data that they handle, and the results that they produce. Even though we know that
we cannot expect our grid to achieve high speed computation, we believe that it
is a good testbed to experiment on the security features that one would require in
a real grid environment. This paper focuses on the software infrastructure that we
have set up to manage the platform and on the framework that we have designed
and implemented to develop real applications on top of it.

1 Introduction

The technologies that have recently emerged and that are now widely used, contribute
to anonymize and virtualize the resources of the network (Java, .NET, Solaris containers
- previously N1 Grid Containers -, User-mode Linux, etc.) and the way they are con-
nected (WiFi, Bluetooth, etc.). This leads to a situation where computing resources can
effectively be shared. Sharing resources means federating them and allowing potentially
unknown people to execute their applications on the resulting platform. The notion of
Grid [1,2] is a well known example of this kind of approach that is now supplied by

* LaBRI (Bordeaux, FRANCE) and University of Sfax, ENIS, TUNISIA
** XLIM, UMR CNRS 6172 (Limoges, FRANCE)

! Java and all Java-based marks are trademarks or registered trademarks of Sun microsystems,
Inc. in the United States and other countries. The authors are independent of Sun Microsys-
tems, Inc. The other marks are the property of their respective owner.

2 The Java Card Grid received the best innovative technology award at e-Smart2005.

Chaumette S., Karray A. and Sauveron D. (2006).

The Software Infrastructure of a Java Card Based Security Platform for Distributed Applications.

In Proceedings of the 4th International Workshop on Security in Information Systems, pages 101-114
Copyright © SciTePress

both universities and private companies. Of course, udessah systems must accept
to have their applications executed on resources that aterhe control of someone
else who they potentially do not even know.

Security is then a big concern. First, the owner of the codmare precisely the
code itself must be protected from the platform that execittand from other appli-
cations executed on the same platform. Second, the resthateuns the code must
be protected from this code. Even though there are softwatédardware level protec-
tions, it is clearly not sufficient. If someone uploads a ctwleny workstation so that
it is executed, nothing can prevent me from dumping the mgmdrere it has been
loaded to work out what it is doing, or even to trace the indtams executed by my
processor. If | upload a code to the machine of someone ed$iging will prevent my
code from doing some malicious operatiay(my application can take advantage of
hardware errors [3]), even though sand box approaches banssome of the problems.

Smart cards [4] provide solutions for these problems, af batrdware and soft-
ware levels. At hardware level, the cards are built so asgtrany physical attack.
Of course, attacks remain possible but they will not be f#ash a reasonable amount
of time. Furthermore, when a code is loaded inside a car@ntneither damage the
card or access the assets that it contains, nor can it beseegagineered by the owner
of the card. The processors that can be found in standardstatidns do not offer the
same protections. At the software level, the cards and thkcagions that they embed
are evaluated and certified by well defined proceduess (TSEC [5] - Information
Technology Security Evaluation Criteria - or CC [6] - Commriteria -) in govern-
ment approved agencies or companieg. (TSEF - Information Technology Security
Evaluation Facility).

It should be noted that even though smart cards are not vatyleiso achieve ef-
fective computations right now, the resources that theyigeoin terms of memory
and computing power [7] have increased a lot. Cards thatpsdlVide 1 Gigabyte of
memory and more efficient processors are expected as so@0as 2

Therefore we have begun the Java Card Grid project. Witld@rfrdmework of this
project we have designed and implemented a platform thateaviewed as a grid
of smart cards. As of today, we have 32 card readers that ameected together. The
goal of this platform is to experiment security featurest thdl help in supporting
or designing secure real size grids. This platform and moeeigely its supporting
software framework is the topic of this paper.

The rest of this paper is organized as follows. In section Dresent what the role
of smart cards could be in distributed systems. We expladifficulties, the pros and
the cons of their integration and usage in such environmémtsection 3 we describe
the overall Java Card Grid platform at both hardware andivswét levels. Section 4
focuses on the communication stack of the framework whicimésof the key points of
the environment. In sections 5, 6 and 7, we overview the igolsithat we have set up
to overcome the other main difficulties that we encountdredection 8 we present the
most relevant related work and compare it to our own approaheventually discuss
in section 9 the future evolutions of our platform.

Fig. 1. The Java Card Grid platform.

2 Smart Cards in Distributed Systems

2.1 The Pros of Using Smart Cards in a Distributed System

Smart cards have a small size that makes them very makili¢js easy to carry themin
everyday life. It is a highly secure device that is able teestmnfidential information. It
is protected against any attempt to obtain its contentstr&gnto most other devices, a
smart card is resistant to physical attacks: it is a tamsastant device. This is its main
advantage. In fact, several mechanisms are integratednrag sard at both hardware
and software levels, so as to protect it against externatkdtand thus protect the
assets which it contains. In the worst case, the hardwaretste of the card makes so
that all the sensitive data.§. secret information or private keys) that it stores will be
automatically destroyed in order not to be revealed to atTldir.

Smart cards offer a secure environment perfectly adaptetigport higher level
security features for large distributed systems. Nevégtise their integration into such
systems is not straightforward.

2.2 The Difficulties of Using Smart Cards in a Distributed Sysem

There are many problems that prevent smart cards from beitglyadopted in dis-
tributed systems.

First, smart cards are by design dependent on a device ¢héedard Acceptance
Device (CAD), generally known as card reader.

Second, smart cards have very limited resources in termseafary and storage
capacity, computing power, and communication bandwidth thie outside. These lim-
itations reduce the range of possible domains of applicatio

Third, smart cards are passive. They work according to aariakive model. The
host applicationi(e. the application which is out of the card) is the master, amd th
card application is the slave that provides the service.CHnd is always waiting for a
command to execute, and never takes the initiative of a camation with the outside.
Because of this passive mode, the card can neither exptoeavironment nor initiate
any interaction with external components or services.

Fourth, the communication protocol between a card and it® Gfextremely poor,
both in terms of contents and structure, and it is also vepeddent on the brand of
card. The communication takes place as a sequence of lhgabé¢ APDUs — Appli-
cation Protocol Data Units) which are poorly structurede Ehaboration of the APDU-
based messages must follow the ISO7816-4 standard [8]¢katides their format and
a number of special cases (error codes, special commands,Tétus, the programmer
must have a deep knowledge of the APDU protocol to be abletelojge smart card
applications. Compared to other communication methods as&PC [9], RMI [10] or
CORBA [11] which are widespread in distributed systems AR®U protocol remains
rather primitive and relatively complex, even though it@sgible to use additional lay-
ers on top of it to partially hide this problem.

For all these reasons, the development of applicationsiartscards is a complex
task. It is really challenging to implement the mandatogela that are missing if one
wants to use smart cards in a distributed environment. We taveloped these layers
and they will be presented in sections 4 to 7.

2.3 Features Required to Support the Use of Smart Cards in a Btributed
System

We have explained above why using smart cards in a distdbsitstem is a complex
process. Without a card reader and the proper softwareddyisralmost impossible,
even though frameworks such as PC/SC can manage low levehgoitation between
the embedded applications and the host. To make it a redsotzel to develop ap-
plications that make use of smart cards, two main features teabe supported: high
level communication and transparent service discoverynae possible to develop
real (size) applications, two other main features are redguproactivity and extended
memory resources.

Communication. To face the complexity of the communication protocol and tken

it easier so support different brands of cards, it is intémggo apply the methods of
distributed systems to smart cards in order to provide parent communication with
the embedded objects. This is, for instance, what is offeyetava Card RMI [12].

Service Discovery. A smart card does not spontaneously announce the servies th
contains. It is thus interesting to provide a mean for a careipose and describe its
services, so that the other components of the distributstksycan discover and use
them. This would make the integration of smart cards in ithisted systems easier and
faster.

Proactivity. The components of a distributed system need to communidétesach
other to achieve some sort of cooperation. Therefore offeai framework that makes
the cards activei.e. able to take the initiative of a communication (possiblyhén
other card), is mandatory.

Extended memory resources. The limited memory of smart cards is probably the
main obstacle to the deployement of real size applicatibhsrefore, while cards with
a large memory are not available, providing a solution teedttheir capabilities is
fundamental to experiment security in new kinds of appicatiomains.

We offer these four features in the Java Card Grid platforheyTare described in
section 4 and section 5.

3 The Java Card Grid Platform

The goal of the Java Card Grid project is to provide a hardwéatdorm, a software
framework and the associated administration software.

3.1 Hardware Platform

The hardware platform that we have set up is presented Fithig.figure shows that

Untrusted Environment 1 Customer
Environment
'
Grid of Java Cards = Trusted Env. Grid of Java Cards = Trusted Ehv.
| | O O | '

O O o | o O O | o
S O o | S o |
S S |

PC/SC E PC/SC

€= Secure channel
<}=> Physical links
\

\ NETWORK g |

S S O |

Fig. 2. A hardware platform based on Java Card grids.

we have in fact deployed two grids that are connected togdéthehe network. The
hardware fits in a wall mount cabinet of 19U. Each grid is cosaabof:

— a PC which needs 2U;

— two 2U racks from SmartMount, each having 8 CCID readers f&@M Microsys-
tems,i.e. we have a total of 16 CCID readers;

— three USB 7-port hubs (placed in a empty 2U rack) to conneatdhders to the PC
and to power the readers;

— Java Cards of different manufacturers plugged in the rsad®ich then power
them.

We have also equipped one of the PCs with a LCD monitor and eiadp@ckable
keyboard (with an integrated touchpad) that we use to cbttitecservers. A picture of
this platform is shown Fig. 1.

3.2 Software Framework

The software framework that we have designed and implerdexeprises two layers:
a low level layer that handles the PCs, the readers and teushart cards, and a high
level layer that manages the distributed computing frannkewaat we offer.

At low level, the pilot PCs run Linux and we upesc- | i t e [13], an open source
implementation of the PC/SGtandard, to manage the readers. We have chosen‘CCID
readers because they are supported by an open source gamericwhich is avail-
able forpcsc-1it e [15]. Because our high level framework is Java-based, we hav
added JPC/SC [16], a INI-wrapper for PC/SC, to control thdees and to manage the
applications embedded in the cardt Fig. 3).

At the user level, the programming API is based on MandalaM@ndala is a gen-
eral framework that has been developed in our team to suppstributed computing
in Java. It provides a RMI-like abstraction with asynchronous method invocation
mechanism [18], which is very useful to deal with slow conipgiresources.

The overall software framework deployed on the two hosth@sw Fig. 3.

‘ Mandala ‘
JVM JVM
= =
= > == = > ==

Fig. 3. The software framework.

3.3 Administration Tools

We have begun to design and implement tools to support reauténistration of the
grid of Java Cards,e. to monitor the topology of the grid, to detect the defectiaeds,
to deploy new applications, etc. As of writing, only the remtmpology control tool is
available.

Remote Topology Control Tool. This tool enables a distant administrator to display
the topology of the grid on its monitor.e. to see which readers are free and which
contain a card. The administrator can also use it to trackbéution of the grid since
any modification of its state, resulting from the insertiantlee tearing of a card, is
instantly notified to the tool. He can also get additionabmfation about a given card
and its associated reader: the low level communicatioropodtthat it uses, the name
of the reader, the name of the card, its ATBtc.

3 PC/SC [14] is a standard that provides a high level API to communicate mightsard read-
ers.

4 CCID is a standard that defines a protocol to handle USB readers.

® Answer To Reset.

Tools Under Development. The tools and APIs that we are currently working on are
dedicated to the deployment of applets on a set of Java Caimtse most of the Java
Cards are GlobalPlatforhj19] compliant, we develop an implementation that uses this
standard to be able to load and delete embedded applicaiinplan to use the open
source GlobalPlatform library [20] recently developed kagrgten Ohme.

4 Global Communication Stack of the Framework

We have used a number of different technologies when we hewelabed our frame-
work and altogether they make a complex stack of softwarepoments and protocols.
The goal of this section is to describe this stack and to é@xplee task of each layer.
For the sake of clarity, we present it in terms of the OSI mfiiee model to show the
features of each software component and the complexityeo$ylstem. We eventually
explain why future cards that support TCP/IP will make it §ibke for us to build a

more flexible framework.

4.1 Current Communication Stack

Our framework is designed to handle several client apjdinat(potentially running on
different hosts) which interact with several Java Card$iefdgrid (more precisely with
several applets possibly distributed on different Javad§arThese interactions take
place through different servers and card readers. Thersasf/éhe grid and the readers
act as gateways and there are only two really active entitiegse dialog: the client
application and the applet. All the software stack (inahgdserver processes) between
these two elements needs to be transparent. In what follee/present the architecture
of this stack from the bottom to the top, by comparison with @51 reference model.

Physical layer. At the bottom of the OSI model, thehysical layer encompasses the
physical interfaces and the physical protocéls {oltages, timing, etc.). Between the
client host and the server host we assume that the hardwartaires are Ethernet cards.
To simplify the stack presented Fig. 4, we also assume teatlibnt and the server are
in a LAN. In the real world, they could be in different netwerknd there might be
several routers between them (but the framework would nerlanost the same). On
the grid side, the host machine and the CCID readers have atd&tace and the I/O
channels use the USB protocol. The cards and the CCID readec®nnected through
contact interfaced.@. the contacts in the reader and the faceplate on the card) tngn
related physical protocol.é. the ISO7816 specifications). This layer is quite simple but
yet requires three different protocols.

Data link layer. On top of the physical layer sits tliata link layer, the goal of which

is to provide error-free communication between networkiest It detects and possibly
corrects errors that may occur in the physical layer. Thentland the grid server both
have an Ethernet module that communicates with the Etheands. On the grid side,

6 GlobalPlatform is a standard that specifies APIs to manage multiapplicatios ca

OSl layers

y APDU protocol
-~ A
- #2|
Abplication Data application specific Applet #1
Client APDU
Presentation | APplication protocol XML common format and security
Session <‘> CardProxy APDU command/response
management
Mandala Mandala Mandala
Transport Kl Dl PC/SC APDU data format IAPDU processd
module
Network 1P module KH IP protocol - P module i APDU select/deselect specific
Data link Ethernet Ethernet Ethernet cCID CCID
module protocol module Reader’s drive) Q’ protocol
Physical
o 1 I

Client Server of the Grid CCID readers Java Card
g =
TCientsige 7 Gidside

Fig. 4. Communication stack.

the data link layer is implemented by the CCID protocol betwéhe CCID drivers
hosted on the server and the CCID readers. Between the C@tiereand the data link
module of the Java Card different kinds of TPDU (Transmis$tootocol Data Unit)
based protocols can be used)(T=0 or T=1 are the more frequently encountered). The
TPDU are constructed within the CCID readers and they argggbacross the physical
layer to the Java Cards. Thus, there are several differ¢atid& protocols between the
different entities from the client application to the Jawards.

Network layer. Over the data link layer, the OSI reference model hasngteork
layer. One of its main tasks is to perform network routing. In theariework that we
propose, there are several routing nodes. First, routiaghigeved using the IP protocol,
between the client and the server. As mentioned above, nga fetwork, many routers
may be present between these two entities. On the grid $iddirst routing element
is the PC/SC component. It dispatches the messages thaeives to the specified
CCID reader (or to the specified slot if the reader is a midii-eeader) and then to
the specified Java Card. The messages sent by PC/SC are/AReds (Application
Protocol Data Units) and there is no other protocol specdietbp of it (at least for the
transport layer and the session layer). Since this protegcobmpasses many features
that could be found at different levels of the OSI referencaleh, we decided, for
the sake of clarity, to cut this protocol into five differentbsets (where each subset
corresponds to a part of the APDU specification) that we thap onto the five upper
layers of the OSI modekf. Fig. 4). Moreover, in our framework, the APDU protocol
is not inside the same layers on the client side and on thesgted We could not find

a better solution with an architecture based on PC/SC. THelABubset present at

the level of the network layer is dedicated to the selecties¢lection of applets in a
Java Card. The next routing element is the APDU processoutedbat interprets the
APDU selection/deselection commands and sets the targ&dtags the current active
one,i.e. this applet will receive the following APDU commands (excijit is an other
selection/deselection APDU).

Transport Layer. On top of the network layer, thteansport layer provides connection
services to the session layer. Between the client and tesgriver our framework uses
Mandala that supports several protocols to perform this ee can observe Fig. 4 that
Mandala is spread between the transport and the sessias;ldtyis will be explained
a bit further in this paper. On the grid side, the protocol tlsaused is a subset of
the APDU protocol representing the APDU data format spedtifia. It sits between
PC/SC on the server and the APDU processor module in the card.

Session Layer. Above the transport layer, we have thession layer that manages
the dialog between the client application and the selegbptea In the OSI reference
model, it provides either duplex or half-duplex mode of @pen and establishes check-
pointing, adjournment, termination, and restart procesluin our framework, the client
application and the CardProxy located on the server comeataising the APDU pro-
tocol. Thus, the application generates all the APDU commdadsend to the distant
applet and parses the APDU responses. The CardProxy actgdsveay between the
network communication technologiesd. IP) on the client side and the smart card
communication technologieg.¢. CCID and TPDU) on the grid side (see Fig. 4). So,
the upper layer enables direct end-to-end communicatibmess a client application
and an applet. The APDU protocol which is half duplex recuitee use of a token to
decide which entity can use the communication channel. Manalso participates in
the session layer by offering asynchronous communicaéatufes. These features can
be used by both the client application and the CardProxyhgese non blocking invo-
cation of services, (at both client and server sides). Ogtiteside, the CardProxy and
the applet also exchange data using the APDU protocol. Thepée APDU protocol
specification mainly involved in this layer is the clientAger model that schedules the
commands and the responses. As soon as the CardProxy gefmoage to a previous
APDU command it checks its pending queue and if an APDU condhigrpresent,
then it forwards it to the applet. The CardProxy also acts sariof router within the
grid when a card wishes to call a method located on anothel ttanandles specific
response messages to transform the server model of a snhtb@model where the
card can also be a client. Thus it enables the card to be predgsee section 6).

Presentation Layer. Over the session layer, tipeesentation layer relieves the appli-
cation layer of concerns regarding syntactical differsrioedata representation within
the end-user systems. In usual systems, MIME encodingyptien and operations of
that kind that have to do with the presentation of data areddmhis level. In a similar
manner, in our framework, the security and the data indegetnigepresentations are
managed in this layer. If this is required by the securityigg@$, the communications
between the client application and the applet can be ciphé&ke also offer a XML
based format to structure the data exchanged between itiee(@g. to get the list of

the available services and to pass the parameters wheningvalservice on a card —
see section 5). These two features are encompassed in & stititee APDU protocol
that we have defined, as presented Fig. 4.

Application Layer. The last layer on top of the stack is thpplication layer that is
the direct interface of the application processes and #xdiopns common services for
them. Thus, in this layer, the data exchanged are specifietgadal of the application.
Note that in our framework the application on the client side the applet on the grid
side each spread on three layers for practical reasons.\l¢ouwtevould be possible to
develop independent libraries on each side to handle trafiep@spects of each layer.
Nevertheless, it is important to be aware of the problemseduy the limitation of
the resources available on Java Cards to achieve such gevets €.9. small stack of
frames, etc.).

The framework and the stack of protocols that we have deeelgpovide many of
the features required by the OSI reference model. It wasitiiesesting to present our
stack by comparison with the OSI stack even though it is natectimapping.

4.2 Future Communication Stack

In the short term we will make the communication stack muoipéer by using TCP/IP
Java Cards. These next generation cards will provide TC&fhectivity, what will
make them directly accessible on the network. They will us¢S®8 connection that
will suppress the need for a reader and that will support Bjgged communication.
This is very interesting in the case of our grid where the neast is that of the readers.
Moreover, thanks to the TCP/IP connectivity, we will haveoaiogeneous stack on the
client side and on the grid side: TCP/IP for both. In such aexnthe server of the
grid will act as a simple router between the client applaadiand the applets.

These next generation Java Cards will also support a conuaiom model in
which the cards will be activé,e. be able to initiate communication. This feature will
be very helpful to call from inside a card, a service locatedriother card of the grid
or on a distant host.

These two features.e. a TCP/IP stack and proactivity, will simplify our framework
and open the way to new kinds of applications. Moreover tlwasds will be multi-
threaded and this will make our framework really more effitifhe new protocols
integrated in the Java Card specificatioag.(TLS), the new APIs€.g. cryptographic
algorithms) and the new programming models will also makedivelopment of new
secure applications much simpler.

Nevertheless, to be able to work till these new cards becwoaiahle on the market,
we have proposed and implemented several mechanisms theusertent Java Cards.

5 Services in the Java Card Grid

By using the features provided by the stack presented alidgeppssible to easily
and quickly develop high level services (or applicatiomgt twill be embedded in the
cards of the grid. In our framework, a Java Card is seen as taioen for services.

The provider develops the applet implementing the servicedescribes its interface
in a Service Descriptor using XML. This is then uploaded te ¢lard and the service
is registered in an on-card local registry, calledrviceCatalogwhich contains all the
Service Descriptors of the installed services. Potenli@hts are provided with a list of
the available services. For this purpose, the softwaredveork initially scans the grid,
and extracts the services available on each card. The charthen select and remotely
use one of them. More details about these different phasesheown Fig. 5 and are
detailed in [21].
Java Card Grid

DD
Provider 1- Publish services——— o
ee>

Fig. 5. Main steps to create, discover and invoque a service.

6 Proactivity in the Java Card Grid

To make the card activée. able to send a request and thus, for example, to invoque a
service on another card, we have set up a simple mechanisch wbnsists in asking
the card in order to know if it wishes to send a request. Toeaehihis goal, an APDU
command is sent and if the card has a request to send, it pntthé APDU response.
The mechanism is similar to what is used for SIM cards in tailphones [22,23].

When an APDU response is received, it is handled by the PC (amd precisely
by the CardProxy) which acts as a router. If the responseheata specified format
(not detailed here, but which contains all the informatiotocate a precise service on
a precise card of the grid), it means that it is a method invoc®f a service of another
card. Using this information, the PC forwards the requestéaarget card (the APDU
command is also contained in the APDU response of the clamaf)c

To simplify the calls, we have set upSub/Skeleton mechanism generated from
an interface which represents the service, its AID, and taenof card where it is
installed. More details about this extension are availabjg21].

Fig. 6 illustrates the remote invocation method used betveaeds.

Client Environment Untrusted Network Java Card Grid

3: Method invocation Server card

4: Result of the invocation @
/%

4

User request
D) 5: Result of the invocation
[— R — - T 6 6: Result of the request
B > Result of the request T
- L@

Client card

1: User request
2: Method invocation

Fig. 6. Remote method invocation between cards.

7 Extended Memory in the Java Card Grid

In order to overcome the problems due to the small memorydfizeart cards, we
propose a solution that offers them a secondary storagdéttiedisk of a host) which
increases the memory capacity for the embedded applisation

— for short lived data, in a way similar to a virtual memory maeitsm, as can be
found in most operating systems (such as Windows, Linux);etc
— for long lived data, as with secure data repositories.

The proposed solution furthermore ensures the securitwap@ed information,e.
it preserves the integrity and the confidentiality of datasao be in perfect adequacy
with the security requirements which characterize smadscdwo entities are involved
to achieve this goal:

— one on the card, a Secure Storage Manager Unit (SSMU) ;
— one on the host which performs the following operations:
— write the ciphered data sent by the SSMU with specific keysdgh applet and
for each record,
— manage the identification of ciphered data records,
— return back data to the card (on demand).

Fig. 7 focuses on the entity deployed on the smart card side&SEMU. It helps the
applications that use a large amount of data to store itaeithie card. It is furthermore
in charge of ensuring the confidentiality and the integrftthe swapped data. Using the
SSMU will therefore provide a good security level even thoagme of the application
data are stored off-card. More details about this extereieravailable in [24,25].

= |
T

Untrusted Environment T craq

[Applet 1 '[Applet 2
R1

Environment
' :
| 4ES
= {]
4 =g

Hard Disk

CipheredAppIR1
heredApp2R1

Fig. 7. Overview of the SSMU architecture.

8 Related Work

We have identified a number of projects, the aim of which isitegrate Java Cards in a
distributed environment. The goal of all the frameworks the have studied is to make
the on card services usable as standard services: CorliaflARBCard [26]; Jini[27]
for JiniCard [28]; RMI[10] for JCRMI [12]. Once integratethe functionalities offered
on these cards become transparently usable from the outside

Itis clearly not the goal of these approaches to use the tard® CPU demanding
applications, or even really distributed applicationseylare more designed in terms
of services. On the contrary, we intend to use the cards gsecating computional
resources [21]. To achieve this goal our framework makesahds proactive and this
is one of the major originalities of our work. Thus, in ternfsservices, our platform
is more advanced and more flexible. Moreover, in our platfdrath computation and
inter card communication are secured. Finally, we havesdsop a cache mechanism
that is not available in any other smart card based platform.

9 Conclusion and Future Work

The platform that we have set up is working and we have run Eaagplications on
it. We have solved the problems related to the physical engeiyts, the drivers and the
communication layers required to make the whole system woink security of our
platform is based on the build-in hardware and software riggcmechanisms of the
smart cards and on the security protocols used for the corication.

At the beginning, the Java Card Grid project was only intelnate a proof of con-
cept. We only planed to build a prototype platform. But noattt is operational, we
have found a lot of interest in the university community, tfficial agencies and the
industry. For instance we got the “most innovative techgplaward”, delivered by a
committee comprising industry leaders, at e-Smart 2005 [2&h one of the leading
smart cards companies, we are now planning to set up a ptatfeth 1000 cards to
deploy applications that can handle real size problemidiianger term, we also plan
to use the next generation cards that should provide 1 Gigatfymemory, efficient
processors, a full Java virtual machine and a TCP/IP stack.

Acknowledgments

Our project is supported by: Axalto, Gemplus and IBM BlueZ®e Systems (for the
cards); SCM Microsystems and SmartMount (for the read&wsi; microsystems (for
the overall platform).

We also thank: Fujitsu, Giesecke&Devrient, Oberthur Caydt@ns and Sharp
for the Java Card samples; David Corcoran and Ludovic Rausk® their work on
pcsc-1ite andthe CCID generic driver.

References

1. Berman, F., Hey, A.J., Fox, G.: Grid Computing: Making The Glatfastructure a Reality.
John Wiley & Sons (2003)

2. Foster, |, Kesselman, C.: The Grid: Blueprint for a New Computifigastructure. Morgan
Kaufmann Publishers (1998)

3. Govindavajhala, S., Appel, A.: Using Memory Errors to Attack a VirtMachine. In:
Proceedings of IEEE Symposium on Security and Privacy. (2003)

4. Rankl, W., Effing, W.: Smart Card Handbook 2nd edition. John W&leSons (2000)

10.
11.
12.
13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
26.
27.
28.

29.

: ITSEC. bttp://ww. ssi.gouv.fr/site_docunments/|TSEC/ | TSEC-fr.
pdf)
: International Common Criteria home page. ht (p: // www.
conmoncriteriaportal.org/)

. Siegelin, C., Castillo, L., Finger, U.: Smart cards: distributed caimgwvith $5 Devices.

Parallel Processing Lettetd (2001) 57-64

. International Organization for Standardization: Identification caldsegrated circuit cards

— Part 4: Organization, security and commands for interchange. 28@bY

. Sun Microsystems, I.: RFC1057 — RPC: Remote Procedure CathddtoSpecification.

(http://www. ietf.org/rfc/rfcl057.txt)

Grosso, W.: Java RMI. O'Reilly & Associates (2002)

Object Management Group: The OMG’s CORBA Website.t(p: / / www. cor ba. or g)
Microsystem, |.S.: Java Card 2.2 Runtime Environment (JCREgi8cation,. (2002) Re-
mote Method Invocation Service, chapter 8, pages 53-68.

Corcoran, D., Rousseau, L., Sauveron, D.: pcsc-lite horge.pghttp: // al i ot h.
debi an. org/ projects/pcsclitel)

PC/SC Workgroup: PC/SC Workgroup Homiet { p: / / www. pcscwor kgr oup. cont)
Rousseau, L.: CCID free software driverht { p: / / pcsclite. al i ot h. debi an.
org/ccid. htnl)

IBM BlueZ Secure Systems: Java Wrappers for PC/$€t §: / / ww. nuscl ecar d.
coni mi ddl eware/fil es/jpcsc-0.8.0-src. zip)

Chaumette, S., Vignéras, P.: A framework for seamlessly makijegt oriented applications
distributed. In: Parallel Computing 2003, Dresden, Germany (2003)

Vignéras, P., Grange, P.. The Mandala websitd.t p: / / mandal a. sour cef or ge.
net/)

GlobalPlatform: GlobalPlatformht{t p: / / ww. gl obal pl atf orm org/)

Ohme, K.: Open source GlobalPlatform library.ht {p:// sour cef or ge. net/
proj ect s/ gl obal pl atform

Chaumette, S., Karray, A., Sauveron, D.: Secure Collaberatid Distributed Services in
the Java Card Grid Platform. In: Proceedings of Workshop on Coblgioor and Security
(COLSEC'06), Las Vegas, Nevada, USA (2006)

Jurgensen, T.M., Guthery, S.B.: Smart Cards: The Devesopaolkit. Prentice Hall (2002)
Guthery, S., Cronin, M.: Mobile Application Development with SMS #relSIM Toolkit.
McGraw-Hill Professional (2001)

Chaumette, S., Karray, A., Sauveron, D.: Secure Extendeddefor Java Cards. In: Pro-
ceedings of he 2006 International Conference on Computationalcgcier its Applications
(ICCSA 2006), Glasgow, UK (2006) (Poster).

Chaumette, S., Karray, A., Sauveron, D.: Secure storaghdatava Card Grid. (In: (Sub-
mitted))

Chan, A.T., Tse, F,, Cao, J., Leong, H.V.: Enabling distribettba access to smart card
applications. |IEEE Internet Computing (2002) 27-36

The Community Resource for Jini Technologyt (p: / / www. j i ni . org/)

Kehr, R., Rohs, M., Vogt, H.: Mobile code as an enabling techryologservice-oriented
smartcard middleware. In: Internationnal Symposium on Distributedd@bgnd Applica-
tions. (2000) 119-130

Atallah, E., Chaumette, S., Darrigade, F., Karray, A., Sauvdda A Grid of Java Cards
to Deal with Security Demanding Application Domains. In: ProceedingsSinart 2005,
Nice, France (2005)

