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Abstract. In this paper a method for embedding the secret data into the 
container image is considered. The method is based on specifics of the spectral 
properties of ad hoc two-dimensional discrete orthogonal transform. The values 
of functions forming the basis of this transform are `chaotically’ distributed. 
Two ideas provide the ground for the synthesis of these bases. Firstly, the 1D 
M-transforms, that were introduced and investigated in certain particular cases 
by H.-J. Grallert. Secondly, the application of introduced by I. Kàtai canonical 
number systems in finite fields to numerating the input image pixels. 

1 Introduction 

Many methods of embedding secret data into the container image are based on the 
modification of one or several least-significant bits of digital image pixels  [1]-[3]. In 
this paper we propose an alternative method, based on modification of spectral 
components (components of two-dimensional orthogonal transform spectrum of the 
container image) [4]-[5]. Let 1 2 1 2( , ); , 0,1,..., 1x n n n n N= −  be the container image. 
Let the discrete orthogonal transform be given by: 
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Let { }1 2, 0,1,..., 1D m m N⊂ = − , let ( ) { } ( )1 2 1 2ˆ , 0,1 ; ,s m m m m D∈ ∈  be the sensitive 
(secret) data that is to be embedded into the container 1 2( , )x n n . Let the spectrum of 
the output image (with the secret data embedded) be given by 

( ) ( ) ( )1 2 1 2 1 2ˆ ˆ ˆ, , ,y m m s m m x m m= . (3) 
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Applying the inverse transform, with respect to the transform (1), we obtain the image 
( )1 2,y n n , which contains in its spectrum (3) the secret data ( )1 2ˆ ,s m m .  

Unfortunately, there are certain reasons that do not allow for use of ‘classical’ discrete 
orthogonal transforms (1)-(2) for the proposed approach. These transforms have 
several specific properties, which enable their successful application to video data 
encoding and make efficient certain image compressing algorithms. In particular, 
when these transforms are applied, the image energy is concentrated in relatively 
small fraction of spectral components. Thus, embedding the secret data into the 
container image according to the spectral technique described by (3) will result in 
addition of the ‘structured’, ‘texturized’, ‘regular’ noise (distortion) to the container. 
Note that this type of noise is known to be much more perceptible by human than 
random noise. 

In the Fig. 2 example of the ‘structured noise’ is displayed. An example of the 
‘random’ noise is provided in the Fig. 3.  

 

   
Fig. 1. Original image. Fig. 2. Distrortion after 

Hartley transform is applied. 
Fig. 3. Distrortion after 
proposed transform is appli-
ed. 

Thus, it is worth considering other types of orthogonal transforms, the transforms that 
don’t concentrate the signal energy in few spectral components and allow for 
effective removal of the inessential data. In this work, we intent to consider the 
discrete orthogonal transform with the basis that is composed of ‘noise-similar’, 
‘chaotic’ functions. For these transforms all the spectral components are 
‘energetically equivalent’ and the image distortion associated with these transforms is 
similar to the additive Gaussian noise. For this transform the corresponding 
steganographic process (i.e. embedding of the secrete data to the container) represents 
addition of a low-energy Gaussian noise, and this process will be more secure than 
any bit-replacement technique. As during the image acquisition process, many 
different independent sources of Gaussian noise with varying amplitudes are 
superimposed onto the image, this is hard to determine whether the additional 
Gaussian noise is due to the channel/sensor properties or steganography [5].  
One-dimensional transforms (1) that provide required distribution of the signal energy 
were introduced in [6]. The basis functions of these transforms have only two 
different values. In the papers [7]-[9] application of these transforms to processing the 
video information was considered. Various generalizations for the scheme described 
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in [6] were proposed by one of the authors in the papers [10]-[11] for the functions 
( )mh n  with k different values.  

The essence of constructing the set of the considered orthogonal transform basis 
function is in use of the linear recurrence  

1( ) ( 1) ... ( ); , 0.r j q ry n a y n a y n r a a= − + + − ∈ ≠F  (4) 

This recurrence is defined over the finite field qF  that consists of sq p=  elements 
(where р is prime). The period of recurrence (4) is assumed to be maximal: 

1rN q= − (in this case, the recurrent sequence (4) is an m-sequence  [12],[13]). 
While constructing the basis functions of the transform (1) the elements of the 
sequence ( ) qy n ∈F  are replaced with the real numbers ( )mh n in such a way, that for 
the functions ( )mh n  the orthogonality-constraints (2) are satisfied. 
One of the principle obstacles that prevents the results introduced in the cited papers 
from being extrapolated to the two-dimensional case is the following: for 2D case a 
‘good’ one-dimensional numeration of the two-dimensional array  
( ){ }1 2 1 2, ; ,n n n n ∈Z is hard to be constructed. In the papers [14], [15] the conception 

was introduced of the canonical number systems (CNS) in the ring ( )dS  of 

integers from the quadratic fields ( ) { }; ,d z a b d a b= = + ∈Q Q . In terms of 

CNS, the elements ( )z d∈S  may be represented in a form of the finite sum  

( )k z j
jj o

z z α
=

= ∑ , (5) 

where the ‘digits’ jz  are from the certain finite subset ⊂ ZN , and the element α  

(the base of the canonical number system) is an element of the ring ( )dS . 

In this paper, we define the one-to-one map that takes the elements of the ‘caterpiller’ 
of the N-periodic m-sequence (4):  

( ) ( )0 1(0), , ( 1) , (1), , ( ) ,y y r y y r= − =Y Y… … …  (6) 

to the elements of the ring ( )dS , represented in a form of r-term sums (5). Using 

this map for processing the two-dimensional signals (images) we may construct the 
one-dimensional numeration of the points from the two-dimensional integer lattice 

2Z  and synthesize the discrete orthogonal transforms (1)-(2) with the ‘chaotic’ 
distribution of the basis functions ( )mh n  values. 
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2 Mathematical Background 

The proof of the facts that are stated below may be found in [12], [13] (linear 
recurrences) and in [14]-[15] (canonical number systems). 
Recurrent functions in the finite fields.  
Let qF be a finite field that consists of sq p=  elements, where p  is prime. 
Definition 1. The function that satisfies the linear recurrence (4), where  

1 0,..., , 0, ( (0),..., ( 1))r q ra a a y y r∈ ≠ = −F Y , 

is called a linear recurrent sequence of the order r with the initial values 
( (0),..., ( 1))y y r= −Y . The recurrence (4) of the maximal possible period 1rN q= −  

is called an m-sequence. Elementary properties of the m-sequence are stated in the 
following Lemma. 
Lemma 1 Let the recurrence (4) with non-zero initial values 0Y  be an m-sequence, 
then 
0. if the n runs the full period of the sequence (4), that is equal 1rN q= − , then 

among the generated elements any element 0 qa≠ ∈F  will occur 1rq −  times, and 

the zero element 0 q∈F  will occur 1 1rq − −  times; 
1. in the entire period of the "caterpillar" (6) of the recurrent sequence (4) every non-

zero r-component vector from the space ( )r

qF  occurs only once.  
Canonical number systems (CNS) in quadratic fields. 
 Let ( ) { ; , }d z a b d a b= = + ∈Q Q  be a quadratic Q  extension field, d be a 
square-free integer number. Note that if 0d > , the quadratic field is called real; 
if 0d < , it is called imaginary. If the trace ( ) ( )( ) 2z a b d a b d a= + + − = ∈Tr Z  

and the norm ( )( ) 2 2( )z a b d a b d a db= + − = − ∈Norm Z  of the element 

( )z a b d d= + ∈Q  are integer, then the element z  is called the algebraic integer 

in ( )dQ . Denote by ( )dS  the subring of the integers from ( )dQ .  

Definition 2. The algebraic integer A B dα = +  is called the base of the canonical 
number system in the ring of integers from the field ( )dQ , if every integer z  in 

( )dQ  can be uniquely represented  in a form of the finite sum 
( )

0

k z
j

j
j

z z α
=

= ∑ , ( ){ }0,1,..., 1jz α∈ = −NormN . 

The pair { , }α N  is called the canonical number system (CNS) in the ring ( )dS  of 

integers from ( )dQ . Below there are several examples of canonical number 
systems.  
1. Let ( ) 2α =Norm , then there exist only three imaginary quadratic fields with the 
rings of integers where binary canonical number systems exist, namely: 
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(а) the field ( )iQ  with the base 1 iα = − ± ; (b) the field 7( )iQ  with the base 
7( 1 ) 2iα = − ± ; (c) the field 2( )iQ  with the base 2iα = ± . 

2. Let ( ) 3α =Norm , then there exist only three imaginary quadratic fields with the 
rings of integers where exist ternary canonical number systems, namely:  
(a) the field 2( )iQ  with the bases 21 iα = − ± ; (b) the field 3( )iQ  with the base 

3( 3 ) 2iα = − ± ; (c) the field 11( )iQ  with the base ( )111 2iα = − ± . 

3 М-transforms 

In [1] the orthogonal M-transform (1) was introduced. The M-transform basis 
functions ( )mh n are ‘very similar’ to random noise. Particularly, the functions ( )mh n  
are randomly equal to one of two values, and the relative frequencies of these values 
are almost equal. In the paper [1] construction of the set of the basis functions was 
grounded on use of the m-sequence (3) for 2p = . For prime 2p =  the basis 
functions of this transform may be constructed using the following scheme. 
• In the process of the functions 0 ( )h n  construction, the ( )y n  sequence elements 

are replaced with the real numbers  

2
0

2

, if ( ) 1 ;
: ( ) ( )

, if ( ) 0 .
A y n

y n h n
B y n

ϕ
= ∈⎧

= ⎨ = ∈⎩

F
F

6  
(7) 

• The functions ( )mh n  may be obtained from the function 0 ( )h n applying the 
circular shift of the argument  

 ( )0( ) ( ); 0,1, , 1; 2 1r
mh n h m n m N N= + = − = −… . (8) 

• The numbers A and B are selected so that for the functions { }( )mh n  the condition 
on the function orthogonality (2) is satisfied. 

The essential technical obstacle is the difficulty to obtain the relations from where A и 
B may be  easily determined. The following theorem generalizes the results of the 
paper [6]. 
Theorem 1. Let sq p= , where p  is prime, 1rN q= − , the numbers 0 1,..., qA A −  are 

such that ( ) ( )1
0 1 0, 1 , ( 0,..., 1)k qA k A q A A k qλ λ −

−= + = − − = − . Let the functions 

( )mh n  be given by 0 0( ) , if ( ) ; ( ) ( )k mh n A y n k h n h m n= = = + . Then there exist 
efficiently computable constants 0A  and λ , such that  
(а)  the set of functions { }( ); , 0,1, , 1mh n m n N= −…  forms an orthonormal basis; 
(b) the constants 0A A=  and λ  are the solution of the following system of equations  

119



( )
1

22

1

1 1

0 0

1 11 ,

0 ( )( ) ( );

q

k

q q

ij
i j

N NN A A k
q q

A Ci A Cj S

λ

τ

−

=

− −

= =

⎧ ⎛ ⎞ ⎛ ⎞+ +
== − + +⎪ ⎜ ⎟ ⎜ ⎟

⎪ ⎝ ⎠ ⎝ ⎠
⎨
⎪ = + +⎪⎩

∑

∑∑

( ) ( )
( ) ( )

2

2

1, if , 0,0 ;
( )

, if , 0,0 .

r

ij r

q i j
S

q i j
τ

−

−

⎧ − =⎪== ⎨
≠⎪⎩

 

4 The Synthesis of M-transform Basis Functions  

For application of the introduced М-transforms to the steganography tasks it is 
required to represent the two-dimensional array of pixels in 1D form.  
Let 21 1rN q q ρ= − = − . We assume that values of the brightness function of the 
digital image are elements from the following set  

( ) ( ) ( ){ }2
1 2 1 2 1 2, : 0 , 1; , 0,0r

N n n n n q n nΔ = ∈ ≤ ≤ − ≠Z  
Applying the theory of canonical number system it is possible (using the following 
algorithm) to construct the numeration of the elements (points) of the set NΔ  and to 
calculate the values of basis functions { }( )mh n .  

Numeration algorithm. 
 
Step 1. Let ( )( ) ( ) .z a b d z d z d= + = + ∈Rat Irr S  Consider the map 

( ) ( ) 2: d∗ →S Z , where 

( ) ( ) ( )( ) ( ) ( )
( ) ( )1 2

( ), ( ) , if  2,3 mod 4 ; 
: ,

2 ( ), 2 ( ) , if  1 mod 4 .
z z d

z z n z n z
z z d

∗ ⎧ ≡⎪∗ = = ⎨ ≡⎪⎩

Rat Irr
Rat Irr

6  
(9) 

Step 2. Let in ( )dS  exist the q-nary CNS with the base α . Consider the m-

sequence (4) of the degree 2r ρ=  (and the period  2 1N p ρ= − ) and the ‘caterpillar’ 
(6). 
Step 3.  Using the ‘caterpillar’ sequence (6), we can construct the following sequence  

0 1 1( ) ( ) ( 1) ... ( 1) rz k y k y k y k rα α α −= + + + + + − . (10) 

of elements from the ring ( )dS . Denote by Ω  the set 

( ){ } ( ); 0,1,... 1z k k N dΩ = = − ⊂ S . The elements of the sequence ( ) 2z k∗ ∈Z , that 

is given by (8)  will form a certain ‘fundamental domain’ *Ω  in the lattice 2Z .  

120



Step 4.  Consider the equality  ( ) ( ){ }: ,r rd z v z v dα αΩ+ = + ∈Ω ∈ = Ω+ΣS S . 

It may be easily verified that for the map of sets inducted by the map (8),  the 

following relation holds  ( )( ) ( )( )* *
2 2 *\ \r rd dα αΩ+ = = ΣS Z S Z . In other 

words, the additive shifts of the domain *Ω  cover ‘almost’ all the points of the 
discrete lattice 2Z , with the exception for the points that belong to the set *Σ . 
Step 5. We say that the points ( ) ( )* * 2

1 2 1 2, , ,z z z w w w= = ∈Z  are congruent 

( )mod Σ , if for their prototypes given by (8) the following relation holds: z w− ∈Σ . 

It can be shown that every point ( )*
1 2, Nw w w= ∈Δ  is congruent ( )mod Σ  to some 

point ( )* *
1 2,z z z= ∈Ω of the fundamental domain. In their turn, for the points from 

the fundamental domain *Ω  there exists a one-to-one map to the elements of the 
setΩ  that are numerated using (9). 
 

   

Ring ( )iS  Ring ( 2)iS  Ring ( 7)iS  

Fig. 4. Fundamental domainsΩ , associated with the binary CNS in ( )i dS . 

Step 6. Therefore, summarizing the above-stated facts, a new numeration of the 
points from the set NΔ  may be obtained: 

( ) ( ) ( )

( ) ( ) ( )

mod .(8)* * *
1 2

.(8) .(9)

,

.

Eq
N

Eq Eq

w z z z

z z n n

Σ∈Δ ⎯⎯⎯→ = ∈Ω ⎯⎯⎯⎯→

⎯⎯⎯⎯→ = ⎯⎯⎯⎯→ ∈Z
 

(11) 

The above-constructed functions ( )mh n  generate the basis functions 1 2( , )mH ν ν , that 
are defined in the two-dimensional domain NΔ . In fact, consider, for example, 

( ) ( )0h n h n= . Similar to (10), we obtain: 

( )( .(9)) ( .(12))

( .(12)) * (mod )
1 2 1 2

( ) ( ), ( )

( , ) ( , )

Eq Eq

Eq
N

n z n z n z k

n n v vΣ

⎯⎯⎯⎯→ ↔ ⎯⎯⎯⎯→

⎯⎯⎯⎯→ ∈Ω ⎯⎯⎯→ ∈Δ

Rat Irr
 

and the assume that 0 0 1 2( ) ( , )h n H ν ν= . The examples of these basis functions are 
provided in the Fig.5. 
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Fig. 5. M-transform basis functions, 1d =  

5 The Results of the Experiments 

In the Figs 1-3 the typical experimental results are displayed. Into the container 
‘Lena’ image (256х256 pixels, Fig. 1) using the relation (1) we embedded the same 
secret data using three different discrete orthogonal transforms: 

• two-dimensional discrete Hartley transform; 
• two-dimensional discrete Hadamard transform; 
• M-transform  in the version, described in this work. 

In the array of the container image spectrum about 20% of spectral components were 
changed. In the Figs.2, the "structured" nature of the decoding error is noticeable. For 
the images in the Figs. 3 and 8, the decoding error is similar to the random ‘non-
structured noise’. The images in these figures were obtained using the M-transform 
instead of classical orthogonal transforms. 
The structure of the distortion, that is revealed in the decoded image when certain 
subset of the M-transform spectral components ˆ( )x m  are "lost"/"modified", this 
structure becomes more clear, if certain probabilistic interpretation is used (the 
authors do not claim the absolute mathematically correctness of this interpretation). 
Let the basis functions ( )mh n  be interpreted as random variables. These random 
values are not correlated as the transform has its orthogonality property. For the input 
signal ( )x n  and for the distorted signal ( )*x n  the following relations hold  

( ) ( ) ( ) ( ) ( ) ( )ˆ* ,
T

x n x n x h n x n n Tτ
τ

τ ξ
∈

= + = +∑ , 

where T is a set of the indices corresponding to the lost spectral components. The 
random value ( ),n Tξ  is linear combination of the random values (the values that has 

the same distribution) and therefore for practical tasks ( ),n Tξ  may be interpreted as 
a Gaussian noise with the parameters that may be easily calculated. 
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Fig. 6. Error-field for discre-
te Hartley transform. 

Fig. 7. Error-field for discre-
te Hadamard transform. 

Fig. 8. Error-field for discre-
te M-transform. 

In the figures 9-11 the autocorrelation functions (autocorrelation of the field of errors 
for the used transform) is displayed. 

 

   

Fig. 9. Autocorrelation fun-
ction of the field of errors for 
Hartley transform. 

Fig. 10. Autocorrelation fun-
ction of the field of errors for 
Hadamard transform. 

Fig. 11. Autocorrelation fun-
ction of the field of errors for 
M-transform . 

6 Conclusion 

The major contributions of this article arise from development of the mathematical 
fundamentals for application of canonical number systems and discrete orthogonal 
transforms to the tasks of steganography. The proposed approach is based on a new 
mathematical technique, namely on the theory of canonical number systems that so 
far has not been applied to this tasks of digital signal processing. The empirical and 
theoretical results are provided that if the proposed transform is used for embedding 
the secrete data,  then to the container image additive random noise is added, that is 
much less perceptible than ‘regular’, ‘structured’ noise typical for classical discrete 
orthogonal transforms. 
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