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Abstract. This paper discusses the security properties of names. To fulfill their
role in cryptographic protocols, names must be unique across correlated sessions
i.e. where the massages of one session can be reused in another without detection
and that uniqueness must be guaranteed to hold for each participant of these runs.
To provide and verify uniqueness, two different mechanisms are shown possible,
namely local and global verification. In both cases we discuss the implications of
uniqueness on the execution environment of a cryptographic protocol, pointing
out the inescapable issues related to each of the two mechanisms. We argue that
such implications should be given careful consideration as they represent impor-
tant elements in the evaluation of a cryptographic protocol itself.

1 Introduction

The number of messages and message elements that are relevant for the security of
a protocol is normally rather small. Message elements encountered are keys, nonces,
timestamps, identifiers and, occasionally, a few others.

Assumptions must be made regarding the properties of these elements, the partici-
pants of the protocol and their trustworthiness, their abilities, the properties of the com-
munication infrastructure, and the environment in which the protocol is deployed [1].
While assumptions directly related to the functioning of the protocol are almost always
made explicit and discussed at large, assumptions on the running environment are, more
often than not, left unspecified [2]. One consequence of this is that the cost factors
considered when evaluating a cryptographic protocol are usually limited to concep-
tual simplicity, encryption, length, and number of messages [3, p. 34]. External factors
such as requiring secure synchronized clocks, synchronous communication or broad-
cast communication channels are less often considered as integral part of the protocol
security [4].

We focus here on the single issue rmesby analyzing their security require-
ments. Abadi et al. raised the issue of names in cryptographic protocols by formulating
a specific prudent engineering principle:

“If the identity of a principal is essential to the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.’[5]
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However, like other message elements, hames have prapirdiemust be upheld
to justify their use. Using some well-known cryptographiotpcols as a starting point,
we state that to fulfill their role in cryptographic protosphames must be unique across
sessions of the same protocol that eoerelatedto each other, meaning that they are
executed in a time window where replay attacks are posailidepresent two distinct
methods to fulfill such a requirement and discuss their pactibs. In both cases we
show how uniqueness of names is a source of external costseapdint out the prac-
tical implications of this for the design and evaluation pfptographic protocols.

In the next section, we recall examples of protocol attabks ¢an be fixed by the
proper inclusion of names. These examples are used in Seqrégtent two possible
ways to provide verifiable unique names. In Sec. 4 we distiesgroperty of unique-
ness and its implications on the name system. We concludedn5S

2 Examples

We use the same set of examples as [5, Sec. 4] due to theityvahie give only a
minimal description of these here and refer the reader totiggnal article for more
details about the attacks, the fixes and the used notation.

Example 1 The first example is a key exchange protocol using asymnmetiicyption
by Denning and Sacco [6, p. 535]:

Msgl A— B: A,B
Msg2 B — A:Cy,Cp
MSg3 A— B: CAaOBa{{Kavaa}Kgl}Kb

A and B represent the names of the two principals participatindgéngrotocol: Alice
and Bob. The certificates 4 andC 4 bind these two principals to their respective public
keys K, and K,. T, is a timestamp andk;, is the session key being exchanged. The
problem is that once Bob receives the third message, he gavesthe outer encryption
layer and re-encrypt the result for an outsider Charlie drtipular, Bob could send:

Msg3’ B— C: CA,C(;', {{Kavaa}Kgl}Kc

At this point, and for the duration of the validity of the tinstamp7,, Bob can im-
personate Alice to Charlie. The proposed fix is that the thiegsage should contain at
least the name of Bob in the inner encrypted seétion

MSg?)H B— C: CAaCB) {{BvKabaTa}Kgl}Kb

It is possible now for Charlie to understand that this messagot part of his run of
the protocol but was destined fér instead.

1 In the original article both Alice’s and Bob’s names appear in the fix butdtse pointed out
that Alice’s name can be deducted frdiy !. We then omit it here.



Example 2 A similar flaw is present in the following authentication fwool using
symmetric key encryption by Woo and Lam [7, pp. 42-43]:

Msgl A—B: A

Msg2 B — A: N,

Msg3 A — B: {Ny}k,,

Msg4 B — S: {A,{Nv}k,.} K.
Msg5 S — B : {Ny}k,,

WhereK,, and K, are two keys that the servérshares with Alice and Bob, respec-
tively and NV, is a nonce generated by Bob. The purpose of this protocokibde Bob

to check whether Alice is on-line. This protocol is subjextan attack where a third

party Charlie impersonates Alice to Bob. Briefly, if Chanfieesents itself to Bob both

as Charlie and Alice at the same time, Bob is tricked to belitnat Alice is present

while she is not. The proposed fix again involves the use ofesamm this case it re-

quires the last message to include Alice’s name:

Msg5' S — B : {4, Ny}k,.

Example 3 The last example protocol is an early versiorsei [8], in which Bob can
impersonate Alice to a third party Charlie:

Msgl A — B : {Ku}x,
Msg2 B — A: {Ny}k,,
Msg3 A — B : {Ca, {Np} -1} K

K, isthe session key to be used between Alice and Bgbs Bob’s public key anav,
is a nonce. The proposed fix is to insert Bob’s and Alice’s rem¢he final message

Msg3’ A — B : {CA» {B)Nb}Ka_l}Ka,h

O

While all these fixes seem straightforward, some questioysamse regarding their
implications: What properties, if any, must be provided idesrfor a name to be used in
the security protocol? How can these properties be uphet#® Ehis impose require-
ments on the environment in which the protocol is deployati@anthe naming system
in use? We investigate these questions in the next sectitrthné help of the previous
examples.

3 Names

The primary role of names is that they let one reference aurespallowing sharing.
In the presented examples, however, names are used as aaridentify a specific
protocol run by identifying the protocol participants.

2 As for Example 1 earlier, we omit Alice’s name because this can be @ddoem her signa-
ture.



Scalable naming systems designed with sharing in mind lysabdw for short-
term inconsistencies to achieve availability and perforoea The Domain Name Sys-
tem ONS) [9] is an example of such a naming system; domain name sraresrepli-
cated and can be cached freely on any server and client florpence. This makes
the naming system scalable and responsive in the light @liabte message delivery,
failures, and network partitions but it leaves to the usershteck whether a referred
resource is the correct one. This means thatttke is subject to spoofing attacksy
design In other words, naming systems designed for resourcerghbike theDNS are
unsuitable for use in security protocols not being desigoedlentification purposes.

The question is then what properties names must have to béeusaecurity pro-
tocols. Do we have to remove all potential for naming incstesicies and sacrifice
availability, performance (and thus scalability) for seg? The following principle
states what must be achieved:

When the security of a protocol relies on the identity of agipal, the unique-
ness of principals’ names across all correlated sessionise$ame protocol is
required.

Two or more protocol runs are correlated when executed mvightime window
where messages of one can be reused in another withoutideteEhis window is
determinate by the semantic of the protocol. For the firstqma for example, this
window is bounded by (the semantics of) the timestafypn the third message. In
Example 2 and 3 instead, since the presented attacks rélogithe attacker interleaves
the messages of its session with the ones of the sessiorehdétb attack, this window
is determined by the temporal length of the attacked session

This principle has been distilled from the previous examgieom them it is straight-
forward to extrapolate the uniqueness of participant namsethe necessary condition
for the proposed fixes to hold. For example, with referendkedirst protocol, if Bob’s
and Charlie’s nameB andC' are identical or can be confused with each other (maybe
just at bit-string level) the proposed fix does not help amgrto fend off the attack.
The same is true also in both the second and the third exalipigueness, on the other
hand, is not needed outside the scope of the correlatedchoestaf a specific protocol
run since (assuming that messages belonging to differettqwols are distinguishable
as such) illegitimate messages belonging to another sessfcdhe same protocol are
here detected by other means.

3.1 Guaranteeing Uniqueness

In addition to the ability to generate unique names, it mastdfe for the principals of a
security protocol to assume that this uniqueness is maedatven in light of malicious
partecipants. In other words, it must be infeasible for aicimis principal to violate
the uniqueness assumption as the basis for an attack. Sifgpeeness of names is, in
general, required only across different sessions of theegamwtocol, a principal has
two possible ways for verifying this:



Local Verification. One or more of the participants in a protocol run verify lbgal
the uniqueness of the names used in that run. Local verditatieans here that the
uniqueness check only involves local state and messagasdied) to the protocol run
itself, not entailing additional communication with thiphrties. Correlated sessions
using the same names are prohibited and serialized as agumms. In this solution
the integrity of the namespace does not need to be proteiciesl & name iserifiedto
be unique every time it is used.

Global Verification. A trusted naming system can be relied upon to be resilient to
tampering. Such an infrastructure is global and guararnteemtegrity and the consis-
tency of the namespace providing unique names. In this emsauthority hands out
unforgeable and tamper-proof names for all the principathé system.

To sum up, the consistency of the namespace must be eithancedfglobally or
verified locally. Local and global verification each havewaswill show, their own ap-
plicability range that is delimited both by the protocol mestion and by environmental
constraints.

3.2 Local Verification and Verifiers

Not all principals participating in a protocol run are irdgsted in (verifying) the unique-
ness of names. In the previous examples (and arguably irethergl case), the principal
that is concerned about the uniqueness of names is the jabtectim of the attack that
is countered by the use of names. Obviously, this role isopaitdependent. Therefore
a variety of scenarios is possible when local verificatiomssd.We discuss some of
them using the example protocols we presented earlier.

Example 1 To avoid the reply attack presented in Example 1, Bob’s naredided
to the message being replayed in the attack. This name mugrified to be unique
in order to thwart the attack. Charlie has no way, from thesagss he receives from
Alice, to check whether his and Bob’s names are identical iangse in correlated
protocol runs by Alice (hence creating the precondition doreplay attack). Direct
verification of the names by Charlie is therefore not possiblonetheless he could
trust Alice to perform the name check on his behalf. Aliceewbpening two correlated
executions of the protocol with Bob and Charlie, is able teathwhether the namds
andC (to be) sent in the messages of the two protocol runs are the sanot:

Msgl A— B: A,B Msgl’ A—C:AC

If Alice detects such duplicate names used in correlatetbpobruns, she can protect
Charlie by aborting one or both of the protocol runs. Notlrat tAlice is already part
of Charlie’s Trusted Computing BasgdB) since Charlie already trusts her for other
security-critical tasks like picking a godd,; and for not disclosing it to third parties,
for example. It is then reasonable in this case for him tomgoon Alice for protection
against this replay attack.



To sum up, local verification is possible in this protocol enthe condition that the
potential victim of the attack, Charlie, trusts the initiabf the protocol, Alice, to verify
the unigqueness of the names of his counterparts.

Example 2 Local verification is possible in this protocol also: For thtack to be
mounted Charlie initiates two concurrent sessions of tliopol with the victim Bob.
In these sessions, Charlie calls himself by two differemhes; his own and the name
of the principal that he is impersonating:

Msgl C — B: A Msgl’C — B: C

Bob registers the two named, and C, and uses them ad verbatim in the messages
of the protocol he sends later. This allows him to verify viiegtthe names used in
the different sessions are the same or not. In other wordgjdkignated victim of the
replay attack is able here to verify itself whether the naoeei in correlated protocol
sessions are unique.

Example 3 Our third and final example gives us the opportunity to disaiscenario
where local verification by one or more protocol particigagtnot possible. We report
the replay attack on the protocol at full because it was lefimexercise to the reader
in the original paper:

Msgl A — B: {Kuw'}xk,
MSg "B —C: {Kab}KC
MSg2/ C — B: {Nb}Kab
MSgQ B— A: {Nb}Kab
M593 A— B: {CA, {Nb}K{:l}Kab
MSg3/ B— C: {CAv{Nb}chl}Kab

In this protocol Charlie, the victim of the attack, has no wayerify the uniqueness
of names from the messages he receives. Moreover, he catpatnrhis counterpart
to perform such a check as was possible in Example 1. Aftethalt counterpart is the
principal mounting the attack. Hence, local verificatiom@ possible for this type of
protocol and global verification has to be used to guaranmé@gieness.

3.3 Global Verification

The most reliable way to enforce the integrity and consistesf a namespace is to
use digital identity certificates. These are issued andaligisigned by a certification
authority €A), on behalf of all the principals in the system binding eatthem to its
public key. All of this, along with mechanisms for verifyirige validity and revoking
certificates constitutes a Public Key Infrastructurg1j. This can provide for a reliable
and trusted naming system. When the integrity and the censigtof the namespace



is provided using @kl, one could then replace the names used in the protocol with
identity certificates for the named principals. This means:

MSgS” B—C: OAaOBa{{CBaKab,Ta}KJI}Kb
for the first protocol, and:
Msg3” A — B : {Ca,{Ch, No} -1}k,

for the third one. Alternatively, one could use Alice’s andl® public keysk, and
K, (or their hashes) in place of their names. This is a commoctipeain the imple-
mentation of cryptographic protocols, but we recommend &seplace references (in
subscripts) to the namg with references to the public kely, already in the protocol
description. This clarifies the properties we require ofrthmes. To this end, however,
rewriting the protocol to use certificates for principalannes is even better than when
simply public keys are used in their place. Using certifisatekes explicit in the pro-
tocol description the necessity of an authority taking oesibility for the integrity of
the namespace.

4 Discussion

As opposite as for naming systems that are specifically dedidgor sharing of re-
sources (like th®Ns), a namespace whose main requirements are to be consistent a
non tamperable must sacrifice performance, scalabilityasadlability because of its
dependencies to ekiI [10]. Moreover, by relying on &K1, the system inherits all its
open problems like privacy concerns (in setting where theyelevant) and revocation-
related issues [11, 12].

However, in cases where public key cryptography is alreadyired (Examples 1
and 3), such a solution may be preferable since it comes atazilitional cost in that
the costs for deploying thekl have been already sustained. Also, as already shown,
local verification is not always possible, forcing in thesses to resort on a global and
consistent namespace.

On the other hand, local verification does not rely on disteld state and does not
add dependencies between distributed parties. Howewar,welien local verification is
possible it has its own share of limitations. Local verificatrequires principals to keep
track of all names used in their correlated protocol sessial concurrent executions
of the same protocol are also correlated if session idertifiee not used. Threading is
a popular way to implement concurrently running instandes jorotocol, and the list
of names in use would be a resource shared between all thedseng synchronized
access. This list does not only grow linearly with the numiseconcurrent protocol
sessions, but it may create a bottleneck because it is shategen all threads. Notice
also, that name caching can not be used as would be possiblegitbal verification
is used.

Last but certainly not least, local verification is depertdanwhat principal in the
protocol represents the attacker and what principal repteghe verifier. This makes
local verification dependent on the protocol itself. Apriori analysis of the protocol



must be performed then to assure the feasibility and theectmess of the verification
process. Such an analysis can only be performed for knowayrgtacks. Unlike a
global verification, local verification can not thereforeused as as jpreventionmech-
anism but only as a remedy for known exploits. In contrasthal verification provides
global integrity for names, such that these can be emploisaias a precautionary
measure for all protocols countering attacks that are botiwk and not known to the
implementor of the protocol.

4.1 Local vs. Global Uniqueness

We have argued that the peculiar, but not unusual, use of siam@yptographic pro-
tocols makes system-wide unigueness not necessary insal.c&lobal uniqueness in
fact, while not strictly required by the cryptographic mool, may be convenient be-
cause the same global naming system is already in use tafidefhiprincipals in the
system. This is the argument that leads, for example, todbptaon of public keys (and
as consequence ofri) in places of names.

Unigueness of names becomes an issue also when the name sygiements
revocation and re-allocation of names. For examplaep®EG 1P addresses are used
to name communication endpoints [13]. When these are dyréisnassigned (using
the DHCP protocol, for example), protocol affiliation of messagesigt be extended
also to subsequent sessions. Otherwise, a message infendib, hence containing
his nameB, could be used in a replay attack against Charlie once Bahisen(p ad-
dress) has been reassigned to Charlie. Uniqueness of naaydsave to be maintained
therefore also over time, for sessions that are not coe@lathe use of session identi-
fiers removes the reliance on (the uniqueness of) the nanpestotol participants but,
while naming sessions explicitly is effective, the intégof session identifiers must be
provided as well, possibly implying a substantial modifieatof the original protocol.

The alternative to name recycling is to use lingering nantesss subsequent ses-
sions. Such names are usually referred tpasistentor inescapablg14]. To imple-
ment such names, however, may be a non-trivial exercise $ystems designer. For
example, the namespace used must be “big enough” to neveragercolliding names
for different principals. A design flaw or implementationgoallowing a wrap-around
of the name space may have serious and direct security itiplis. Determining how
big is “big enough” is complicated by the fact that this is murely determined by the
worst-case usage rate of names in the system, but also byotis¢-gase abuse rate. In
other words, unless the rate of name consumption is bouratadtow, a determined
attacker is able to exhaust a name space independently dbigatis [15].

4.2 Design Alternatives

All of the presented attacks require a principal to run twmore correlated executions
of the same protocol with different counterparts. A mesdsagjenging to one session
can be maliciously used this way in another (aiak-versa. In these cases, the attack
can be thwarted by serializing all executions of the protatdhe victim. Note that,
according our definition of correlation, to just execute atpcol after another may
not be enough if the windows of vulnerability extends alseraé run is finished (as



in Example 1). In the general case, to serialize thereforansi¢o execute only one
protocol during each of this periods.

A possible solution to fend off replay attacks is then torniesthe execution en-
vironment of the protocol and so forbid multiple correlatsg:cutions of the protocol
by the same principals. Of course, this kind of restrictiorilte execution environment
may negatively affect the system’s performance, e.g. gpamsiveness and maximum
throughput.

Some would argue that relying on the execution environmigthieqprotocol for pro-
tection to replay attacks is inferior from adding proteuwtio the cryptographic protocol
itself by adding names. However, names to be used in a cryggib@ protocol must be
secured either by the local implementation or by an extenmia@structure. This places
both solutions on equal footing, or some might even argueatisalution that does not
require a change in the protocol is even preferable. Saisitamainst replay attacks do
not merely rely on the design of the cryptographic protolot,always rely on external
support. The key point is then what are the different exiéies.and the economic and
technical cost associated to each solution.

5 Conclusions

Names used in authentication protocols must enjoy unicggeaeross correlated ses-
sions of the same protocol to be effective. This propertysgimed to be provided in
the execution environment of the protocol and must be vbtdiby its participants. For
this, a system can either use a global naming system thaidgounforgeable names
to every principal in the system or resort to local verifioatby the concerned parties
only.

In the case of a trusted naming system, this infrastructeceimes part of the trusted
computing base of each principal of the protocol. The mostroon solution for such
a service is to rely on aki and identity certificates. This kind of infrastructures are
complex, costly to deploy and manage, and not risk-free [16]

On the other hand, local verification of uniqueness of ppaks names is not al-
ways possible. Even when it is, local verification is a desigoice that depends on the
protocol in consideration and does not allow a general ‘fonell” implementation.
Reimplementing the solution every time increases the fitityaof design errors and
implementation bugs. In addition, as opposed torkesolution, it is not possible to
use local verification as a preventive measure but only asmadg to known attacks.

Each solution has different implications, both technicad @conomic, associated
with it. In either case, these costs may overwhelm the oaeipnally associated with
cryptographic protocols such as the costs of communicatigirencryption. Am priori
estimation of these costs should be made at design time $ethese may dominate
total costs in the end and be a crucial factor in the (techaicd economic) success of
the system. Finally, we argued that a system designer simmildisregard alternative
solutions for protecting from replay attacks.
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