
The Software Infrastructure of a Java Card Based
Security Platform for Distributed Applications

Serge Chaumette, Achraf Karray⋆ and Damien Sauveron⋆⋆

LaBRI, Laboratoire Bordelais de Recherche en Informatique
UMR CNRS 5800 – Université Bordeaux 1

351 cours de la Libération, 33405 TalenceCEDEX, FRANCE.

Abstract. The work presented in this paper is part of the Java CardTM1 Grid
project2 carried out at LaBRI, Laboratoire Bordelais de Recherche en Informa-
tique. The aim of this project is to build a hardware platform and the associated
software components to experiment on the security features of distributed ap-
plications. To achieve this goal we use the hardware components that offer the
highest security level: smart cards. We do not pretend that the resulting platform
can compare to a real grid in terms of computational power, but it serves as a
proof of concept for what a grid with secure processors could be and could do.
As of writing, the hardware platform comprises 32 card readers and two PCs to
manage them. The applications that we run on our platform are applications that
require a high level of confidentiality regarding their own binary code, the input
data that they handle, and the results that they produce. Even though we know that
we cannot expect our grid to achieve high speed computation, we believe that it
is a good testbed to experiment on the security features that one would require in
a real grid environment. This paper focuses on the software infrastructure that we
have set up to manage the platform and on the framework that we have designed
and implemented to develop real applications on top of it.

1 Introduction

The technologies that have recently emerged and that are now widely used, contribute
to anonymize and virtualize the resources of the network (Java, .NET, Solaris containers
- previously N1 Grid Containers -, User-mode Linux, etc.) and the way they are con-
nected (WiFi, Bluetooth, etc.). This leads to a situation where computing resources can
effectively be shared. Sharing resources means federating them and allowing potentially
unknown people to execute their applications on the resulting platform. The notion of
Grid [1,2] is a well known example of this kind of approach that is now supplied by

⋆ LaBRI (Bordeaux, FRANCE) and University of Sfax, ENIS, TUNISIA
⋆⋆ XLIM, UMR CNRS 6172 (Limoges, FRANCE)

1 Java and all Java-based marks are trademarks or registered trademarks of Sun microsystems,
Inc. in the United States and other countries. The authors are independent of Sun Microsys-
tems, Inc. The other marks are the property of their respective owner.

2 The Java Card Grid received the best innovative technology award at e-Smart2005.

Chaumette S., Karray A. and Sauveron D. (2006).
The Software Infrastructure of a Java Card Based Security Platform for Distributed Applications.
In Proceedings of the 4th International Workshop on Security in Information Systems, pages 101-114
Copyright c© SciTePress

both universities and private companies. Of course, users of such systems must accept
to have their applications executed on resources that are under the control of someone
else who they potentially do not even know.

Security is then a big concern. First, the owner of the code ormore precisely the
code itself must be protected from the platform that executes it and from other appli-
cations executed on the same platform. Second, the resourcethat runs the code must
be protected from this code. Even though there are software and hardware level protec-
tions, it is clearly not sufficient. If someone uploads a codeto my workstation so that
it is executed, nothing can prevent me from dumping the memory where it has been
loaded to work out what it is doing, or even to trace the instructions executed by my
processor. If I upload a code to the machine of someone else, nothing will prevent my
code from doing some malicious operation (e.g. my application can take advantage of
hardware errors [3]), even though sand box approaches can solve some of the problems.

Smart cards [4] provide solutions for these problems, at both hardware and soft-
ware levels. At hardware level, the cards are built so as to resist any physical attack.
Of course, attacks remain possible but they will not be feasible in a reasonable amount
of time. Furthermore, when a code is loaded inside a card, it can neither damage the
card or access the assets that it contains, nor can it be reverse engineered by the owner
of the card. The processors that can be found in standard workstations do not offer the
same protections. At the software level, the cards and the applications that they embed
are evaluated and certified by well defined procedures (e.g. ITSEC [5] - Information
Technology Security Evaluation Criteria - or CC [6] - CommonCriteria -) in govern-
ment approved agencies or companies (e.g. ITSEF - Information Technology Security
Evaluation Facility).

It should be noted that even though smart cards are not very usable to achieve ef-
fective computations right now, the resources that they provide in terms of memory
and computing power [7] have increased a lot. Cards that willprovide 1 Gigabyte of
memory and more efficient processors are expected as soon as 2007.

Therefore we have begun the Java Card Grid project. Within the framework of this
project we have designed and implemented a platform that canbe viewed as a grid
of smart cards. As of today, we have 32 card readers that are connected together. The
goal of this platform is to experiment security features that will help in supporting
or designing secure real size grids. This platform and more precisely its supporting
software framework is the topic of this paper.

The rest of this paper is organized as follows. In section 2 wepresent what the role
of smart cards could be in distributed systems. We explain the difficulties, the pros and
the cons of their integration and usage in such environments. In section 3 we describe
the overall Java Card Grid platform at both hardware and software levels. Section 4
focuses on the communication stack of the framework which isone of the key points of
the environment. In sections 5, 6 and 7, we overview the solutions that we have set up
to overcome the other main difficulties that we encountered.In section 8 we present the
most relevant related work and compare it to our own approach. We eventually discuss
in section 9 the future evolutions of our platform.

102

Fig. 1.The Java Card Grid platform.

2 Smart Cards in Distributed Systems

2.1 The Pros of Using Smart Cards in a Distributed System

Smart cards have a small size that makes them very mobile,i.e. it is easy to carry them in
everyday life. It is a highly secure device that is able to store confidential information. It
is protected against any attempt to obtain its contents. Contrary to most other devices, a
smart card is resistant to physical attacks: it is a tamper resistant device. This is its main
advantage. In fact, several mechanisms are integrated in a smart card at both hardware
and software levels, so as to protect it against external attacks and thus protect the
assets which it contains. In the worst case, the hardware structure of the card makes so
that all the sensitive data (e.g. secret information or private keys) that it stores will be
automatically destroyed in order not to be revealed to an attacker.

Smart cards offer a secure environment perfectly adapted tosupport higher level
security features for large distributed systems. Nevertheless, their integration into such
systems is not straightforward.

2.2 The Difficulties of Using Smart Cards in a Distributed System

There are many problems that prevent smart cards from being widely adopted in dis-
tributed systems.

First, smart cards are by design dependent on a device calledthe Card Acceptance
Device (CAD), generally known as card reader.

Second, smart cards have very limited resources in terms of memory and storage
capacity, computing power, and communication bandwidth with the outside. These lim-
itations reduce the range of possible domains of application.

Third, smart cards are passive. They work according to a master/slave model. The
host application (i.e. the application which is out of the card) is the master, and the
card application is the slave that provides the service. Thecard is always waiting for a
command to execute, and never takes the initiative of a communication with the outside.
Because of this passive mode, the card can neither explore its environment nor initiate
any interaction with external components or services.

103

Fourth, the communication protocol between a card and its CAD is extremely poor,
both in terms of contents and structure, and it is also very dependent on the brand of
card. The communication takes place as a sequence of bytes (i.e. the APDUs – Appli-
cation Protocol Data Units) which are poorly structured. The elaboration of the APDU-
based messages must follow the ISO7816-4 standard [8] that describes their format and
a number of special cases (error codes, special commands, etc.). Thus, the programmer
must have a deep knowledge of the APDU protocol to be able to develop smart card
applications. Compared to other communication methods such as RPC [9], RMI [10] or
CORBA [11] which are widespread in distributed systems, theAPDU protocol remains
rather primitive and relatively complex, even though it is possible to use additional lay-
ers on top of it to partially hide this problem.

For all these reasons, the development of applications for smart cards is a complex
task. It is really challenging to implement the mandatory layers that are missing if one
wants to use smart cards in a distributed environment. We have developed these layers
and they will be presented in sections 4 to 7.

2.3 Features Required to Support the Use of Smart Cards in a Distributed
System

We have explained above why using smart cards in a distributed system is a complex
process. Without a card reader and the proper software layers it is almost impossible,
even though frameworks such as PC/SC can manage low level communication between
the embedded applications and the host. To make it a reasonable task to develop ap-
plications that make use of smart cards, two main features have to be supported: high
level communication and transparent service discovery. Tomake possible to develop
real (size) applications, two other main features are required: proactivity and extended
memory resources.

Communication. To face the complexity of the communication protocol and to make
it easier so support different brands of cards, it is interesting to apply the methods of
distributed systems to smart cards in order to provide transparent communication with
the embedded objects. This is, for instance, what is offeredby Java Card RMI [12].

Service Discovery.A smart card does not spontaneously announce the services that it
contains. It is thus interesting to provide a mean for a card to expose and describe its
services, so that the other components of the distributed system can discover and use
them. This would make the integration of smart cards in distributed systems easier and
faster.

Proactivity. The components of a distributed system need to communicate with each
other to achieve some sort of cooperation. Therefore offering a framework that makes
the cards active,i.e. able to take the initiative of a communication (possibly with an
other card), is mandatory.

104

Extended memory resources.The limited memory of smart cards is probably the
main obstacle to the deployement of real size applications.Therefore, while cards with
a large memory are not available, providing a solution to extend their capabilities is
fundamental to experiment security in new kinds of application domains.

We offer these four features in the Java Card Grid platform. They are described in
section 4 and section 5.

3 The Java Card Grid Platform

The goal of the Java Card Grid project is to provide a hardwareplatform, a software
framework and the associated administration software.

3.1 Hardware Platform

The hardware platform that we have set up is presented Fig. 2.This figure shows that

NETWORK

Untrusted Environment
Environment

Customer

Grid of Java Cards = Trusted Env. Grid of Java Cards = Trusted Env.

PC/SC

Secure channel

Physical links

PC/SC

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

��������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 2. A hardware platform based on Java Card grids.

we have in fact deployed two grids that are connected together by the network. The
hardware fits in a wall mount cabinet of 19U. Each grid is composed of:

– a PC which needs 2U;
– two 2U racks from SmartMount, each having 8 CCID readers fromSCM Microsys-

tems,i.e. we have a total of 16 CCID readers;
– three USB 7-port hubs (placed in a empty 2U rack) to connect the readers to the PC

and to power the readers;
– Java Cards of different manufacturers plugged in the readers which then power

them.

We have also equipped one of the PCs with a LCD monitor and a special rackable
keyboard (with an integrated touchpad) that we use to control the servers. A picture of
this platform is shown Fig. 1.

105

3.2 Software Framework

The software framework that we have designed and implemented comprises two layers:
a low level layer that handles the PCs, the readers and thus the smart cards, and a high
level layer that manages the distributed computing framework that we offer.

At low level, the pilot PCs run Linux and we usepcsc-lite [13], an open source
implementation of the PC/SC3 standard, to manage the readers. We have chosen CCID4

readers because they are supported by an open source genericdriver which is avail-
able forpcsc-lite [15]. Because our high level framework is Java-based, we have
added JPC/SC [16], a JNI-wrapper for PC/SC, to control the readers and to manage the
applications embedded in the cards (cf. Fig. 3).

At the user level, the programming API is based on Mandala[17]. Mandala is a gen-
eral framework that has been developed in our team to supportdistributed computing
in Java. It provides a RMI-like abstraction with anasynchronous method invocation
mechanism [18], which is very useful to deal with slow computing resources.

The overall software framework deployed on the two hosts is shown Fig. 3.

JPC/SC

PC/SC

Station with
many readers

JPC/SC

PC/SC

Station with
many readers

JVM JVM

Mandala

Fig. 3.The software framework.

3.3 Administration Tools

We have begun to design and implement tools to support remoteadministration of the
grid of Java Cards,i.e. to monitor the topology of the grid, to detect the defective cards,
to deploy new applications, etc. As of writing, only the remote topology control tool is
available.

Remote Topology Control Tool. This tool enables a distant administrator to display
the topology of the grid on its monitor,i.e. to see which readers are free and which
contain a card. The administrator can also use it to track theevolution of the grid since
any modification of its state, resulting from the insertion or the tearing of a card, is
instantly notified to the tool. He can also get additional information about a given card
and its associated reader: the low level communication protocol that it uses, the name
of the reader, the name of the card, its ATR5, etc.

3 PC/SC [14] is a standard that provides a high level API to communicate with smart card read-
ers.

4 CCID is a standard that defines a protocol to handle USB readers.
5 Answer To Reset.

106

Tools Under Development.The tools and APIs that we are currently working on are
dedicated to the deployment of applets on a set of Java Cards.Since most of the Java
Cards are GlobalPlatform6 [19] compliant, we develop an implementation that uses this
standard to be able to load and delete embedded applications. We plan to use the open
source GlobalPlatform library [20] recently developed by Karsten Ohme.

4 Global Communication Stack of the Framework

We have used a number of different technologies when we have developed our frame-
work and altogether they make a complex stack of software components and protocols.
The goal of this section is to describe this stack and to explain the task of each layer.
For the sake of clarity, we present it in terms of the OSI reference model to show the
features of each software component and the complexity of the system. We eventually
explain why future cards that support TCP/IP will make it possible for us to build a
more flexible framework.

4.1 Current Communication Stack

Our framework is designed to handle several client applications (potentially running on
different hosts) which interact with several Java Cards of the grid (more precisely with
several applets possibly distributed on different Java Cards). These interactions take
place through different servers and card readers. The servers of the grid and the readers
act as gateways and there are only two really active entitiesin the dialog: the client
application and the applet. All the software stack (including server processes) between
these two elements needs to be transparent. In what follows,we present the architecture
of this stack from the bottom to the top, by comparison with the OSI reference model.

Physical layer. At the bottom of the OSI model, thephysical layer encompasses the
physical interfaces and the physical protocols (i.e. voltages, timing, etc.). Between the
client host and the server host we assume that the hardware interfaces are Ethernet cards.
To simplify the stack presented Fig. 4, we also assume that the client and the server are
in a LAN. In the real world, they could be in different networks and there might be
several routers between them (but the framework would remain almost the same). On
the grid side, the host machine and the CCID readers have a USBinterface and the I/O
channels use the USB protocol. The cards and the CCID readersare connected through
contact interfaces (i.e. the contacts in the reader and the faceplate on the card) using the
related physical protocol (i.e. the ISO7816 specifications). This layer is quite simple but
yet requires three different protocols.

Data link layer. On top of the physical layer sits thedata link layer, the goal of which
is to provide error-free communication between network entities. It detects and possibly
corrects errors that may occur in the physical layer. The client and the grid server both
have an Ethernet module that communicates with the Ethernetcards. On the grid side,

6 GlobalPlatform is a standard that specifies APIs to manage multiapplication cards.

107

LAN

(e.g. T=0 or T=1)

APDU select/deselect specific

Physical

Data link

Network

Transport

Session

Presentation

Application

OSI layers

Application

Client

Java Card

#2
#N

CCID readers

#1

#N

#2

Applet #1

protocol module
Data link

interface module

ISO 7816

CCID
Reader’s driver

PC/SC APDU data format

management

APDU command/response

Data application specific

APDU protocol

module
Ethernet

IP module

Network Card USB portNetwork Card

module
Ethernet

IP module IP protocol

protocol
Ethernet CCID

protocol

USB
protocol

TPDU protocol

Physical protocolPhysical
protocol

Mandala
protocol

Client Server of the Grid

(i.e. contact protocol)

Mandala Mandala

XML common format and security

APDU processor

module

Client side Grid side

CardProxy

protocol
APDU

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 4.Communication stack.

the data link layer is implemented by the CCID protocol between the CCID drivers
hosted on the server and the CCID readers. Between the CCID readers and the data link
module of the Java Card different kinds of TPDU (Transmission Protocol Data Unit)
based protocols can be used (e.g. T=0 or T=1 are the more frequently encountered). The
TPDU are constructed within the CCID readers and they are passed across the physical
layer to the Java Cards. Thus, there are several different data link protocols between the
different entities from the client application to the Java Cards.

Network layer. Over the data link layer, the OSI reference model has thenetwork
layer. One of its main tasks is to perform network routing. In the framework that we
propose, there are several routing nodes. First, routing isachieved using the IP protocol,
between the client and the server. As mentioned above, in a large network, many routers
may be present between these two entities. On the grid side, the first routing element
is the PC/SC component. It dispatches the messages that it receives to the specified
CCID reader (or to the specified slot if the reader is a multi-slot reader) and then to
the specified Java Card. The messages sent by PC/SC are calledAPDUs (Application
Protocol Data Units) and there is no other protocol specifiedon top of it (at least for the
transport layer and the session layer). Since this protocolencompasses many features
that could be found at different levels of the OSI reference model, we decided, for
the sake of clarity, to cut this protocol into five different subsets (where each subset
corresponds to a part of the APDU specification) that we then map onto the five upper
layers of the OSI model (cf. Fig. 4). Moreover, in our framework, the APDU protocol
is not inside the same layers on the client side and on the gridside. We could not find
a better solution with an architecture based on PC/SC. The APDU subset present at

108

the level of the network layer is dedicated to the selection/deselection of applets in a
Java Card. The next routing element is the APDU processor module that interprets the
APDU selection/deselection commands and sets the target applet as the current active
one,i.e. this applet will receive the following APDU commands (except if it is an other
selection/deselection APDU).

Transport Layer. On top of the network layer, thetransport layer provides connection
services to the session layer. Between the client and the grid server our framework uses
Mandala that supports several protocols to perform this task. One can observe Fig. 4 that
Mandala is spread between the transport and the session layers; this will be explained
a bit further in this paper. On the grid side, the protocol that is used is a subset of
the APDU protocol representing the APDU data format specification. It sits between
PC/SC on the server and the APDU processor module in the card.

Session Layer. Above the transport layer, we have thesession layer that manages
the dialog between the client application and the selected applet. In the OSI reference
model, it provides either duplex or half-duplex mode of operation and establishes check-
pointing, adjournment, termination, and restart procedures. In our framework, the client
application and the CardProxy located on the server communicate using the APDU pro-
tocol. Thus, the application generates all the APDU commands to send to the distant
applet and parses the APDU responses. The CardProxy acts as agateway between the
network communication technologies (e.g. IP) on the client side and the smart card
communication technologies (e.g. CCID and TPDU) on the grid side (see Fig. 4). So,
the upper layer enables direct end-to-end communication between a client application
and an applet. The APDU protocol which is half duplex requires the use of a token to
decide which entity can use the communication channel. Mandala also participates in
the session layer by offering asynchronous communication features. These features can
be used by both the client application and the CardProxy to achieve non blocking invo-
cation of services, (at both client and server sides). On thegrid side, the CardProxy and
the applet also exchange data using the APDU protocol. The part of the APDU protocol
specification mainly involved in this layer is the client/server model that schedules the
commands and the responses. As soon as the CardProxy gets a response to a previous
APDU command it checks its pending queue and if an APDU command is present,
then it forwards it to the applet. The CardProxy also acts as asort of router within the
grid when a card wishes to call a method located on another card. It handles specific
response messages to transform the server model of a smart card to a model where the
card can also be a client. Thus it enables the card to be proactive (see section 6).

Presentation Layer. Over the session layer, thepresentation layer relieves the appli-
cation layer of concerns regarding syntactical differences in data representation within
the end-user systems. In usual systems, MIME encoding, encryption and operations of
that kind that have to do with the presentation of data are done at this level. In a similar
manner, in our framework, the security and the data independent representations are
managed in this layer. If this is required by the security policies, the communications
between the client application and the applet can be ciphered. We also offer a XML
based format to structure the data exchanged between the entities (e.g. to get the list of

109

the available services and to pass the parameters when invoking a service on a card –
see section 5). These two features are encompassed in a subset of the APDU protocol
that we have defined, as presented Fig. 4.

Application Layer. The last layer on top of the stack is theapplication layer that is
the direct interface of the application processes and that performs common services for
them. Thus, in this layer, the data exchanged are specific to the goal of the application.
Note that in our framework the application on the client sideand the applet on the grid
side each spread on three layers for practical reasons. However it would be possible to
develop independent libraries on each side to handle the specific aspects of each layer.
Nevertheless, it is important to be aware of the problems caused by the limitation of
the resources available on Java Cards to achieve such developments (e.g. small stack of
frames, etc.).

The framework and the stack of protocols that we have developed provide many of
the features required by the OSI reference model. It was thusinteresting to present our
stack by comparison with the OSI stack even though it is not a direct mapping.

4.2 Future Communication Stack

In the short term we will make the communication stack much simpler by using TCP/IP
Java Cards. These next generation cards will provide TCP/IPconnectivity, what will
make them directly accessible on the network. They will use aUSB connection that
will suppress the need for a reader and that will support highspeed communication.
This is very interesting in the case of our grid where the maincost is that of the readers.
Moreover, thanks to the TCP/IP connectivity, we will have a homogeneous stack on the
client side and on the grid side: TCP/IP for both. In such a context, the server of the
grid will act as a simple router between the client applications and the applets.

These next generation Java Cards will also support a communication model in
which the cards will be active,i.e. be able to initiate communication. This feature will
be very helpful to call from inside a card, a service located in another card of the grid
or on a distant host.

These two features,i.e. a TCP/IP stack and proactivity, will simplify our framework
and open the way to new kinds of applications. Moreover thesecards will be multi-
threaded and this will make our framework really more efficient. The new protocols
integrated in the Java Card specifications (e.g. TLS), the new APIs (e.g. cryptographic
algorithms) and the new programming models will also make the development of new
secure applications much simpler.

Nevertheless, to be able to work till these new cards become available on the market,
we have proposed and implemented several mechanisms to use the current Java Cards.

5 Services in the Java Card Grid

By using the features provided by the stack presented above it is possible to easily
and quickly develop high level services (or applications) that will be embedded in the
cards of the grid. In our framework, a Java Card is seen as a container for services.

110

The provider develops the applet implementing the service and describes its interface
in a Service Descriptor using XML. This is then uploaded to the card and the service
is registered in an on-card local registry, calledServiceCatalog, which contains all the
Service Descriptors of the installed services. Potential clients are provided with a list of
the available services. For this purpose, the software framework initially scans the grid,
and extracts the services available on each card. The clientcan then select and remotely
use one of them. More details about these different phases are shown Fig. 5 and are
detailed in [21].

Fig. 5.Main steps to create, discover and invoque a service.

6 Proactivity in the Java Card Grid

To make the card active,i.e. able to send a request and thus, for example, to invoque a
service on another card, we have set up a simple mechanism which consists in asking
the card in order to know if it wishes to send a request. To achieve this goal, an APDU
command is sent and if the card has a request to send, it puts itin the APDU response.
The mechanism is similar to what is used for SIM cards in cellular phones [22,23].

When an APDU response is received, it is handled by the PC (and more precisely
by the CardProxy) which acts as a router. If the response matches a specified format
(not detailed here, but which contains all the information to locate a precise service on
a precise card of the grid), it means that it is a method invocation of a service of another
card. Using this information, the PC forwards the request tothe target card (the APDU
command is also contained in the APDU response of the client card).

To simplify the calls, we have set up aStub/Skeleton mechanism generated from
an interface which represents the service, its AID, and the name of card where it is
installed. More details about this extension are availablein [21].

Fig. 6 illustrates the remote invocation method used between cards.

1: User request
2: Method invocation

4: Result of the invocation
3: Method invocation

5: Result of the invocation
6: Result of the request

Result of the request

Internet

4

Server card

5

6

2

1

Client card

Java Card GridUntrusted NetworkClient Environment

User request

3

��
��
��
��

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

�������
�������
�������
�������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 6.Remote method invocation between cards.

111

7 Extended Memory in the Java Card Grid

In order to overcome the problems due to the small memory sizeof smart cards, we
propose a solution that offers them a secondary storage (thehard disk of a host) which
increases the memory capacity for the embedded applications:

– for short lived data, in a way similar to a virtual memory mechanism, as can be
found in most operating systems (such as Windows, Linux, etc.);

– for long lived data, as with secure data repositories.

The proposed solution furthermore ensures the security so swapped information,i.e.
it preserves the integrity and the confidentiality of data soas to be in perfect adequacy
with the security requirements which characterize smart cards. Two entities are involved
to achieve this goal:

– one on the card, a Secure Storage Manager Unit (SSMU) ;
– one on the host which performs the following operations:

– write the ciphered data sent by the SSMU with specific keys for each applet and
for each record,
– manage the identification of ciphered data records,
– return back data to the card (on demand).

Fig. 7 focuses on the entity deployed on the smart card side, the SSMU. It helps the
applications that use a large amount of data to store it outside the card. It is furthermore
in charge of ensuring the confidentiality and the integrity of the swapped data. Using the
SSMU will therefore provide a good security level even though some of the application
data are stored off-card. More details about this extensionare available in [24,25].

Computing
Hash

Process

Encryption
Data

Process

Decryption
Data

Process
CipheredApp1R1

CipheredApp2R1

R1

Untrusted Environment Trusted
Environment

Applet 1 Applet 2

Keys storage

KeyApp1R1
KeyApp1R2

MasterKeyApp1

KeyApp2R1
MasterKeyApp2

Firewall

Applet SSMU

R2

R1

verification
Integrity

is a data block

Hard Disk

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

��������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 7.Overview of the SSMU architecture.

8 Related Work

We have identified a number of projects, the aim of which is to integrate Java Cards in a
distributed environment. The goal of all the frameworks that we have studied is to make
the on card services usable as standard services: Corba[11]for ORBCard [26]; Jini[27]
for JiniCard [28]; RMI[10] for JCRMI [12]. Once integrated,the functionalities offered
on these cards become transparently usable from the outside.

112

It is clearly not the goal of these approaches to use the cardsto run CPU demanding
applications, or even really distributed applications. They are more designed in terms
of services. On the contrary, we intend to use the cards as cooperating computional
resources [21]. To achieve this goal our framework makes thecards proactive and this
is one of the major originalities of our work. Thus, in terms of services, our platform
is more advanced and more flexible. Moreover, in our platform, both computation and
inter card communication are secured. Finally, we have alsoset up a cache mechanism
that is not available in any other smart card based platform.

9 Conclusion and Future Work

The platform that we have set up is working and we have run sample applications on
it. We have solved the problems related to the physical equipments, the drivers and the
communication layers required to make the whole system work. The security of our
platform is based on the build-in hardware and software security mechanisms of the
smart cards and on the security protocols used for the communication.

At the beginning, the Java Card Grid project was only intended as a proof of con-
cept. We only planed to build a prototype platform. But now that it is operational, we
have found a lot of interest in the university community, theofficial agencies and the
industry. For instance we got the “most innovative technology award”, delivered by a
committee comprising industry leaders, at e-Smart 2005 [29]. With one of the leading
smart cards companies, we are now planning to set up a platform with 1000 cards to
deploy applications that can handle real size problems. In the longer term, we also plan
to use the next generation cards that should provide 1 Gigabyte of memory, efficient
processors, a full Java virtual machine and a TCP/IP stack.

Acknowledgments

Our project is supported by: Axalto, Gemplus and IBM BlueZ Secure Systems (for the
cards); SCM Microsystems and SmartMount (for the readers);Sun microsystems (for
the overall platform).

We also thank: Fujitsu, Giesecke&Devrient, Oberthur Card Systems and Sharp
for the Java Card samples; David Corcoran and Ludovic Rousseau for their work on
pcsc-lite and the CCID generic driver.

References

1. Berman, F., Hey, A.J., Fox, G.: Grid Computing: Making The Global Infrastructure a Reality.
John Wiley & Sons (2003)

2. Foster, I., Kesselman, C.: The Grid: Blueprint for a New ComputingInfrastructure. Morgan
Kaufmann Publishers (1998)

3. Govindavajhala, S., Appel, A.: Using Memory Errors to Attack a Virtual Machine. In:
Proceedings of IEEE Symposium on Security and Privacy. (2003)

4. Rankl, W., Effing, W.: Smart Card Handbook 2nd edition. John Wiley& Sons (2000)

113

5. : ITSEC. (http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-fr.
pdf)

6. : International Common Criteria home page. (http://www.
commoncriteriaportal.org/)

7. Siegelin, C., Castillo, L., Finger, U.: Smart cards: distributed computing with $5 Devices.
Parallel Processing Letters11 (2001) 57–64

8. International Organization for Standardization: Identification cards –Integrated circuit cards
– Part 4: Organization, security and commands for interchange. ISO (2005)

9. Sun Microsystems, I.: RFC1057 – RPC: Remote Procedure Call Protocol Specification.
(http://www.ietf.org/rfc/rfc1057.txt)

10. Grosso, W.: Java RMI. O’Reilly & Associates (2002)
11. Object Management Group: The OMG’s CORBA Website. (http://www.corba.org)
12. Microsystem, I.S.: Java Card 2.2 Runtime Environment (JCRE) Specification,. (2002) Re-

mote Method Invocation Service, chapter 8, pages 53-68.
13. Corcoran, D., Rousseau, L., Sauveron, D.: pcsc-lite home page. (http://alioth.

debian.org/projects/pcsclite/)
14. PC/SC Workgroup: PC/SC Workgroup Home. (http://www.pcscworkgroup.com/)
15. Rousseau, L.: CCID free software driver. (http://pcsclite.alioth.debian.

org/ccid.html)
16. IBM BlueZ Secure Systems: Java Wrappers for PC/SC. (http://www.musclecard.

com/middleware/files/jpcsc-0.8.0-src.zip)
17. Chaumette, S., Vignéras, P.: A framework for seamlessly makingobject oriented applications

distributed. In: Parallel Computing 2003, Dresden, Germany (2003)
18. Vignéras, P., Grange, P.: The Mandala website. (http://mandala.sourceforge.

net/)
19. GlobalPlatform: GlobalPlatform. (http://www.globalplatform.org/)
20. Ohme, K.: Open source GlobalPlatform library. (http://sourceforge.net/

projects/globalplatform)
21. Chaumette, S., Karray, A., Sauveron, D.: Secure Collaborative and Distributed Services in

the Java Card Grid Platform. In: Proceedings of Workshop on Collaboration and Security
(COLSEC’06), Las Vegas, Nevada, USA (2006)

22. Jurgensen, T.M., Guthery, S.B.: Smart Cards: The Developer’s Toolkit. Prentice Hall (2002)
23. Guthery, S., Cronin, M.: Mobile Application Development with SMS andthe SIM Toolkit.

McGraw-Hill Professional (2001)
24. Chaumette, S., Karray, A., Sauveron, D.: Secure Extended Memory for Java Cards. In: Pro-

ceedings of he 2006 International Conference on Computational Science and its Applications
(ICCSA 2006), Glasgow, UK (2006) (Poster).

25. Chaumette, S., Karray, A., Sauveron, D.: Secure storage forthe Java Card Grid. (In: (Sub-
mitted))

26. Chan, A.T., Tse, F., Cao, J., Leong, H.V.: Enabling distributedcorba access to smart card
applications. IEEE Internet Computing (2002) 27–36

27. The Community Resource for Jini Technology. (http://www.jini.org/)
28. Kehr, R., Rohs, M., Vogt, H.: Mobile code as an enabling technology for service-oriented

smartcard middleware. In: Internationnal Symposium on Distributed Objects and Applica-
tions. (2000) 119–130

29. Atallah, E., Chaumette, S., Darrigade, F., Karray, A., Sauveron, D.: A Grid of Java Cards
to Deal with Security Demanding Application Domains. In: Proceedings of e-Smart 2005,
Nice, France (2005)

114

