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Abstract. Even up-to-date automated verfication techniques are affected by the
fundamental complexity of verification algorithms which is caused by necessity
to decide subset conditions on certain languages. These languages are recogniz-
able by nondeterministic B̈uchi automata and represent a system behavior and the
desired properties of the system. The involved complementation process may lead
to an exponential blow-up in the size of the automata. In this paper we specify
the structure of a rich subclass of languages that can be characterized by deter-
ministic Büchi automata and hence be complemented rather easily. Furthermore,
we present examples of practically relevant properties belonging to this language
class.

1 Introduction

The behavior of systems that exhibit temporary perpetual behavior and have the ability
to react to their environment [7] can be appropriately described by regularω-languages
[10] which are Eilenberg-limits [3] of prefix-closed regular languages. Here, the funda-
mental alphabet is the set of actions that may be performed by the considered system
and the system behavior is the set of all infinite action-sequences the system may per-
form. In this context, verification describes the process of checking whether the behav-
ior is a subset of anω-language that contains all the action-sequences representing the
correct behavior of the system. We call this latter language a property.

Properties are as well be characterized by regularω-languages and B̈uchi automata
respectively. Due to the difference between the language-classes which are recognizable
by deterministic and nondeterministic Büchi automata (the deterministic and nondeter-
ministic regularω-languages) [2], verification becomes a different task since it might
be essential to ‘complement’ the, in general, nondeterministic property-automaton. This
can cause an automaton that is exponentially larger. However, we are able to compute
the complement of a property-automaton rather easily if it is deterministic [8].

Therefore, we investigate deterministic automata and deterministic properties re-
spectively. Even though we consider just a proper subset of all regularω-languages, this
is no major drawback since deterministic properties contain a large class of practically
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relevant properties in general [8]. Furthermore, before webegin our considerations, we
will briefly explain that it is sufficient to focus on the particular class of properties called
liveness properties. Properties can be separated due to their intuitive meaning into safety
and liveness properties [1]. It is easy to show that safety properties are closed sets in the
Cantor topology and therefore are always deterministic [6]. Additionally, every prop-
erty can be represented by an intersection of a safety and a liveness property [1]. Taking
into account that determinism of regularω-languages is preserved under intersection,
we obtain that a characterization of deterministic regularliveness properties suffices to
characterize all deterministic regular properties.

In this paper we will present the structure of deterministicregular liveness properties
in terms of regular prefix-free languages and, additionally, we will give some examples
of practically relevant subsets of this class.

2 Preliminaries

We assume the reader is familiar with the common notions of formal language and
automata theory as presented in [4]. For a finite set ofactionsΣ, letΣ∗ be the set of all
finitely long sequences onΣ, let Σω be the set of all infinitely long sequences, and let
Σ∞ = Σ∗ ∪Σω. A setL ⊆ Σ∗ is called a (finitary) language, a setLω ⊆ Σω is called
anω-language.

Let L∞ ⊆ Σ∞. Thenpre(L∞) = {v ∈ Σ∗ | ∃w ∈ Σ∞ : vw ∈ L∞} denotes
the set of all prefixes ofL∞. We call a languageL ⊆ Σ∗ prefix-closedif and only if
pre(L) = L. Further, theEilenberg-limit[3] (or limit for short) of a languageL ⊆ Σ∗

is given bylim(L) = {w ∈ Σω | ∃∞v ∈ pre(w) : v ∈ L}.1 Let w = σ1σ2 . . . ∈ Σω.
Then we defineInf (w) = {σ ∈ Σ | ∃∞i : σi = σ}.

A finite state automaton is capable of accepting strings. It is given by a quintuple
A = (Q,Σ, δ, q0, F ), whereQ is a non-empty finite set of states,Σ is a non-empty
finite set of input symbols,q0 ∈ Q is the initial state,F ⊆ Q is a set of final states, and
δ : Q × Σ → 2Q denotes the transition function. We assume the transition functionδ

to be extended to2Q × Σ∗ → 2Q as usual.A is deterministicif |δ(q, σ)| ≤ 1, for each
q ∈ Q, σ ∈ Σ. A tripel (q, σ, p) ∈ Q × Σ × Q s.t.δ(q, σ) ∋ p is a transition ofA.

Let v = σ1σ2 . . . σn ∈ Σ∗ and w = σ1σ2 . . . ∈ Σω. A finite state sequence
ρ(v) = r0r1 . . . rn ∈ Q∗ denotes afinite run of A on v if δ(ri, σi+1) ∋ ri+1 for
0 ≤ i < n. The finite runρ(v) is successful ifr0 = q0 andrn ∈ F . An infinite state
sequenceρ(w) = r0r1 . . . ∈ Qω denotes arun of A on w if δ(ri, σi+1) ∋ ri+1 for
0 ≤ i. The runρ(w) is successful ifr0 = q0 andInf (ρ(w)) ∩ F 6= ∅.

Subject to its acceptance condition,A turns into a finite automaton or a Büchi au-
tomaton. If we defineA to accept allv ∈ Σ∗ such thatδ(q0, v)∩F 6= ∅, thenA is afinite
automaton (FA)andL(A) = {v ∈ Σ∗ | There is a successful finite run ofA onv} is
a regular language. If we defineA to accept eachw ∈ Σω such that there are infinitely
many differentv ∈ pre(w) such thatδ(q0, v) ∩ F 6= ∅, thenA turns into aBüchi
automaton (BA)andLω(A) = {w ∈ Σω | There is a successful run ofA onw} is a
regularω-language. Throughout this paper we assume our automata to be reduced,i.e.,
they don’t have useless states or transitions.

1 Read ‘∃∞

... : ...’ as ‘there exist infinitely many different ... such that ...’.
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3 System Behavior, Properties and Verification

When we consider the behavior of a reactive system, it would make no sense to al-
low for finite computations having prefixes that are not a finite behavior as well. Thus,
the language representing the finite behavior of the system is prefix-closed and can be
recognized by a finite automaton with only accepting states.Furthermore, since it is
reasonable to consider the behavior to be the ‘infinitely continued’ finite behavior of
the system, we consider the behavior to be the limit of a prefix-closed language.

Intuitively, a property partitionsΣω into the setY ⊆ Σω of sequences that satisfy
the property and the setN ⊆ Σω of sequences that do not. For a formal definition of a
property we simply identify it with the setY ⊆ Σω that satisfies it. A system behavior
B satisfies a propertyP ⊆ Σω linearly if and only ifB ⊆ P .

Properties can be classified by their intuitive meaning [5, 1]. There are properties
demanding that ‘nothing undesired will happen’. We call these properties safety prop-
erties. If an undesired action occurs in a computation then this computation, indepen-
dently of further actions, does not satisfy the property. Thus, a propertyP ⊆ Σω

is called a safety property if and only if fromw 6∈ P follows the existence of a
u ∈ pre(w), such thatuv 6∈ P for all w, v ∈ Σω [1]. Another important class of
properties are the liveness properties. These properties demand that ‘a desired action
or action sequence occurs eventually’ but without specifying the point in time and the
number of occurences (once or repeatedly). Furthermore, the possible satisfaction of
the property must be independent of the computation performed so far. This means that
for all finite computationsv ∈ Σ∗ there must exist an infinite continuationw ∈ Σω

such thatvw ∈ P . A reformulation yields [1]:P ⊆ Σω is a liveness property if and
only if pre(P) = Σ∗. The classification of properties into safety and liveness properties
is well-founded since a common result from topology states that every property is the
intersection of a safety and a liveness property [1].

Verifying a system means deciding subset conditions of the form B ⊆ P which
can be algorithmically performed by checkingB ∩ P = ∅ (whereLω = Σω \ Lω).
However, the problem of complementing Büchi automata is PSPACE-complete [10]
and may result in an automaton of size up to2O(n log n) [9]. An exponential blow-up
can be avoided if we restrict the properties to be deterministic. Then, a deterministic
Büchi automaton suffices to describe a propertyP and it can be complemented in linear
time, yielding a B̈uchi automaton (which is not necessarily deterministic anymore) that
recognizesP and has at most twice as many states (plus one in addition) compared to
the original one [8].

4 Deterministic Regular Liveness Properties

We will now have a closer look on the structure of deterministic liveness properties.
A good point of origin is the well-known specification for deterministic regularω-
languages which is based on regular prefix-free languages [3]. Here, a languageL ⊆ Σ∗

is called prefix-free if no proper prefix of a string inL is in L. It is called maximal
prefix-free if it is prefix-free and for allw ∈ Σ∗ \ L holds:L ∪ {w} is not prefix-free
anymore. In this case we havepre(L · Σ∗) = Σ∗. The specification is given by
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Lemma 1. A regularω-languageLω ⊆ Σω is deterministic if and only if there exist
regular prefix-free languagesUi, Vi ⊆ Σ∗, 1 ≤ i ≤ n such thatLω =

⋃

1≤i≤n

Ui · V
ω
i .

A proof can be found in [3]. Instead, we give an intuitive explanation that provides
hints on how to improve this characterization towards a specification for deterministic
liveness properties.

Obviously, to each deterministic regularω-language there exists a deterministic
Büchi automatonA = (Q,Σ, δ, q0, F ) that recognizes it. Hence, this automaton has
at least one accepting state, say1, and, since it accepts infinite action sequences, there
must be at least one loop, i.e., a sequence of transitions that starts and ends in this
accepting state without passing it intermediately. In general, there might be infinitely
many of such sequences. We collect all these sequences in a set, sayV1 ⊆ Σ∗. In fact,
V1 is a regular language and it is prefix-free, sinceA is deterministic. Furthermore,
there must exist at least one finite sequence of transitions that start inq0 and ends up in
1. Again, there might be more than just one such sequence (eveninfinitely many) and
we collect all of them in a setU1 ⊆ Σ∗. Notice thatU1 is as well regular und prefix-free
sinceA is deterministic. ThenU1 · V

ω
1 contains all infinite sequences thatA accepts in

state1. These observasions hold for each accepting state fromF = {1, . . . , n} of A.
Thus,L(A) =

⋃
1≤i≤n Ui · V

ω
i , whereUi, Vi ⊆ Σ∗ are regular prefix-free languages.

In a certain sense, the determinism is captured in the prefix-freedom of the regular
languagesUi, Vi ⊆ Σ∗ (or vice versa). Due to their determinism, the representation
given in Lemma 1 holds as well for deterministic regular liveness properties. However,
there must exist additional constraints onUi, Vi ⊆ Σ∗ that capture the ‘liveness’ of a
property. Recall thatP is a liveness property if and only ifpre(P) = Σ∗. Furthermore,
notice that we can add an arbitrary deterministic regularω-language toP (determin-
istic regularω-languages are closed under union) and still have a deterministic regular
liveness property.

Now, letUi, Vi ⊆ Σ∗ be regular prefix-free languages such thatP =
⋃

1≤i≤n Ui ·
V ω

i . Hence, we must havepre(
⋃

1≤i≤n Ui · V ω
i ) = Σ∗. Some of theUj might be

prefixes of aUi, i 6= j, and if this is the case, then we can skip them without destroying
the ‘liveness’ of the rest, i.e.,pre(

⋃
s∈S Us · V ω

s ) = Σ∗, whereS = {1, . . . , n} \ R

and R is the set of indicesj such thatUj is a prefix of aUi, i 6= j. This implies
pre(

⋃
s∈S Us) · Σ∗ = Σ∗ which means thatpre(

⋃
s∈S Us) is maximal prefix-free.

Moreover, we must havepre(V ω
s ) = Σ∗ for s ∈ S. Frompre(V ω

s ) = Σ∗ follows
pre(Vs ·Σ

∗) = Σ∗, i.e., the regular languagesVs, s ∈ S, must be maximal prefix-free,
whereas theVr, r ∈ R are at least prefix-free. The deterministic regularω-language⋃

r∈R Ur · V
ω
r can be considered as addition to that part that still describes a determin-

istic regular liveness property. Thus we obtain the following lemma

Lemma 2. Lω is a deterministic regular liveness property if and only if there exist
regular prefix-free languagesUi, Vi ⊆ Σ∗, 1 ≤ i ≤ n, such thatLω =

⋃
1≤i≤n Ui ·V

ω
i

and there exists a subsetLK =
⋃

s∈S Us · V
ω
s of Lω, whereS ⊆ {1, . . . , n}, such that⋃

s∈S Us and theVs are maximal prefix-free for alls ∈ S.

We exemplify the concept using the Büchi automatonA depicted in Figure 1.
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Fig. 1.Büchi automatonA.

Example 1.We have four accepting states (the double-circled ones). The prefix-free
sets corresponding to state2 areU1 = (a + ba) andV1 = a. Thus,(a + ba) · aω is
the set ofω-words thatA recognizes in state2. The sets corresponding to state3 are
U2 = bb, V2 = (a + b) andA recognizesbb · (a + b)ω in state3. For state4 we obtain
U3 = (a + ba)a∗b, V3 = (a + b)a∗b and theω-languagea + ba)a∗b · ((a + b)a∗b)ω.
The sets corresponding to state5 areU4 = (a+ ba)a∗b(a+ b)a, V4 = (ab+ b)(a+ b)a
and thus theω-language accepted in state5 is U4 = (a + ba)a∗b(a + b)a · ((ab +
b)(a + b)a)ω. We observe thatU1, U2 ⊆ pre(U4 ). Hence,L(A) = LK ∪ LZ where
LK = (bb · (a + b)ω) ∪ ((a + ba)a∗b(a + b)a · ((ab + b)(a + b)a)ω) is a deterministic
regular liveness property andLZ = ((a + ba) · aω)∪ (a + ba)a∗b · ((a + b)a∗b)ω) is a
deterministic regularω-language.

5 Practically Relevant Deterministic Regular Liveness Properties

This section introduces two classes of practically relevant deterministic regular liveness
properties and indicates how they can be extend using Lemma 2. Some of the consid-
erations can as well be found in [8]. From the previous observations follows that the
determinism is captured in the prefix-freedom of the involved regular languages. A lan-
guageL is prefix-free if and only if no word inL is a proper prefix of another word inL
or, in other words, if and only ifL \ (L ·Σ+) [3]. We denote the operationL \ (L ·Σ+)
that establishes the prefix-free language corresponding toL by π(L). Observe that for
all regular languagesL ⊆ Σ∗, π(Σ∗ · L) is a maximal regular prefix-free language.
Furthermore, we obtain from Lemma 2 as a special case the following corollary.

Corollary 1. LetU, V ⊆ Σ∗ be regular prefix-free languages. ThenU · V ω is a deter-
ministic regular liveness property if and only ifU andV are maximal [8].

Using this result we establish the following classes of deterministic regular liveness
properties. LetL ⊆ Σ∗ be a regular language. Then theω-languagePevt = Σ∗ · L ·
Σω demands a regular pattern inL to occur eventually.Pevt is a deterministic regular
liveness property sinceΣ∗ ·L ·Σω = π(Σ∗ ·L) ·Σω andΣ is a maximal regular prefix-
free language [8]. Thus, by Corollary 1, the assertion follows. In a similar way we can
discussPinf = (Σ∗ ·L)ω. Pinf demands regular patterns inL to occur infinitely often.
Since(Σ∗ ·L)ω = (π(Σ∗ ·L))ω = π(Σ∗ ·L) · (π(Σ∗ ·L))ω, we obtain by Corollary 1
thatPinf is a deterministic regular liveness property.

Notice thatPevt andPinf represent huge classes of properties since there are no
restrictions onL (except for regularity). For instance, we could replaceL by (L ·Σ∗)n,
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wheren is a natural number, Kleene star‘*’ or Kleene plus‘+’. All these expressions
describe regular languages and thusPevt andPinf would remain deterministic regular
liveness properties.

Furthermore, Lemma 2 allows to unify any (finite) number of such deterministic
regular liveness properties and we still obtain a deterministic regular liveness property.
And there is yet another method to extend these property classes. In the representation
given in Lemma 2, we demand the deterministic regular languagesVs to be maximal
prefix-free so as to ensure thatpre(V ω

s ) = Σ∗. However, this holds as well for any
deterministic regular liveness property. Thus, in the representation given in Lemma 2
we can replace arbitrarily manyV ω

s by Pevt , Pinf or any deterministic regular live-
ness property and the result will be a deterministic regularliveness property. Notice the
idempotency of this statement: the resulting deterministic regular liveness property can
again replace one (or arbitrarily many) of the maximal prefix-free setsVs. Hence, the
class of deterministic regular liveness properties is rather comprehensive and contains
various practically relevant properties.

6 Conclusion

We have considered in detail the deterministic regular liveness properties, since they
form a subclass of regular liveness properties for which an exponential blow-up in the
number of states can be avoided in the corresponding verification process. We presented
a specification for these languages and demonstrated the richness of this language class.
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