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Abstract. This paper discusses the security properties of names. To fulfill their
role in cryptographic protocols, names must be unique across correlated sessions
i.e. where the massages of one session can be reused in another without detection
and that uniqueness must be guaranteed to hold for each participant of these runs.
To provide and verify uniqueness, two different mechanisms are shown possible,
namely local and global verification. In both cases we discuss the implications of
uniqueness on the execution environment of a cryptographic protocol, pointing
out the inescapable issues related to each of the two mechanisms. We argue that
such implications should be given careful consideration as they represent impor-
tant elements in the evaluation of a cryptographic protocol itself.

1 Introduction

The number of messages and message elements that are relevant for the security of
a protocol is normally rather small. Message elements encountered are keys, nonces,
timestamps, identifiers and, occasionally, a few others.

Assumptions must be made regarding the properties of these elements, the partici-
pants of the protocol and their trustworthiness, their abilities, the properties of the com-
munication infrastructure, and the environment in which the protocol is deployed [1].
While assumptions directly related to the functioning of the protocol are almost always
made explicit and discussed at large, assumptions on the running environment are, more
often than not, left unspecified [2]. One consequence of this is that the cost factors
considered when evaluating a cryptographic protocol are usually limited to concep-
tual simplicity, encryption, length, and number of messages [3, p. 34]. External factors
such as requiring secure synchronized clocks, synchronous communication or broad-
cast communication channels are less often considered as integral part of the protocol
security [4].

We focus here on the single issue ofnamesby analyzing their security require-
ments. Abadi et al. raised the issue of names in cryptographic protocols by formulating
a specific prudent engineering principle:

“If the identity of a principal is essential to the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.”[5]
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However, like other message elements, names have properties that must be upheld
to justify their use. Using some well-known cryptographic protocols as a starting point,
we state that to fulfill their role in cryptographic protocols, names must be unique across
sessions of the same protocol that arecorrelatedto each other, meaning that they are
executed in a time window where replay attacks are possible.We present two distinct
methods to fulfill such a requirement and discuss their peculiarities. In both cases we
show how uniqueness of names is a source of external costs andwe point out the prac-
tical implications of this for the design and evaluation of cryptographic protocols.

In the next section, we recall examples of protocol attacks that can be fixed by the
proper inclusion of names. These examples are used in Sec. 3 to present two possible
ways to provide verifiable unique names. In Sec. 4 we discuss the property of unique-
ness and its implications on the name system. We conclude in Sec. 5.

2 Examples

We use the same set of examples as [5, Sec. 4] due to their variety. We give only a
minimal description of these here and refer the reader to theoriginal article for more
details about the attacks, the fixes and the used notation.

Example 1 The first example is a key exchange protocol using asymmetricencryption
by Denning and Sacco [6, p. 535]:

Msg1 A → B : A,B
Msg2 B → A : CA, CB

Msg3 A → B : CA, CB , {{Kab, Ta}K−1
a
}Kb

A andB represent the names of the two principals participating in the protocol: Alice
and Bob. The certificatesCA andCA bind these two principals to their respective public
keysKa andKb. Ta is a timestamp andKab is the session key being exchanged. The
problem is that once Bob receives the third message, he can remove the outer encryption
layer and re-encrypt the result for an outsider Charlie. In particular, Bob could send:

Msg3′ B → C : CA, CC , {{Kab, Ta}K−1
a
}Kc

At this point, and for the duration of the validity of the timestampTa, Bob can im-
personate Alice to Charlie. The proposed fix is that the thirdmessage should contain at
least the name of Bob in the inner encrypted section1:

Msg3′′ B → C : CA, CB , {{B,Kab, Ta}K−1
a
}Kb

It is possible now for Charlie to understand that this message is not part of his run of
the protocol but was destined forB instead.

1 In the original article both Alice’s and Bob’s names appear in the fix but it isalso pointed out
that Alice’s name can be deducted fromK−1

a . We then omit it here.
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Example 2 A similar flaw is present in the following authentication protocol using
symmetric key encryption by Woo and Lam [7, pp. 42-43]:

Msg1 A → B : A
Msg2 B → A : Nb

Msg3 A → B : {Nb}Kas

Msg4 B → S : {A, {Nb}Kas
}Kbs

Msg5 S → B : {Nb}Kbs

WhereKas andKbs are two keys that the serverS shares with Alice and Bob, respec-
tively andNb is a nonce generated by Bob. The purpose of this protocol is toallow Bob
to check whether Alice is on-line. This protocol is subject to an attack where a third
party Charlie impersonates Alice to Bob. Briefly, if Charliepresents itself to Bob both
as Charlie and Alice at the same time, Bob is tricked to believe that Alice is present
while she is not. The proposed fix again involves the use of names. In this case it re-
quires the last message to include Alice’s name:

Msg5′ S → B : {A,Nb}Kbs

Example 3 The last example protocol is an early version ofSSL [8], in which Bob can
impersonate Alice to a third party Charlie:

Msg1 A → B : {Kab}Kb

Msg2 B → A : {Nb}Kab

Msg3 A → B : {CA, {Nb}K−1
a
}Kab

Kab is the session key to be used between Alice and Bob,Kb is Bob’s public key andNb

is a nonce. The proposed fix is to insert Bob’s and Alice’s names in the final message2:

Msg3′ A → B : {CA, {B,Nb}K−1
a
}Kab

�
While all these fixes seem straightforward, some questions may arise regarding their

implications: What properties, if any, must be provided in order for a name to be used in
the security protocol? How can these properties be upheld? Does this impose require-
ments on the environment in which the protocol is deployed and on the naming system
in use? We investigate these questions in the next section with the help of the previous
examples.

3 Names

The primary role of names is that they let one reference a resource, allowing sharing.
In the presented examples, however, names are used as a mean to identify a specific
protocol run by identifying the protocol participants.

2 As for Example 1 earlier, we omit Alice’s name because this can be deduced form her signa-
ture.
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Scalable naming systems designed with sharing in mind usually allow for short-
term inconsistencies to achieve availability and performance. The Domain Name Sys-
tem (DNS) [9] is an example of such a naming system; domain name entries are repli-
cated and can be cached freely on any server and client for performance. This makes
the naming system scalable and responsive in the light of unreliable message delivery,
failures, and network partitions but it leaves to the users to check whether a referred
resource is the correct one. This means that theDNS is subject to spoofing attacksby
design. In other words, naming systems designed for resource sharing like theDNS are
unsuitable for use in security protocols not being designedfor identification purposes.

The question is then what properties names must have to be usable in security pro-
tocols. Do we have to remove all potential for naming inconsistencies and sacrifice
availability, performance (and thus scalability) for security? The following principle
states what must be achieved:

When the security of a protocol relies on the identity of a principal, the unique-
ness of principals’ names across all correlated sessions ofthe same protocol is
required.

Two or more protocol runs are correlated when executed within a time window
where messages of one can be reused in another without detection. This window is
determinate by the semantic of the protocol. For the first protocol for example, this
window is bounded by (the semantics of) the timestampTa in the third message. In
Example 2 and 3 instead, since the presented attacks requirethat the attacker interleaves
the messages of its session with the ones of the session he intends to attack, this window
is determined by the temporal length of the attacked session.

This principle has been distilled from the previous examples. From them it is straight-
forward to extrapolate the uniqueness of participant namesas the necessary condition
for the proposed fixes to hold. For example, with reference tothe first protocol, if Bob’s
and Charlie’s namesB andC are identical or can be confused with each other (maybe
just at bit-string level) the proposed fix does not help anymore to fend off the attack.
The same is true also in both the second and the third example.Uniqueness, on the other
hand, is not needed outside the scope of the correlated instances of a specific protocol
run since (assuming that messages belonging to different protocols are distinguishable
as such) illegitimate messages belonging to another sessions of the same protocol are
here detected by other means.

3.1 Guaranteeing Uniqueness

In addition to the ability to generate unique names, it must be safe for the principals of a
security protocol to assume that this uniqueness is maintained even in light of malicious
partecipants. In other words, it must be infeasible for a malicious principal to violate
the uniqueness assumption as the basis for an attack. Since uniqueness of names is, in
general, required only across different sessions of the same protocol, a principal has
two possible ways for verifying this:
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Local Verification. One or more of the participants in a protocol run verify locally
the uniqueness of the names used in that run. Local verification means here that the
uniqueness check only involves local state and messages belonging to the protocol run
itself, not entailing additional communication with thirdparties. Correlated sessions
using the same names are prohibited and serialized as a consequence. In this solution
the integrity of the namespace does not need to be protected since a name isverifiedto
be unique every time it is used.

Global Verification. A trusted naming system can be relied upon to be resilient to
tampering. Such an infrastructure is global and guaranteesthe integrity and the consis-
tency of the namespace providing unique names. In this case,an authority hands out
unforgeable and tamper-proof names for all the principals in the system.

To sum up, the consistency of the namespace must be either enforced globally or
verified locally. Local and global verification each have, aswe will show, their own ap-
plicability range that is delimited both by the protocol in question and by environmental
constraints.

3.2 Local Verification and Verifiers

Not all principals participating in a protocol run are interested in (verifying) the unique-
ness of names. In the previous examples (and arguably in the general case), the principal
that is concerned about the uniqueness of names is the potential victim of the attack that
is countered by the use of names. Obviously, this role is protocol-dependent. Therefore
a variety of scenarios is possible when local verification isused.We discuss some of
them using the example protocols we presented earlier.

Example 1 To avoid the reply attack presented in Example 1, Bob’s name is added
to the message being replayed in the attack. This name must beverified to be unique
in order to thwart the attack. Charlie has no way, from the messages he receives from
Alice, to check whether his and Bob’s names are identical andin use in correlated
protocol runs by Alice (hence creating the precondition fora replay attack). Direct
verification of the names by Charlie is therefore not possible. Nonetheless he could
trust Alice to perform the name check on his behalf. Alice, when opening two correlated
executions of the protocol with Bob and Charlie, is able to check whether the namesB
andC (to be) sent in the messages of the two protocol runs are the same or not:

Msg1 A → B : A,B Msg1′ A → C : A,C
...

...

If Alice detects such duplicate names used in correlated protocol runs, she can protect
Charlie by aborting one or both of the protocol runs. Notice that Alice is already part
of Charlie’s Trusted Computing Base (TCB) since Charlie already trusts her for other
security-critical tasks like picking a goodKab and for not disclosing it to third parties,
for example. It is then reasonable in this case for him to alsorely on Alice for protection
against this replay attack.
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To sum up, local verification is possible in this protocol under the condition that the
potential victim of the attack, Charlie, trusts the initiator of the protocol, Alice, to verify
the uniqueness of the names of his counterparts.

Example 2 Local verification is possible in this protocol also: For theattack to be
mounted Charlie initiates two concurrent sessions of the protocol with the victim Bob.
In these sessions, Charlie calls himself by two different names; his own and the name
of the principal that he is impersonating:

Msg1 C → B : A Msg1′ C → B : C
...

...

Bob registers the two names,A andC, and uses them ad verbatim in the messages
of the protocol he sends later. This allows him to verify whether the names used in
the different sessions are the same or not. In other words, the designated victim of the
replay attack is able here to verify itself whether the namesused in correlated protocol
sessions are unique.

Example 3 Our third and final example gives us the opportunity to discuss a scenario
where local verification by one or more protocol participants is not possible. We report
the replay attack on the protocol at full because it was left as an exercise to the reader
in the original paper:

Msg1 A → B : {Kab}Kb

Msg1′ B → C : {Kab}Kc

Msg2′ C → B : {Nb}Kab

Msg2 B → A : {Nb}Kab

Msg3 A → B : {CA, {Nb}K−1
a
}Kab

Msg3′ B → C : {CA, {Nb}K−1
a
}Kab

In this protocol Charlie, the victim of the attack, has no wayto verify the uniqueness
of names from the messages he receives. Moreover, he cannot rely on his counterpart
to perform such a check as was possible in Example 1. After all, that counterpart is the
principal mounting the attack. Hence, local verification isnot possible for this type of
protocol and global verification has to be used to guarantee uniqueness.

3.3 Global Verification

The most reliable way to enforce the integrity and consistency of a namespace is to
use digital identity certificates. These are issued and digitally signed by a certification
authority (CA), on behalf of all the principals in the system binding each of them to its
public key. All of this, along with mechanisms for verifyingthe validity and revoking
certificates constitutes a Public Key Infrastructure (PKI). This can provide for a reliable
and trusted naming system. When the integrity and the consistency of the namespace
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is provided using aPKI, one could then replace the names used in the protocol with
identity certificates for the named principals. This means:

Msg3′′ B → C : CA, CB , {{CB ,Kab, Ta}K−1
a
}Kb

for the first protocol, and:

Msg3′′ A → B : {CA, {CB , Nb}K−1
a
}Kab

for the third one. Alternatively, one could use Alice’s and Bob’s public keysKa and
Kb (or their hashes) in place of their names. This is a common practice in the imple-
mentation of cryptographic protocols, but we recommend also to replace references (in
subscripts) to the nameB with references to the public keyKb already in the protocol
description. This clarifies the properties we require of thenames. To this end, however,
rewriting the protocol to use certificates for principals’ names is even better than when
simply public keys are used in their place. Using certificates makes explicit in the pro-
tocol description the necessity of an authority taking responsibility for the integrity of
the namespace.

4 Discussion

As opposite as for naming systems that are specifically designed for sharing of re-
sources (like theDNS), a namespace whose main requirements are to be consistent and
non tamperable must sacrifice performance, scalability andavailability because of its
dependencies to aPKI [10]. Moreover, by relying on aPKI, the system inherits all its
open problems like privacy concerns (in setting where they are relevant) and revocation-
related issues [11, 12].

However, in cases where public key cryptography is already required (Examples 1
and 3), such a solution may be preferable since it comes at zero additional cost in that
the costs for deploying thePKI have been already sustained. Also, as already shown,
local verification is not always possible, forcing in these cases to resort on a global and
consistent namespace.

On the other hand, local verification does not rely on distributed state and does not
add dependencies between distributed parties. However, even when local verification is
possible it has its own share of limitations. Local verification requires principals to keep
track of all names used in their correlated protocol sessions. All concurrent executions
of the same protocol are also correlated if session identifiers are not used. Threading is
a popular way to implement concurrently running instances of a protocol, and the list
of names in use would be a resource shared between all threadsrequiring synchronized
access. This list does not only grow linearly with the numberof concurrent protocol
sessions, but it may create a bottleneck because it is sharedbetween all threads. Notice
also, that name caching can not be used as would be possible when global verification
is used.

Last but certainly not least, local verification is dependent on what principal in the
protocol represents the attacker and what principal represents the verifier. This makes
local verification dependent on the protocol itself. Ana priori analysis of the protocol
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must be performed then to assure the feasibility and the correctness of the verification
process. Such an analysis can only be performed for known replay attacks. Unlike a
global verification, local verification can not therefore beused as as apreventionmech-
anism but only as a remedy for known exploits. In contrast, global verification provides
global integrity for names, such that these can be employed also as a precautionary
measure for all protocols countering attacks that are both known and not known to the
implementor of the protocol.

4.1 Local vs. Global Uniqueness

We have argued that the peculiar, but not unusual, use of names in cryptographic pro-
tocols makes system-wide uniqueness not necessary in all cases. Global uniqueness in
fact, while not strictly required by the cryptographic protocol, may be convenient be-
cause the same global naming system is already in use to identify all principals in the
system. This is the argument that leads, for example, to the adoption of public keys (and
as consequence of aPKI) in places of names.

Uniqueness of names becomes an issue also when the name system implements
revocation and re-allocation of names. For example, inIPSEC, IP addresses are used
to name communication endpoints [13]. When these are dynamically assigned (using
the DHCP protocol, for example), protocol affiliation of messages should be extended
also to subsequent sessions. Otherwise, a message intendedfor Bob, hence containing
his nameB, could be used in a replay attack against Charlie once Bob’s name (IP ad-
dress) has been reassigned to Charlie. Uniqueness of names may have to be maintained
therefore also over time, for sessions that are not correlated. The use of session identi-
fiers removes the reliance on (the uniqueness of) the names ofprotocol participants but,
while naming sessions explicitly is effective, the integrity of session identifiers must be
provided as well, possibly implying a substantial modification of the original protocol.

The alternative to name recycling is to use lingering names across subsequent ses-
sions. Such names are usually referred to aspersistentor inescapable[14]. To imple-
ment such names, however, may be a non-trivial exercise for asystems designer. For
example, the namespace used must be “big enough” to never generate colliding names
for different principals. A design flaw or implementation bug allowing a wrap-around
of the name space may have serious and direct security implications. Determining how
big is “big enough” is complicated by the fact that this is notmerely determined by the
worst-case usage rate of names in the system, but also by the worst-case abuse rate. In
other words, unless the rate of name consumption is bounded somehow, a determined
attacker is able to exhaust a name space independently of howbig it is [15].

4.2 Design Alternatives

All of the presented attacks require a principal to run two ormore correlated executions
of the same protocol with different counterparts. A messagebelonging to one session
can be maliciously used this way in another (andvice-versa). In these cases, the attack
can be thwarted by serializing all executions of the protocol at the victim. Note that,
according our definition of correlation, to just execute a protocol after another may
not be enough if the windows of vulnerability extends also after a run is finished (as
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in Example 1). In the general case, to serialize therefore means to execute only one
protocol during each of this periods.

A possible solution to fend off replay attacks is then to restrict the execution en-
vironment of the protocol and so forbid multiple correlatedexecutions of the protocol
by the same principals. Of course, this kind of restriction on the execution environment
may negatively affect the system’s performance, e.g. its responsiveness and maximum
throughput.

Some would argue that relying on the execution environment of the protocol for pro-
tection to replay attacks is inferior from adding protection to the cryptographic protocol
itself by adding names. However, names to be used in a cryptographic protocol must be
secured either by the local implementation or by an externalinfrastructure. This places
both solutions on equal footing, or some might even argue that a solution that does not
require a change in the protocol is even preferable. Solutions against replay attacks do
not merely rely on the design of the cryptographic protocol,but always rely on external
support. The key point is then what are the different externalities and the economic and
technical cost associated to each solution.

5 Conclusions

Names used in authentication protocols must enjoy uniqueness across correlated ses-
sions of the same protocol to be effective. This property is assumed to be provided in
the execution environment of the protocol and must be verifiable by its participants. For
this, a system can either use a global naming system that provides unforgeable names
to every principal in the system or resort to local verification by the concerned parties
only.

In the case of a trusted naming system, this infrastructure becomes part of the trusted
computing base of each principal of the protocol. The most common solution for such
a service is to rely on aPKI and identity certificates. This kind of infrastructures are
complex, costly to deploy and manage, and not risk-free [16].

On the other hand, local verification of uniqueness of principal’s names is not al-
ways possible. Even when it is, local verification is a designchoice that depends on the
protocol in consideration and does not allow a general “one-for-all” implementation.
Reimplementing the solution every time increases the probability of design errors and
implementation bugs. In addition, as opposed to thePKI solution, it is not possible to
use local verification as a preventive measure but only as a remedy to known attacks.

Each solution has different implications, both technical and economic, associated
with it. In either case, these costs may overwhelm the ones traditionally associated with
cryptographic protocols such as the costs of communicationand encryption. Ana priori
estimation of these costs should be made at design time because these may dominate
total costs in the end and be a crucial factor in the (technical and economic) success of
the system. Finally, we argued that a system designer shouldnot disregard alternative
solutions for protecting from replay attacks.
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