
SREP: A Proposal for Establishing Security
Requirements for the Development of Secure

Information Systems

Daniel Mellado1, Eduardo Fernández-Medina2 and Mario Piattini2

1 Ministry of Labour and Social Affairs; Management Organism of Information Technologies
of the Social Security; Quality, Auditing and Security Institute; Madrid, Spain

2 ALARCOS Research Group, Information Systems and Technologies Department, UCLM-
Soluziona Research and Development Institute, University of Castilla-La Mancha

Paseo de la Universidad 4, 13071 Ciudad Real, Spain.

Abstract. Nowadays, security solutions are mainly focused on providing secu-
rity defences, instead of solving one of the main reasons for security problems
that refers to an appropriate Information Systems (IS) design. In this paper a
proposal for establishing security requirements for the development of secure
IS is presented. Our approach is an asset-based and risk-driven method, which
is based on the reuse of security requirements, by providing a security re-
sources repository, together with the integration of the Common Criteria into
traditional software lifecycle model, so that it conforms to ISO/IEC 15408.
Starting from the concept of iterative software construction, we will propose a
micro-process for the security requirements analysis, that is repeatedly per-
formed at each level of abstraction throughout the incremental development. In
brief, we will present an approach which deals with the security requirements at
the first stages of software development in a systematic and intuitive way, and
which conforms to ISO/IEC 17799:2005.

1 Introduction

Present-day information systems are vulnerable to a host of threats. Moreover, with
the increase of the complexity of applications and services, there is a correspondingly
greater chance of suffering from breaches in security [20]. In our contemporary In-
formation Society, depending as it does on a huge number of software systems which
have a critical role, it is absolutely vital that IS are properly ensured from the very
beginning [1, 12], due to the potential losses faced by organizations that put their trust
in all these IS.

As we know, the principle which establishes that the building of security at the
early stages of the development process is cost-effective and also brings about more
robust designs is widely-accepted [10]. The biggest problem, however, is that in the
majority of software projects security is dealt with when the system has already been
designed and put into operation. On many occasions, this is due to an inappropriate

Mellado D., Fernández-Medina E. and Piattini M. (2006).
SREP: A Proposal for Establishing Security Requirements for the Development of Secure Information Systems.
In Proceedings of the 4th International Workshop on Security in Information Systems, pages 135-145
Copyright c© SciTePress

management of the specification of the security requirements of the new system, since
the stage known as the requirements specification phase is often carried out with the
aid of just a few descriptions, or the specification of objectives that are put down on a
few sheets of paper [4]. Added to this, the actual security requirements themselves are
often not well understood. This being so, even when there is an attempt to define
security requirements, many developers tend to describe design solutions in terms of
protection mechanisms, instead of making declarative propositions regarding the level
of protection required [5].

A very important part in the software development process for the achievement of
secure software systems is that known as security Requirements Engineering (RE).
Which provides techniques, methods and norms for tackling this task in the IS devel-
opment cycle. It should involve the use of repeatable and systematic procedures in an
effort to ensure that the set of requirements obtained is complete, consistent and easy
to understand and analyzable by the different actors involved in the development of
the system [11]. A good requirements specification document should include both
functional requirements (related to the services which the software or system should
provide), and non-functional (related to what are known as features of quality, per-
formance, portability, security, etc) [4]. As far as security is concerned, it should be a
consideration throughout the whole development process, and it ought to be defined
in conjunction with the requirements specification [14].

 In this paper, we will present the Security Requirements Engineering Process
(SREP), which explains how to integrate the security requirements into the software
engineering process in a systematic and intuitive way. Our approach is based on the
integration of the Common Criteria (CC) into the traditional software lifecycle model,
together with the reuse of security requirements which are compatible with the CC
Framework subset. In addition, in order to support this method and make this task
easy, we will propose the use of several concepts and techniques: a security resources
repository (with assets, threats, requirements, etc), the use of UMLSec [17], misuse
cases [18], threat/attack trees, and security uses cases [6]. Overall, we will propose an
asset-based and risk-driven method for the establishment of security requirements.
The remainder of the paper is set out as follows: in section 2, we will outline an over-
view of our Security Requirements Engineering Process. Section 3 will present the
main characteristics of this methodology. Next, in section 4, we will explain the secu-
rity resources repository. And, we will describe the process model in section 5.
Lastly, our conclusions and further research are set out in section 6.

2 A General Overview of SREP

The Security Requirements Engineering Process (SREP) is an asset-based and risk-
driven method for the establishment of security requirements in the development of
secure Information Systems. Basically, this process describes how to integrate the CC
into the traditional software lifecycle model together with the use of a security re-
sources repository to support reuse of security requirements (modelled with UMLSec,
or expressed as security use cases or as plain text with formal specification), assets,
threats (which can be expressed as misuse cases, threat/attack trees, UMLSec dia-

136

grams) and countermeasures. The focus of this methodology seeks to build security
concepts at the early stages of the development lifecycle.
We will show a brief outline of SREP below in Fig. 1.

Planning

Analysis

Design

Codification

Implantation
and

Acceptance

Maintenance
Software Quality

Assurance

CC Assurance
Requirements

CC Functional
Requirements

CC Protection
Profiles

CC Evaluation
Assurance Levels

(Testing step)

Feasibility
Study

Agree on Definitions

Identify Vulnerable
&/or Critical Assets

Identify Security
Objectives &
Dependencies

Identify Threats &
Develop Artifacts

Risk Assessment

Elicit Security
Requirements

Categorize & Prioritize
Requirements

Requirement Inspection

Repository Improvement

SREP StepsTraditional Lifecycle Stages

Integration of Common
Criteria Components

Fig. 1. SREP overview.

As it is described in Fig. 1, the core of SREP is a micro-process, made up of nine
steps which are repeatedly performed at each stage of the lifecycle. At the same time,
the CC Components are introduced into the software lifecycle, so that SREP uses
different CC Components according to the stage, although the Software Quality As-
surance (SQA) activities are performed along all the stages of the software develop-
ment lifecycle. And it is in these SQA activities where the CC Assurance Require-
ments might be incorporated into. A more detailed explanation of the integration of
CC Components and SREP into the IS development lifecycle is presented in the fol-
lowing sections.

3 Characteristics of SREP

In general terms the main characteristics of SREP are:
- Iterative and incremental. The model chosen for SREP is iterative and incre-

mental, thus the security requirements evolve along the lifecycle; for instance,
during the design, the specification could be enriched with requirements related
to the technological environment and its associated countermeasures. The core
concept is the use of a micro-process for the security requirements analysis [2],
made up of nine steps, which are repeatedly performed at each level of abstrac-

137

tion throughout the incremental development. Each iteration accomplishes all
the steps defined within SREP, and each output from a complete iteration im-
proves and refines the Security Requirements Specification by adding, correct-
ing or specifying/detailing security requirements.

- It facilitates the reusability. We proposed a security resources repository and a
meta-model for it (based on Sindre, Firesmith and Opdahl approach [18]). The
purpose of development with requirements reuse is to identify descriptions of
systems that could be used (either totally or partially) with a minimal number
of modifications, thus reducing the total effort of development [3]. Moreover,
reusing security requirements helps us increase their quality: inconsistency, er-
rors, ambiguity and other problems can be detected and corrected for an im-
proved use in subsequent projects [19]. Thereby, it will guarantee us the fastest
possible development cycles based on proven solutions.

- It facilitates the traceability of the security requirements along the levels of ab-
straction, thanks to the structure of the repository.

- It supports and includes concepts and techniques within the scope of Security
Requirement Engineering and Risk Management and Analysis, such as
UMLSec, security use cases, misuse cases, threat/attack trees.

- Finally, it conforms to several standards within the scope of Requirement En-
gineering and Security Management, like ISO/IEC 17799:2005 and ISO/IEC
15408.

3.1 SREP Compliance with Standards

SREP conforms to ISO/IEC 17799:2005 recommendation with regard to security
requirements. It says that “Security requirements should be identified and agreed prior
to the development and/or implementation of information systems. All security re-
quirements should be identified at the requirements phase of a project and justified,
agreed, and documented as part of the overall business case for an information sys-
tem”. And this is exactly what SREP proposes to do.

Moreover, we take into account the IEEE 830-1998 standard, so that the step of
“Requirements Inspection” of our micro-process for the security requirements analysis
verifies whether the security requirements conform to this standard. Because accord-
ing to the IEEE 830-1998 standard, a requirement of quality has to be correct, unam-
biguous, complete, consistent, ranked for importance and/or stability, verifiable, modi-
fiable, and traceable. Therefore all these factors are verified at the end of each iteration
of the micro-process, just before the “Repository Improvement” step.

The CC (ISO/IEC 15408) is the standard requirements catalogue for the evaluation
of security critical systems. Using the CC, a large number of security requirements
within the system itself and in the system development can be defined. And the CC
scheme can be introduced into the software lifecycle of new and existing applications
to meet stricter security requirements. So, we propose to introduce it. This can be
accomplished, according to Kam [9], by: integrating CC functional requirements into
the Software Requirements Specification; integrating CC assurance requirements into
Software Quality Assurance (SQA) activities; introducing EALs (Evaluation Assur-
ance Levels) into the software test plan; and introducing CC Protection Profiles into

138

architectural design. Although a detailed explanation of the latter ones is outside the
scope of this paper.

4 The Security Resources Repository

SREP is based on several current techniques, which deal with security requirements,
in order to make it easy the task of dealing with security requirements in the first
stages of software development in a systematic and intuitive way. The main ones are
exposed below.

• UMLSec allows us to express security-related information within the dia-
grams in a UML system specification, thereby it aims to be more integrated
with the artefacts produced during the development process. The extension is
given in the form of a UML profile using the standard UML extension
mechanisms. Stereotypes are used together with tags to formulate security
requirements and assumptions on the system environment; constraints give
criteria that determine whether the requirements are met by the system design
[17]. We used UMLSec to specify the security requirements, and it is a com-
plement method to security use cases.

• Security Use Cases are a technique that we used in order to specify the secu-
rity requirements that the application must fulfil to be able to successfully
protect itself from its relevant security threats [6]. And they are driven by
misuse cases.

• Misuse Cases are a specialized kind of use cases that are used to analyze and
specify security threats [6]. They are the inverse of a use case, a function that
the system should not allow. In more detail it might be defined as a com-
pleted sequence of actions which results in losses for the organization or
some specific stakeholder [18]. In our approach they drive the security use
cases, and threats are expressed as misuse cases.

The Security Resources Repository (SRR) stores all the reusable elements which
can be used by the analysts. The repository understands the concepts of domains and
profiles [19]. The former consists of belonging to a specific application field or func-
tional application areas, such as e-commerce. The latter consists of a homogeneous
set of requirements which can be applied to different domains, as for example per-
sonal data privacy legislation. We propose to set an attribute for each element of the
SRR that shows in which/s domain/s it can be used. On the other hand, the profiles,
together with the CC Protection Profiles, are stored as standardized subsets of specific
security requirements together with its related elements of the SRR (threats, etc.). In
brief, each domain or profile is a view of the global SRR.

Furthermore, the elements included in the SRR have been generically established
by using parameter-based mechanisms, such as reusable parameterized templates.
Although there are also non-parameterized templates and checklists, such as asset
checklists. In addition, each security requirement and its specification are labelled as
System Requirement (IEEE Std. 1233 and IEEE Std. 1207.1) or Software Require-
ment (IEEE Std. 830-1998) [19].

139

A meta-model, which is an extension of the meta-model for repository proposed
by Sindre, G., D.G. Firesmith, and A.L. Opdahl [18], showing the organization of the
SRR is exposed below in Fig. 2.

Fig. 2. Meta-model for security resources repository.

As it is presented above, it is an asset-driven as well as a threat-driven meta-model,
because the requirements can be retrieved via assets or threats. Next, we will outline
the most important and/or complex aspects of the meta-model.
- ‘Generic Threat’ and ‘Generic Security Requirement’ describe independently of

particular domains. And they can be represented as different specifications, thanks
to the elements ‘Threat Specification’ and ‘Security Requirement Cluster Specifi-
cation’.

- ‘Security Requirement Cluster’ is a set of requirements that work together in satis-
fying the same security objective and mitigating the same threat. We agree with
Sindre, G., D.G. Firesmith, and A.L. Opdahl [18] that, in many cases, it is a big-
ger and more effective unit of reuse.

- The ‘Req-Req’ relationship allows an inclusive or exclusive trace between re-
quirements. An exclusive trace between requirements means that they are mutu-
ally alternative, as for example that they are in conflict or overlapping. Whereas,
an inclusive trace between requirements means that to satisfy one, another/other/s
is/are needed to be satisfied.
In addition, there could have been links further on to design level specifications,

security test cases, countermeasures, etc. Due to the fact that our proposed model
process is based on the concept of iterative software construction, as we will explain
in the next section.

Finally, we would like to point out the fact that using the CC, a large number of
security requirements on the system itself and on the system development can be
defined. Nevertheless, the CC does not give methodological support, nor contain
security evaluation criteria pertaining to administrative security measures not directly

140

i) Requirements
 elicitation

ii) Requirements analy-
sis and negotiation
iii) Documentation and
iv)Validation

related to the IS security measures. However, it is known that an important part of the
security of an IS can be often achieved through administrative measures. Therefore,
according to ISO/IEC 17799:2005, we propose to include legal, statutory, regulatory,
and contractual requirements that the organization, its trading partners, contractors,
and service providers have to satisfy, and their socio-cultural environment. After
converting these requirements into software and system requirements format, these
would be the initial subset of security requirements of the SRR. Moreover, if the
organization has any activity in Spain we propose that the SRR contains all the re-
quirements taken from MAGERIT, the Spanish public administration risk analysis
and management method, which conforms to ISO 15408, as well as lists of assets,
threats and countermeasures. This way, it will constitute a profile which conforms to
Spanish security and data privacy protection legislation.

5 Process Model

According to Kotonya and Sommerville [11], RE basically comprises the phases/steps
of i) requirements elicitation, ii) requirements analysis and negotiation, iii) require-
ments documentation and iv) requirements validation. Starting from the concept of
iterative software construction, we propose a micro-process for the security require-
ments analysis, made up of nine steps, which are repeatedly performed at each level of
abstraction throughout the incremental development. As the Security Requirements
Specification document will evolve during the rest of the life cycle; for instance, dur-
ing the design, the specification could be enriched with requirements related to the
technological environment. Moreover, each security requirement can be traced along
the levels of abstraction, and also, as the model understands the concepts of profiles
and domains (that may be made up of elements of different abstraction level), they
will be analysed by stakeholders who have the best knowledge or/and the responsibil-
ity of the domain. Furthermore, we agree with Nuseibeh [16] that the RE and architec-
ture design processes are concurrent and influence each other.

The nine steps (based on [18] and [13]) of the micro-process for the security re-
quirements analysis are presented below:

- Step 1: Agree on definitions
- Step 2: Identify vulnerable and/or critical assets
- Step 3: Identify security objectives

 and dependencies
- Step 4: Identify threats and

 develop artefacts.
- Step 5: Risk assessment
- Step 6: Elicit security requirements
- Step 7: Categorize and prioritize requirements
- Step 8: Requirements inspections
- Step 9: Repository improvement

• Step 1: Agree on definitions. The first task for the organization is to agree upon a
common set of security definitions, along with the definition of the organizational
security objectives. The candidate definitions will be from IEEE and other stan-

141

dards. And it is important the participation of the stakeholder and the requirements
team in this step, which will be performed only once.

• Step 2: Identify vulnerable and/or critical assets. This is where the SRR is used
for the first time. It consists of the identification of the different kinds of valuable
or critical assets as well as vulnerable assets by the requirements engineer, who
can be helped by using:

- Lists of assets of the SRR, where the analyst/requirements engineer can
search by domains, even he/she can select a concrete profile.

- Functional requirements.
- Interviews with the stakeholders.

• Step 3: Identify security objectives and dependencies. At this step the require-
ments engineer can use the SRR too, because each asset has security objectives at-
tached. For each asset identified at the previous step, the requirements engineer se-
lects the appropriate security objectives for the asset and identifies the dependen-
cies between them. Security goals are expressed by specifying the necessary secu-
rity level as a probability, and they are also specified in terms of likely attacker
types.

• Step 4: Identify threats and develop artefacts. Each asset is targeted by threat/s
that can prevent the security objective from being achieved. First of all, it is neces-
sary to find all the threats that target these assets with the help of the SRR. In addi-
tion, it could be necessary to develop artefacts (such as misuse cases or attack
trees diagrams or UMLSec use cases and classes or sequence/state diagrams) to
develop new specific or generic threat or requirement. As it is necessary to look
for threats that are not linked/related to the assets of the repository, because it is
possible that some security goals and assets may have been forgotten, or these
threats may not be introduced in the repository yet.

• Step 5: Risk assessment. Risk must be normally determined from application to
application. The final goal to achieve is the 100% risk acceptance. Firstly, it is ne-
cessary to assess whether the threats are relevant according to the security level
specified by the security objectives. Then we have to estimate the security risks
based on the relevant threats, their likelihood and their potential negative impacts.
Whatever methodology can be used such as for example MAGERIT in Spain.
Thereby, this assessment allows us to discover how the organization’s risk toler-
ance is affected with regard to each threat. At this step, the requirements engineer
should be helped by a risk expert and stakeholders.

• Step 6: Elicit security requirements. Here, the SRR is used again. For each threat
retrieved from the repository, one or more associated clusters of security require-
ments may be found. The requirements engineer must select the suitable security
requirements or the suitable cluster of security requirements that mitigate the
threats at the necessary levels with regard to the risk assessment. However, addi-
tional requirements or clusters of requirements may be found by other means.
Moreover, it might be specified the security test for each security requirement
cluster, as well as an outline of the countermeasures for each security requirement,
although they are refined at the design stage. Nevertheless, we agree with
Firesmith [5] in the fact that care should be taken to avoid unnecessarily and pre-
maturely architectural mechanisms specification.

142

• Step 7: Categorize and prioritize requirements. Each requirement is categorized
and prioritized in a qualitative ranking in a way that the most important require-
ments (in terms of impact and likelihood) are handled first. This task is performed
by the requirements engineer and other kind of specialists (if it is needed). After
all, the requirements documentation is written.

• Step 8: Requirements inspection. Requirements inspection is carried out in order
to validate the requirements, the modified model elements and the new generated
model elements. Its aim is to review the quality of the team’s work and deliver-
ables. And it is performed by the inspection team. So, it is used as a sanity check.

• Step 9: Repository improvement. First of all, the validation of the requirements
with the participation of the stakeholders and requirements engineer is carried out.
Then, those new model elements (threats, requirements, etc…) found throughout
the development of the previous steps and which are considered as likely to be
used in forthcoming applications are introduced into the SRR. Furthermore, the
model elements already in the repository could be modified in order to improve
their quality.
Finally, at the same time, as we integrate into these nine steps the CC security

functional requirements, we propose to outline the EALs in the software test plan and
then verify them during test execution. And parallely, we proposed to introduce the
CC security assurance requirements into SQA activities, like quality control, defect
prevention and defect removal activities [9]. Consequently, the configuration man-
agement plan is the first activity that is explicitly required to fulfil the CC security
assurance requirements, in order to achieve that the CC are integrated into the tradi-
tional development lifecycle.

6 Conclusions and Further Research

In our present so-called Information Society the increasingly crucial nature of IS with
corresponding levels of new legal and governmental requirements is obvious. For this
reason, the development of more and more sophisticated approaches to ensuring the
security of information is becoming a necessity. Information Security is usually only
tackled from a technical viewpoint at the implementation stage, even though it is an
important aspect. We believe it is fundamental to deal with security at all stages of IS
development, especially in the establishment of security requirements, since these
form the basis for the achievement of a robust IS.

Consequently, we present an approach that deals with the security requirements at
the first stages of software development, which is based on the reuse of security re-
quirements, by providing a Security Resources Repository (SRR), together with the
integration of the Common Criteria into traditional software lifecycle model. More-
over, it conforms to ISO/IEC 15408 and ISO/IEC 17799:2005. And we work towards
100% risk acceptance, because despite the best efforts of security researchers, it is
impossible to guarantee 100% security [15]. Starting from the concept of iterative
software construction, we propose a micro-process for the security requirements
analysis, made up of nine steps, which are repeatedly performed at each level of ab-
straction throughout the incremental development. Finally, one of the most relevant

143

aspects is the fact that this proposal integrates other approaches, such as SIREN [19],
UMLSec [17], security use cases [6] or misuse cases [18]. And it is also compatible
with WSSecReq (Web Services Security Requirements) stage of the PWSSec (Web
Services Security Development Process) process [7], as well as SREP might incorpo-
rate into its SRR the catalogue of security requirements template for web services
based on SIREN, which Gutierrez et al. propose in [8].

Further work is also needed to provide a CARE (Computer-Aided Requirements
Engineering) tool which supports the process, as well as a refinement of the theoreti-
cal approach by proving it with a real case study.

Acknowledgements

This paper has been produced in the context of the DIMENSIONS (PBC-05-012-2)
Project of the Consejería de Ciencia y Tecnología de la Junta de Comunidades de
Castilla- La Mancha along with FEDER and the CALIPO (TIC2003-07804-CO5-03)
and RETISTIC (TIC2002-12487-E) projects of the Dirección General de
Investigación del Ministerio de Ciencia y Tecnología.

References

1. Baskeville, R., The development duality of information systems security. Journal of Man-
agement Systems, 1992. 4(1): p. 1-12.

2. Breu, R. and Innerhofer–Oberperfler, F., Model based business driven IT security analysis.
2005: SREIS 2005.

3. Cybulsky, J. and Reed, K., Requirements Classification and Reuse: Crossing Domains
Boundaries. ICSR'2000, 2000: p. 190-210.

4. Fernández-Medina, E., Moya, R., and Piattini Velthus, M., Gestión de Requisitos de
Seguridad, in Seguridad de las Tecnologías de la Información "La construcción de la
confianza para una sociedad conectada", AENOR, Editor. 2003. p. pp 593-618.

5. Firesmith, D.G., Engineering Security Requirements. Journal of Object Technology, 2003.
2(1): p. 53-68.

6. Firesmith, D.G., Security Use Cases. 2003: Journal of Object Technology. p. 53-64.
7. Gutierrez, C., Fernández-Medina, E., and Piattini, M., PWSSec: Process for Web Services

Security. IEEE ICWS'05, 2005.
8. Gutiérrez, C., Moros, B., Toval, A., Fernández-Medina, E., and Piattini, M., Security Re-

quirements for Web Services based on SIREN. Symposium on Requirements Engineering
for Information Security (SREIS-2005), together with the 13th IEEE International Re-
quirements Engineering Conference – RE’05, 2005.

9. Kam, S.H., Integrating the Common Criteria Into the Software Engineering Lifecycle.
IDEAS'05, 2005: p. 267-273.

10. Kim., H.-K., Automatic Translation Form Requirements Model into Use Cases Modeling
on UML. ICCSA 2005, 2005: p. 769-777.

11. Kotonya, G. and Sommerville, I., Requirements Engineering Process and Techniques.
Hardcover ed. 1998. 294.

12. McDermott, J. and Fox, C. Using Abuse Case Models for Security Requirements Analysis.
in Annual Computer Security Applications Conference. 1999. Phoenix, Arizona.

144

13. Mead, N.R. and Stehney, T. Security Quality Requirements Engineering (SQUARE)
Methodology. in Software Engineering for Secure Systems (SESS05), ICSE 2005 Interna-
tional Workshop on Requirements for High Assurance Systems. 2005. St. Louis.

14. Mouratidis, H., Giorgini, P., Manson, G., and Philp, I. A Natural Extension of Tropos
Methodology for Modelling Security. in Workshop on Agent-oriented methodologies, at
OOPSLA 2002. 2003. Seattle, WA, USA.

15. Myagmar, S., J. Lee, A., and Yurcik, W., Threat Modeling as a Basis for Security Re-
quirements. 2005: SREIS 2005.

16. Nuseibeh, Weaving Together Requirements and Architectures. IEEE Computer, 2001: p.
115-117.

17. Popp, G., Jürjens, J., Wimmel, G., and Breu, R., Security-Critical System Development
with Extended Use Cases. 2003: 10th Asia-Pacific Software Engineering Conference. p.
478-487.

18. Sindre, G., Firesmith, D.G., and Opdahl, A.L. A Reuse-Based Approach to Determining
Security Requirements. in Proc. 9th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ'03). 2003. Austria.

19. Toval, A., Nicolás, J., Moros, B., and García, F., Requirements Reuse for Improving In-
formation Systems Security: A Practitioner's Approach. 2001: Requirements Engineering
Journal. p. 205-219.

20. Walton, J.P., Developing a Enterprise Information Security Policy. 2002, ACM Press:
Proceedings of the 30th annual ACM SIGUCCS conference on User services.

145

