Specification of Deterministic Regular
Liveness Properties

Frank NieRner

telecommunicationsetworks& securityResearch Group
Department of Computer Science, University of Fribourg
Boulevard de Erolles 90, CH-1700 Fribourg, Switzerland

Abstract. Even up-to-date automated verfication techniques are affected by the
fundamental complexity of verification algorithms which is caused by necessity

to decide subset conditions on certain languages. These languages are recogniz-
able by nondeterministici®hi automata and represent a system behavior and the
desired properties of the system. The involved complementation process may lead
to an exponential blow-up in the size of the automata. In this paper we specify
the structure of a rich subclass of languages that can be characterized by deter-
ministic Blichi automata and hence be complemented rather easily. Furthermore,
we present examples of practically relevant properties belonging to this language
class.

1 Introduction

The behavior of systems that exhibit temporary perpetual behavior and have the ability
to react to their environment [7] can be appropriately described by regtilarguages

[10] which are Eilenberg-limits [3] of prefix-closed regular languages. Here, the funda-
mental alphabet is the set of actions that may be performed by the considered system
and the system behavior is the set of all infinite action-sequences the system may per-
form. In this context, verification describes the process of checking whether the behav-
ior is a subset of aw-language that contains all the action-sequences representing the
correct behavior of the system. We call this latter language a property.

Properties are as well be characterized by reguilenguages andighi automata
respectively. Due to the difference between the language-classes which are recognizable
by deterministic and nondeterministidiéhi automata (the deterministic and nondeter-
ministic regularw-languages) [2], verification becomes a different task since it might
be essential to ‘complement’ the, in general, nondeterministic property-automaton. This
can cause an automaton that is exponentially larger. However, we are able to compute
the complement of a property-automaton rather easily if it is deterministic [8].

Therefore, we investigate deterministic automata and deterministic properties re-
spectively. Even though we consider just a proper subset of all regtilarguages, this
is no major drawback since deterministic properties contain a large class of practically

* The author is supported by titasler Foundatiorunder grant number 1922.

NieBner F. (2006).

Specification of Deterministic Regular Liveness Properties.

In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
173-178

DOI: 10.5220/0002482601730178

Copyright © SciTePress

174

relevant properties in general [8]. Furthermore, befordegn our considerations, we
will briefly explain that it is sufficient to focus on the pamiar class of properties called
liveness properties. Properties can be separated duertmthéive meaning into safety
and liveness properties [1]. It is easy to show that safeipgnties are closed sets in the
Cantor topology and therefore are always deterministic A@ditionally, every prop-
erty can be represented by an intersection of a safety amdreks property [1]. Taking
into account that determinism of regularlanguages is preserved under intersection,
we obtain that a characterization of deterministic regliNeness properties suffices to
characterize all deterministic regular properties.

In this paper we will present the structure of deterministgular liveness properties
in terms of regular prefix-free languages and, additionalsywill give some examples
of practically relevant subsets of this class.

2 Preliminaries

We assume the reader is familiar with the common notions whéb language and
automata theory as presented in [4]. For a finite sectibnsY’, let 2* be the set of all
finitely long sequences ob, let X* be the set of all infinitely long sequences, and let
Yoo =y*uXv AsetL C X*is called a (finitary) language, a skt C X is called
anw-language

Let Lo € X*°. Thenpre(Lo) = {v € X* | Jw € ¥ : vw € Ly} denotes
the set of all prefixes of... We call a languagé, C X* prefix-closedf and only if
pre(L) = L. Further, theEilenberg-limit[3] (or limit for short) of a languagé, C X*
is given bylim(L) = {w € X% | 3%v € pre(w) : v € L} Letw = o105 ... € X%,
Then we defindnf (w) = {oc € X' | 3%°i : 0, =0 }.

A finite state automaton is capable of accepting strings dfiven by a quintuple
A= (Q,X,6,q,F), where@ is a non-empty finite set of statek, is a non-empty
finite set of input symbolsj, € @ is the initial state ' C @ is a set of final states, and
§: Q x X — 29 denotes the transition function. We assume the transitiontions
to be extended t8° x X* — 2@ as usualA is deterministidf [5(¢,)| < 1, for each
q€ Q,o€ X.Atripel (¢,0,p) € Q x X x Q s.t.d(¢q,0) > pis atransition ofA.

Letv = 0109...0, € X* andw = oy0.... € X¥. A finite state sequence
p(v) = ror1...1, € QF denotes dinite runof A onw if 6(r;,0441) > 7y for
0 < i < n. The finite runp(v) is successful ity = gy andr,, € F'. An infinite state
sequence(w) = rori... € Q¥ denotes aun of A onw if 6(r;,0541) > riyq for
0 < i. The runp(w) is successful ify = go andInf (p(w)) N F # 0.

Subject to its acceptance conditiofturns into a finite automaton or aiBhi au-
tomaton. If we defined to accept alb € X* such thabt(qo, v)NF # 0, thenA is afinite
automaton (FApndL(A) = {v € X* | There is a successful finite run g@fonv} is
aregular languagelf we defineA to accept eachy € X such that there are infinitely
many differentv € pre(w) such thats(qo,v) N F' # 0, then A turns into aBuchi
automaton (BApnd L, (A) = {w € X* | There is a successful run gfonw} is a
regularw-language Throughout this paper we assume our automata to be redueed,
they don't have useless states or transitions.

1 Read 3°... : ..." as ‘there exist infinitely many different ... such that ...

175
3 System Behavior, Properties and Verification

When we consider the behavior of a reactive system, it woulkenmo sense to al-
low for finite computations having prefixes that are not adifiehavior as well. Thus,
the language representing the finite behavior of the syssgureffix-closed and can be
recognized by a finite automaton with only accepting staéfesthermore, since it is
reasonable to consider the behavior to be the ‘infinitelytiooed’ finite behavior of
the system, we consider the behavior to be the limit of a pi@fized language.

Intuitively, a property partitions£' into the sef” C X of sequences that satisfy
the property and the séf C X* of sequences that do not. For a formal definition of a
property we simply identify it with the sét C X* that satisfies it. A system behavior
B satisfies a property C X“ linearly if and only if B C P.

Properties can be classified by their intuitive meaning [5There are properties
demanding that ‘nothing undesired will happen’. We calktheroperties safety prop-
erties. If an undesired action occurs in a computation thendomputation, indepen-
dently of further actions, does not satisfy the propertyu§ha propertyP C 3¢
is called a safety property if and only if fromm ¢ P follows the existence of a
u € pre(w), such thatuv ¢ P for all w,v € X* [1]. Another important class of
properties are the liveness properties. These propertiesnd that ‘a desired action
or action sequence occurs eventually’ but without spewifihe point in time and the
number of occurences (once or repeatedly). Furthermoeepdissible satisfaction of
the property must be independent of the computation peddrso far. This means that
for all finite computations) € X* there must exist an infinite continuatian € >¢
such thaww € P. A reformulation yields [1]:P C X¢ is a liveness property if and
only if pre(P) = X*. The classification of properties into safety and livenesperties
is well-founded since a common result from topology states évery property is the
intersection of a safety and a liveness property [1].

Verifying a system means deciding subset conditions of tmfB C P which
can be algorithmically performed by checkiiyn P = () (whereL,, = X \ L,).
However, the problem of complementingiéhi automata is PSPACE-complete [10]
and may result in an automaton of size uRfd”!°s™ [9]. An exponential blow-up
can be avoided if we restrict the properties to be detertiini¥hen, a deterministic
Bichi automaton suffices to describe a propéttgnd it can be complemented in linear
time, yielding a Richi automaton (which is not necessarily deterministicaone) that
recognizesP and has at most twice as many states (plus one in addition)ae@u to
the original one [8].

4 Deterministic Regular Liveness Properties

We will now have a closer look on the structure of determicibteness properties.
A good point of origin is the well-known specification for detinistic regularw-
languages which is based on regular prefix-free languadddése, a languagé C X*
is called prefix-free if no proper prefix of a string Inis in L. It is called maximal
prefix-free if it is prefix-free and for ally € X* \ L holds: L U {w} is not prefix-free
anymore. In this case we hawyee(L - X*) = X*. The specification is given by

176

Lemma 1. A regularw-languageL,, C X“ is deterministic if and only if there exist

regular prefix-free languages;, V; C X*,1 <i <nsuchthatL, = |J U;-V¥.
1<i<n

A proof can be found in [3]. Instead, we give an intuitive expdtion that provides
hints on how to improve this characterization towards a i§igation for deterministic
liveness properties.

Obviously, to each deterministic regularlanguage there exists a deterministic
Buchi automatond = (Q, X, J, qo, F) that recognizes it. Hence, this automaton has
at least one accepting state, saynd, since it accepts infinite action sequences, there
must be at least one loop, i.e., a sequence of transitionssthds and ends in this
accepting state without passing it intermediately. In galh¢here might be infinitely
many of such sequences. We collect all these sequencestinisayl, C X*. In fact,
V1 is a regular language and it is prefix-free, sindéds deterministic. Furthermore,
there must exist at least one finite sequence of transiti@tsstart ingy and ends up in
1. Again, there might be more than just one such sequence {efiitely many) and
we collect all of them in a séf; C X*. Notice that/; is as well regular und prefix-free
sinceA is deterministic. Thed/; - V¥ contains all infinite sequences thétaccepts in
statel. These observasions hold for each accepting state fom {1,...,n} of A.
Thus,L(A) = U, <<, Ui - V¥, whereU;, V; C X* are regular prefix-free languages.

In a certain sense, the determinism is captured in the piiefddom of the regular
languaged/;, V; € X* (or vice versa). Due to their determinism, the represemtati
given in Lemma 1 holds as well for deterministic regular figes properties. However,
there must exist additional constraints Gn V; C X* that capture the ‘liveness’ of a
property. Recall thaP is a liveness property if and only ifre(P) = X'*. Furthermore,
notice that we can add an arbitrary deterministic regutdanguage taP (determin-
istic regularw-languages are closed under union) and still have a detestmiregular
liveness property.

Now, letU;, V; C X* be regular prefix-free languages such tRat | J, ., ,, Ui -
V. Hence, we must havere(J,,.,, Ui - V) = X*. Some of thel/; might be
prefixes of &J;, i # j, and if this is the case, then we can skip them without deistgoy
the ‘liveness’ of the rest, i.epre(|J,.q Us - Vi°) = X*, whereS = {1,...,n} \ R
and R is the set of indiceg such thatU; is a prefix of alU;, ¢ # j. This implies
pre(Useg Us) - % = X* which means thapre(lJ,. 4 Us) is maximal prefix-free.
Moreover, we must havere(V¥) = X* for s € S. Frompre(V¥) = X* follows
pre(V- X*) = X*,i.e., the regular languag®s, s € S, must be maximal prefix-free,
whereas thé/,., r € R are at least prefix-free. The deterministic regulalanguage
U,c<r U - V;¥ can be considered as addition to that part that still dessrébdetermin-
istic regular liveness property. Thus we obtain the follogviemma

Lemma 2. L, is a deterministic regular liveness property if and onlyhEte exist
regular prefix-free languages;, V; C X*,1 <i < n, suchthat.,, = U, ,.,, Ui- V¥
and there exists a subsek = |J .4 Us - V¥ of L,,, whereS C {1,...,n}, such that
U, Us and theV; are maximal prefix-free for alt € S.

We exemplify the concept using theighi automatord depicted in Figure 1.

177

Fig. 1. Biichi automatonA.

Example 1.We have four accepting states (the double-circled ones). prafix-free
sets corresponding to stateareU; = (a + ba) andV; = a. Thus,(a + ba) - a* is
the set ofw-words thatA4 recognizes in state. The sets corresponding to statare
Uy = bb, Vo = (a + b) and.A recognizesb - (a + b) in state3. For statet we obtain
Us = (a + ba)a*b, V3 = (a + b)a*b and thew-languager + ba)a*b - ((a + b)a™b)~.
The sets corresponding to statareU, = (a +ba)a*b(a+b)a, Vi = (ab+b)(a+b)a
and thus thev-language accepted in staidgs Uy = (a + ba)a*b(a + b)a - ((ab +
b)(a + b)a)“. We observe thalt/,, U, C pre(U,). Hence,L(A) = Lk U Lz where
Lg = (bb-(a+b)*)U ((a+ ba)a*b(a+ b)a - ((ab+b)(a + b)a)¥) is a deterministic
regular liveness property add; = ((a + ba) - a¥) U (a + ba)a*b - ((a + b)a*b)*) is a
deterministic regulaw-language.

5 Practically Relevant Deterministic Regular Liveness Proprties

This section introduces two classes of practically reledaterministic regular liveness
properties and indicates how they can be extend using Lemr8arfe of the consid-
erations can as well be found in [8]. From the previous ols@rms follows that the
determinism is captured in the prefix-freedom of the invdlkegular languages. A lan-
guagel is prefix-free if and only if no word irl. is a proper prefix of another word in
or, in other words, if and only if. \ (L - X) [3]. We denote the operatiah\ (L - X7)
that establishes the prefix-free language corresponditightyp 7 (L). Observe that for
all regular languageg C X*, n(X* - L) is a maximal regular prefix-free language.
Furthermore, we obtain from Lemma 2 as a special case tteniioldy corollary.

Corollary 1. LetU,V C X* be regular prefix-free languages. Then V¥ is a deter-
ministic regular liveness property if and onlylif and V' are maximal [8].

Using this result we establish the following classes of ieteistic regular liveness
properties. Let, C X* be a regular language. Then thdanguageP,,, = X* - L -
¥ demands a regular pattern into occur eventuallyP,.,; is a deterministic regular
liveness property sincE*- L- X% = x(X*-L)- X andX is a maximal regular prefix-
free language [8]. Thus, by Corollary 1, the assertion fedoln a similar way we can
discussP;,s = (X* - L)*. P,y demands regular patternsinto occur infinitely often.
Since(X* - L)¥ = (n(X*-L))¥ =x(X*-L)- (n(X*- L))*, we obtain by Corollary 1
that P;,,; is a deterministic regular liveness property.

Notice thatP.,; and P;,; represent huge classes of properties since there are no
restrictions or (except for regularity). For instance, we could repladey (L - X*)",

178

wheren is a natural number, Kleene star*’ or Kleene plus'+’. Alletbe expressions
describe regular languages and tlitig, and P;,,; would remain deterministic regular
liveness properties.

Furthermore, Lemma 2 allows to unify any (finite) number offsuleterministic
regular liveness properties and we still obtain a detestimregular liveness property.
And there is yet another method to extend these propertgatasn the representation
given in Lemma 2, we demand the deterministic regular laggs¥, to be maximal
prefix-free so as to ensure thate(V) = X*. However, this holds as well for any
deterministic regular liveness property. Thus, in the espntation given in Lemma 2
we can replace arbitrarily manyy’ by P, P;,s Or any deterministic regular live-
ness property and the result will be a deterministic redivlaness property. Notice the
idempotency of this statement: the resulting determmigigular liveness property can
again replace one (or arbitrarily many) of the maximal préfee setsV;. Hence, the
class of deterministic regular liveness properties isaattomprehensive and contains
various practically relevant properties.

6 Conclusion

We have considered in detail the deterministic regulamigs properties, since they
form a subclass of regular liveness properties for whichxquoeential blow-up in the

number of states can be avoided in the corresponding veéidgficprocess. We presented
a specification for these languages and demonstrated tireess of this language class.

References

1. B. Alpern and F.B. Schneider, Defining liveness, Informationc@ssing Letters, 21(4), pp
181-185, 1985.

2. J.R. Bichi, On a decision method in restricted second order arithmetic, In EelNagl.,
editors, Proceedings of the International Congress on Logic, Metbggland Philosophy of
Science 1960, pp 1-11. Stanford University Press, 1962.

3. S. Eilenberg, Automata, Languages and Machines, volume A, Auaderess, New York,
1974.

4. J. E. Hopcroft and J. D. Uliman, Introduction to Automata Theorydieges and Computa-
tion, Addison-Wesley Publishing Company, 1979.

5. L. Lamport, Proving the correctness of multiprocess prograntsk IEransactions on Soft-
ware Engineering, SE-3(2), pp 125-143, 1977.

6. Z. Manna and A. Pnueli, A hierarchy of temporal properties, Rrdicgs of the 9th Annual
ACM Symposium on Principles of Distributed Computing, ACM Press, pp&7Jd, 1990.

7. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Cwoeot Systems-
Specification, Springer Verlag, New York, first edition, 1992.

8. F. Nief3ner, U. Nitsche, and P. Ochsenéghkl, Deterministic--Regular Liveness Properties,
In Symeon Bozapalidis, editor, Proceedings of the 3rd Internationaie@ance on Develop-
ments in Language Theory (DLT'97), pp 237-247, 1997.

9. S. Safra, On the complexity afautomata, Proceedings of the 29th Annual IEEE Symposium
on Foundations of Computer Science, IEEE, pp 319-327, 1988.

10. W. Thomas, Automata on infinite objects, in J. van Leeuwen, editom&dJodels and
Semantics, volume B of Handbook of Theoretical Computer Scienc&3pgl91, Elsevier,
1990.

