
Semantic Web Services Composition for the Mass
Customization Paradigm

Yacine Sam1, Omar Boucelma1 and Mohand-Säıd Hacid2

1 LSIS–CNRS, Universit́e Aix-Marseille 3, Domaine Universitaire de Saint-Jérôme.
Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

2 Universit́e Claude Bernard Lyon 1.
43, boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France

Abstract. In order to fulfill current customers requirements, companies and ser-
vice providers need to supply a large panel of their products and services. Re-
cently, this situation has led to the Mass Customizing Paradigm, meaning that
products and services should be designed in such a way that makes it possi-
ble to deliver and adapt different configurations. The increasing number of ser-
vices available on the Web, together with the heterogeneity of Web audiences,
are among the main reasons that motivate the adoption of this paradigm to Web
services technology.
In this paper we describe an approach that allows automatic customization of
Web services: a supplier configuration, published in a services repository, is auto-
matically translated into another configuration that is better suitable for fulfilling
customers’ needs.

1 Introduction

The Web is not only an enormous warehouse of text and images, its evolution made
it also a services provider [14]. TheWeb serviceconcept refers to an application ad-
vertised over the Internet and made accessible to services requesters through standard
Internet protocols. Currently available examples of Web services are weather forecast-
ing, online tickets reservation, banking services, etc. Roughly speaking, Web services
are defined aswell defined, loosely coupled software componentsand constitute there-
fore a new paradigm for applications integration [5].

Web services are currently implemented through three standard technologies: WSDL
[21], UDDI [19] and SOAP [17]. These standards provide only syntactical interop-
erability that prevents agents for automating services discovery, selection and com-
position tasks. The semantic Web provides standards for representing and processing
computer-interpretable information [1, 6]. Semantic Web services are then a synthesis
of these two standards and constitute therefore a good proposal for the automation of
the various tasks of Web services life cycle.

Semantic Web services descriptions relay on Web services annotations with terms
having a formal description in structured dictionaries called ontologies. DAML+OIL [7]
is a logic-based language intended to the description of Web services. It is used directly

Sam Y., Boucelma O. and Hacid M. (2006).
Semantic Web Services Composition for the Mass Customization Paradigm.
In Proceedings of the 1st International Workshop on Technologies for Collaborative Business Process Management, pages 52-61
Copyright c© SciTePress



or through DAML-S [2]. DAML-S is a DAML+OIL concepts ontology describing the
technical aspects of a Web service (Inputs/Outputs parameters, data types, etc). OWL
[15], an evolution of DAML+OIL, was recently standardized by the W3C [20]. OWL
is now the main standard language for Web ontologies description and OWL-S is the
corresponding evolution of DAML-S.

Other languages represent interesting solutions for automatic Web services discov-
ery, selection and composition. One can quote GOLOG [10] andLARKS (Language for
Advertising and Requesting for Knowledge Sharing) [18]. The latter is a frame based
language for semantic Web services discovery and selection. The former is a Situation
Calculus Language and was adapted in [13] for Web services composition.

In this paper, we build on LARKS to elaborate a Web services customization frame-
work. Mass Customization Paradigm [9] is a principle which considers that products
must be conceived in such a way that makes it possible to satisfy various needs. Expo-
nential proliferation of services provided through the Weband the cosmopolitan aspect
of Web users justify the Mass Customization Paradigm for Webservices.

We propose a framework that allows the automatic customization of Web services.
The basic idea is to automatically transform services published in the services directo-
ries in order to generate suitable configurations for answering client needs. The goal of
the automatic transformation, based mainly on the dynamic composition of Web ser-
vices, is twofold. On one hand, the construction task of a given service becomes easier
for the providers. On the other hand, the requesters will be able to obtain services in the
alternatives that can satisfy their preferences, even if they are not explicitly present in
the services directory. Thus, service providers publish only one explicit configuration of
a given service, the others are dynamically and automatically infered from the services
directory.

The rest of this paper is organized as follows: we provide, inSection 2, a motivating
example that illustrates customer requirements for customizable Web services. Section
3 presents LARKS and its use for advertising and requesting for Web services.In Section
4, we develop our approach to Web Services customization. Wefirst propose a new
structure for semantic Web services that allows, in contrast to LARKS, customization
of services customization. We then describe the matchmaking process, and finally the
automatic Web services customization algorithm. We conclude in Section 5.

2 Motivating Example

Each year, ”La F̂ete de la lumìere” (Light Celebrates) is the most important traditional
popular celebration in Lyon (a French city). Before traveling to Lyon, a Japanese tourist
wants to obtain information about the available Hotels in Lyon and their fees. Thus, he
sends his request to a Web directory which stores this information in the form of Web
services, expecting to find a Web service execution that can satisfy the request.

After the request processing, the services directory seemsto be unable to satisfy
the information required by the japanese customer. Indeed,the services turned over
describe Hotels in French with their fees in Euro. This makesthem useless for the
customer, which understands only the Japanese language anduses the local currency :

53



Yen. This scenario shows that the request cannot be satisfied, though the Web service
exists in the directory, but in an incompatible configuration.

The framework we propose allows transformation of Web services. The basic princi-
ple of the Web service transformation consists in dynamically calling two intermediate
Web services. The first will translate the Hotels descriptions from French to Japanese
and the second will transform the fees from Euro to Yen. The answer to the request
will then be built by the coordination of these two intermediate services and the service
initially available in the directory.

3 Larks Language

LARKS is an advertising and requesting language for Web services [18]. In LARKS,
services and requests are both specified in the form of a frame. The frame’s attributes
are described hereafter:

– Context : it represents a keyword describing what the service does.
– Types : definition of the abstract data types used in the specification.
– Input/Output : declaration of the Input/Output variables of the service.

ContextandInput/Outputattributes can be annotated by machine-interpretable con-
cepts stored in the attributeConcDescription.

– InConstraints/OutConstraints : logical constraints on the Inputs/Outputs. These
constraints can be restrictions on the Inputs/Outputs values or logical constraints
between the service Inputs/Outputs.

– ConcDescripton: formal description of the concepts being used for the semantic
annotation of the context and the Inputs/Outputs of the services. The association of
a conceptC to a word (Context or Input/Output)w is notedw*C, which means that
the conceptC is the formal description of the wordw. The use of formal ontologies
in LARKS makes it possible to semantically describe Web services. Ontologies can
be described formally with concept languages like ITL [4], LOOM [12] or KIF [3].

– TextDescription : textual description of the service requester needs or whata ser-
vice provider can offer.

In LARKS, the constraints are used to restrict the values of an Input/Output. How-
ever, the assignment of a measuring unit to an Input/Output can only be specified by
semantic annotations using extensional formal concepts. Extensional concepts are sets
of instances (objects) used, in this case, to capture the setof Input/Output’s measuring
units. During the Web Services matchmaking process in LARKS, the comparison of the
two different concepts EURO and YEN (See Figure 2) will fail. Indeed, no knowledge
is available to capture the fact that these two concepts can be made comparable (pro-
viding a conversion). Consequently, no Web services transformation is possible in this
language.

In the following we propose a new Web services structure which constitutes the
foundation for the customization process. It allows a service directory to detect, during
the matchmaking process, that two concepts (measuring units) can be convertible by
another service. Doing so, we avoid immediate failure of thematchmaking process.
From now, the term service is used to refer to a service offered by a service provider,
and the term request refers to a service requested by a client.

54



4 Web Services Customization

This section introduces a new semantic Web services specification structure, the match-
making process associated to it and the Web services customization.

4.1 A New Structure for Web Services

The structure we propose in this paper is used to specify boththe services and the
requests. It is made up of two subsystems : the Structural System, and the Constraints
System.

The Structural System (SS). TheSSis defined by the triple (C, I,O). C is the context
of the specification, it is defined by a keyword related to the specified service.I and
O are respectively the description of the Input/Output variables and their abstract data
types in a service or in a request. In Figure 1, the abstract data type of the attributeprice,
that represents the price of a book, isReal in the Output of the service specification.
The keywords of the triple (C, I,O) can be annotated by formal concepts defined in an
ontology, which we consider to be shared between all the users of a specific domain.

Example 1 Figure 1 illustrates the SS of a books-sale service. It is described by its
context ”Book” and its Inputs/Outputs ”your-book”/(”Price”, ”presentation”). The
Output parameters ”Price” and ”Presentation” are annotated by the conceptsPrice
andDescriptionrespectively.

C Book
I Your-Book:String
O Price*Price:Real, Presentation*Description:String

Fig. 1. A Structural System Example.

The formal conceptsPrice and Description – see Figure 2 – are used to assign
types to the Web service Inputs/Outputs Price and Presentation respectively. By the
Inputs/Outputs’ types we do not mean the abstract data types(Integer, Real, etc), but the
measuring units used to express the values of the Inputs/Outputs in the domain ontology.
In Figure 1, the measuring unit of the Output Price is defined by the conceptPrice
which corresponds to a set of currencies : Dollar(USD), Euro(EUR) and Yen(YEN) in
the ontology.

Note that the fact that the conceptPrice contains several measuring units can seem
inconsistent since an attribute value can only have one measuring unit at time. However,
the annotation with this kind of concepts (sets of measuringunits) is used only for one
partial service matchmaking that determinates the services likely able to satisfy the
request. There is a second service matchmaking stage where only the services being,
effectively, able to satisfy it will be selected.

55



Price = Money
Money = (and Real (all in-currency aset(USD, EUR, YEN)))
Euro = (and Real (all in-currency aset(EUR)))
Yen = (and Real (all in-currency aset(YEN)))
Dollar = (and Real (all in-currency aset(USD)))
Description = Language
Language= (and String (all in-currency aset(English, French, Japanese)))
Japanese= (and String (all in-currency aset(japanese)
French = (and String (all in-currency aset(French)

Fig. 2.Examples of formal concepts defined in ITL language.

The Constraints System (CS). TheCSallows the specification of two kinds of con-
straints : constraints on the values of the Inputs/Outputs and constraints on their type-
sin the domain ontology (typing constraints). The CS is defined by the quadruplet
(Ict,Oct, Icv,Ocv) where the elements are sets of constraints on the Input types, Output
types, Input values and Output values respectively.

In this paper, we focus on typing constraints that allow to specify the measuring
units of Input/Output values in the the specifications of services. The typing constraints
can be regarded as the specialization of the concepts used atthe time of semantic an-
notation level of theSS. The role of the typing constraints is to specify by exactly one
type (measuring unit) each Input/Output. The following example illustrates this issue.

According to Figure 2, the conceptPrice is equivalent to the conceptMoney which
is an extensional concept containing sets of currencies. Ifthe user (service provider)
wants her/his service fees in a particular currency unit, anadditional knowledge must
be added to the service specification. Thus, she/he must annotate the service in theCS
with a more specialized concept thanPrice. It can be, for example, the conceptYen if
the user wants the fees in Yen (or the conceptEuro if the provider can offer the service
in Euro).

price = EURO

Description = French

Fig. 3.Typing Constraints.

ContextHôtel
I Location : String
O Price∗Price : Real,

Presentation∗Description : String
Ict Price=Euro
Icv

Oct Description=French
Ocv

Fig. 4. A motivating example in our new
structure for Web services.

Figure 3 shows two typing constraints corresponding to theSSin Figure 1 that a
requester/provider can specify in theCS. With such constraints, the requester/provider
can offer the necessary details on the values of the service Inputs/Outputs, i.e., in only

56



one measuring unit. Figure 4 shows a fragment of a service description corresponding to
our motivating example. It is specified using our structure for Web services description.

4.2 Web Services Matchmaking Process

In our service structure, the Web services matchmaking process involves two steps and
consists in determining if the customer’s request can be satisfied by the services ad-
vertised in a services directory. During the first step, the component of the directory in
charge of the matchmaking process performs a syntactic comparison of the keywords
describing the request triplet (C, I,O) with the triplets (C′, I ′,O′)s of each available
service in the directory, and performs semantic comparisonof the associated concepts.

A service is considered as an answer to a request if its context and Inputs/Outputs
are similar to those of the request with a similarity threshold that can be defined within
the directory. At the end of this step, a set of serviceslikely to be able to satisfy the
customer request is selected.

The second step dependents on the success of the matchmakingprocess during the
first step, i.e., the first step must return at least one service in order to pass to the sec-
ond step of the matchmaking process. This second step consists in the comparison of
the CS of the request and theCS of the selected services in the first step. This step
also comprises two stages : (1) the comparison of the Input/Output typing constraints,
and (2) the comparison of their (value) constraints. We willillustrate in what follows
the matchmaking process of Inputs/Outputs typing constraints. The matchmaking of
Inputs/Outputs value constraints can be performed by constraint satisfaction algorithms
[11].

If all the Inputs/Outputs types of the request and those of a service have similar
measuring units, then there is no conflict and the matchmaking process continuous with
their Input/Output values constraints. If at least an Input/Output has two different mea-
suring units in the request and in a service, then a typing conflict appears. The typing
conflict between a request’s Input/Output and a service’s Input/Output means that the
service cannot (a priori) satisfy the request. However, this does not draw aside this ser-
vice definitively since it may happen that the conflict can be solved.

Definition 1 (Cover axiom)Let A1, A2, ..., An be a set of formal concepts. A cover
axiom is an assertion of the formA := A1 ∨ A2 ∨ ... ∨ An, which means that the
conceptsA1, A2, . . . , An are all sub-concepts of the concept A.

The cover axiom represents knowledge allowing the distinction between the con-
cepts being able to lead to typing conflicts and the other ones. An axiom is associ-
ated with each extensional concept being able to cause a conflict in the domain ontol-
ogy. In the example of Figure 1, the conceptPrice (equivalent to the conceptMoney)
can constitute the head of one cover axiom, because the priceof a product can be
specified in several different currencies. Thus, we will have the axiomMoney :=
EURO∨ Y EN∨ . . . ∨DOLLAR.

Definition 2 (Typing conflict) Let C be a set of concepts described in an ontology,
x, y, z three extensional concepts defined inC, and the two constraints:

57



x = y (Request typing constraint)
x = z (Service typing constraint)

If y 6= z∧ (∃ c∈ C | y⊑ c∧ z⊑ c), and if there is a cover axiomc := y ∨ . . . ∨ z
then there is a conflict due to the difference between the measuring units of the
Input/Outputx in the request and in the service.

When conflicts between a request and a service are revealed, the process of retriev-
ing some services able to solve them starts. The semantics ofa conflict resolution is
the transformation of the Web service configuration available in the directory into the
configuration required by the service requester.

4.3 Web Services Customization Process

The matchmaking process between a request and a service can reveal several typing
conflicts between their Inputs/Outputs. We use theWeb services compositionas a
mean for conflict resolution. In other words, we propose a mechanism that allows to
transform advertised services in order to be compatible with the requirements of the
service requester.

Our approach exploits services able to solve only one conflict. In order to obtain
the context (keyword) for the conflict resolution service, we define a set of rules called
Context Association Rules. Thus, for each domain ontology, a set of rules is defined and
stored in the services directory – one rule for each concept that can generate a typing
conflict.

Definition 3 (Context Association Rule) A Context Association Rule is a binary pred-
icateConflictResolution(Concept, Context). ”Concept” is a variable representing ex-
tensional concepts defined in a domain ontology and belong tothe head of one cover
axiom. ”Context” is a variable intended to receive the context (keyword) of the conflict
resolution service.

A typing conflict is induced by the difference between two concepts, both subsumed
by the same concept appearing in the first argument of oneConflictResolutionpredi-
cate. The two conflicting concepts are recovered from the annotation concepts of the
same Input/Output in a request and in a service.

Example 2 Figure 5 shows two context association rules in relation to the ontology
of Figure 2. The first rule associates the conceptMoney to the keyword (context) of
the currency conflict resolution service : ConversionMoney. The second associates the
conceptLanguageto the keyword of presentation language conflict resolutionservice:
Translation.

The context of the service to call in order to solve an Input/Output typing conflict
is extracted by exploring the context association rules. Indeed, the predicate”Conflic-
tResolution”having as first argument the concept causing the conflict and as second
argument a variable indicating the name of the conflict resolution service, will be sent
to the set of context association rules. The context of the conflict resolution service is

58



ConflictResolution(Money, ConversionMoney)
ConflictResolution(Language, Translation)

Fig. 5. Context Association rules.

determined by the substitution of the variableContextby a keyword (context) appearing
in one of the context association rules (see Figure 5). This is done through the terms
unification algorithm [16].

The Inputs/Outputs of the conflict resolution services are obtained following two
cases, whether the conflict relates to an Input or to an Output. When a conflict occurs
between the Input of a request and the Input of a services, the Input of the conflict
resolution service is the Inputs of the services, and its Output is the Inputs of the
request. If the conflict is caused by the Output of a request and the Output of a service
s, the Input of the service to be called takes the Outputs of the services, and its Output
takes the Outputs of the request.

The service to be called will convert the values of the Inputs/Outputs of the orig-
inal service in order to make them comparable with those of the request. The values
of the Inputs/Outputs to convert will be passed to the conflicts resolution services in
the service invocation phase. Then, the values of the Inputs/Outputs of the request and
those of the service are made comparable (based on a same measuring unit). This al-
lows to pursue the matchmaking process with the verificationof the non-contradiction
of the Input/Output value constraints of the request and theservice causing the conflict.
The Input/Output value constraints matchmaking makes it possible to select the ser-
vices able to answer the request. All these matchmaking steps that allow Web services
customization by dynamic composition of other services areillustrated in Algorithm 1.

5 Conclusion

In order to be able to provide products in a more and more global market, companies
must vary their products according to the customers requirements. To achieve this, they
must change their paradigm from products intended to a largeaudience of customers to
customizable products. This new paradigm is calledMass Customizing Paradigm[8].
We adapted this paradigm to Web services in order to provide aframework allowing to
automatically satisfy the customer requirements in terms of customizable Web services,
while avoiding to the service providers the heavy task of building specific configuration
for each customer.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, editors.The Semantic Web. May, 2001.

3 Concept for the semantic annotation of request Input
4 Concept for the semantic annotation of service Input
5 Concept for the semantic annotation of request Output
6 Concept for the semantic annotation of service Output

59



2. M. H. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, D. V. McDermott, S. A. McIlraith,
S. Narayanan, M. Paolucci, T. R. Payne, and K. P. Sycara. Daml-s:Web service description
for the semantic web. In Horrocks and Hendler [6], pages 348–363.

3. M. R. Genesereth. Knowledge interchange format. InKR, pages 599–600, 1991.
4. N. Guarino. A concise presentation of itl. InPDK, pages 141–160, 1991.
5. G. Hohpe.Web services: Pathway to a Service Oriented Architecture. Thought Works, Inc.,

2002.
6. I. Horrocks and J. A. Hendler, editors.The Semantic Web - ISWC 2002, First International

Semantic Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings, volume 2342 of
Lecture Notes in Computer Science. Springer, 2002.

7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. Reviewing the design of daml+oil:
An ontology language for the semantic web. InAAAI/IAAI, pages 792–797, 2002.

8. B. J. P. II and S. Davis.Mass Customization: The New Frontier in Business Competition.
Harvard Business School Press.

9. J. Kovse, T. Harder, and N. Ritter. Supporting mass customomizationby generating adjusted
repositories for product configuration. InCAD, pages 17–26, 2002.

10. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. Golog: A logic program-
ming language for dynamic domains.J. Log. Program., 31(1-3):59–83, 1997.

11. C. Liu and I. T. Foster. A constraint language approach to matchmaking. In RIDE, pages
7–14, 2004.

12. R. M. MacGregor. Inside the loom description classifier.SIGART Bulletin, 2(3):88–92, 1991.
13. S. A. McIlraith and T. C. Son. Adapting golog for composition of semantic web services. In

KR, pages 482–496, 2002.
14. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services.IEEE Intelligent Systems,

16(2):46–53, 2001.
15. OWL. http://www.w3.org/TR/owl-features/.
16. J. A. Robinson. A machine oriented logic based on the resolution principle. J.ACM,

12(1):23-41, 1965.
17. SOAP. http://www.w3.org/TR/soap/.
18. K. P. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among het-

erogeneous software agents in cyberspace.Autonomous Agents and Multi-Agent Systems,
5(2):173–203, 2002.

19. UDDI. http://uddi.org/pubs/uddiv3.htm.
20. W3C. http://www.w3.org/.
21. WSDL. http://www.w3.org/TR/wsdl/.

60



Algorithm 1 Web Services Customization.
Step 1 :Structural Systems matchmaking

1. Seek a setS of services whose context and Inputs/Outputs are similar to those of therequestQ.
2. If the setS is empty then the matchmaking process fails, and no result can be turned over for the request. Else

pass to step 2.

Step 2 :Constraints Systems matchmaking

For each service s in the setS do:

A. Detect the Inputs/Outputs whose types are in conflict with the Inputs/Outputs of the request. If no conflict is
detected then pass to step C, else pass to step B.

B. Seek a conflict resolution service for each typing conflict of an Input/Output in a request and a service specifica-
tions. Two cases are to be distinguished, according to whether the conflict relates to an Input or to an Output.

a. If (ConceptAnnotate(IQ)3=C1
∧ ConceptAnnotate(Is)4 = C2 // C1 6= C2
∧ (∃C | C1 ⊑ C ∧ C2 ⊑ C )// C: immediate subsumer of C1 and C2
∧ C := C1 ∨ C2 ∨ ...) // Cover Axiom
then Find the service whose structure is :

Context ConflictResolution(C, context)
I Is

O IQ

Ict Ict(s)
Oct Ict(Q)

b. If (ConceptAnnotate(OQ)5 = C1
∧ ConceptAnnotate(Os)6= C2 // C1 6= C2
∧ (∃ C | C1 ⊑ C ∧ C2 ⊑ C )// C: immediate subsumer of C1 and C2
∧ C := C1 ∨ C2 ∨ ...) // Cover Axiom
Then Find the service whose structure is :

Context ConflictResolution(C, context)
I Os

O OQ

Ict Oct(s)
Oct Oct(Q)

C. Evaluate the Inputs/Outputs values constraints. If they are not in contradiction then the service can answer the
request, else the service is not suitable like response to the request.

61


