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Abstract. Existing approaches to music identification such as audio fingerprint-
ing are generally data-driven and based on statistical information. They require
a particular pattern for each individual instance of the same song. Hence, these
approaches are not capable of dealing with the vast amount of music that is com-
posed via methods of improvisation and variation. Futhermore, they are unable
to measure the similarity of two pieces of music. This paper presents a differ-
ent, semantic-based view on the identification and structuring of symbolic music
patterns. This new method will allow us to detect different instances of the same
song and acquire their degree of similarity.

1 Introduction

“A new system combining a mobile phone and a cryptographic technique will soon
allow you to get the name of any music track you hear on the radio [. . . ]”1

This idea, developed by researchers of consumer electronics giant Philips in 2001,
is reality today and a service offered by many mobile phone companies. But audio
identification is more than discovering the name and interpreter of a song you heard.
Music (Information) Retrieval is a young and active research topic which deals with
many ways to analyse and process music—symbolic or sub-symbolic—automatically.

A lot of efforts have been put in the development and improvement of Query-by-
humming ([5], [10]) and audio fingerprinting systems ([1], [3]). As a consequence, they
work very well for identifying music from a limited repository already. Unfortunately,
they require an individual pattern for each piece that shall be identifiable. Hence, it is
not possible, to use them for analysing the countless number of audio files containing
live performed, covered and improvised music. Furthermore, they lack the ability to
determine a fine-grained metric for the similarity of two audio documents. This insuf-
ficiency is caused by the lack of knowledge about the semantics of music that these
systems show.

To develop an audio identification system that is capable of processing the vast
amount of music which is created through the process of improvising and copying
existing pieces, one has to give concern to human music perception: Listening to a
melody, we create inner hypotheses according to our experiences related to this music
theme. Our intention is to develop a system based on a semantic-based model of music
identification. This model—the lead sheet model—includes the required information to
simulate the process of creating and validating hypotheses.

1 NewScientist.com, 2001-11-28
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2 The Lead Sheet Model
The lead sheet model (LSM) has been introduced in [7]. It is designed to be a generic
conceptual model for semantic-based identification and comparison of music. The name
originates from a simplified form of sheet music. A lead sheet contains elementary
parameters of music, i.e. melody, rhythm, chords and tempo. It is widely used for jazz
and songbooks.
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Fig. 1. Characteristic motif of the Scottish folk song “Auld Lang Syne”.

Figure 1 shows the basic element of the lead sheet model: a characteristic mo-
tif (CM). Analysing an audio document, such motifs are the fundamental components
that have to be identified. A similar approach has been published in [4]. A combina-
tion of two or more motifs that have a strong semantic connection is called a lead
sheet (LS). Lead sheets add a structural aspect—which [4] does not consider—to the
LSM. They cannot consist of characteristic motifs only but also of other (sub) lead
sheets (see Figure 2). Each link from a parent LS to its sub elements is attributed with
a pair of information: a number marking the temporal order of the child elements and a
bit string specifying the relations between the two nodes. Among others, valid relations
are: motif, theme, verse, refrain, intro, and many more.

1, Verse 2, Refrain

1, Motif 1, Motif2, Motif 2, Motif

LS0

LS1 LS2

CM1 CM2 CM3 CM4

Fig. 2. Simple lead sheet graph.

The process of identifying music using the LSM can be split: Firstly, the musical
parameters have to be mapped to characteristic motifs. This results in a set of tempo-
rally ordered motif instances. Secondly, each detected instance has to be correlated with
a parent lead sheet, if possible. The second step might be repeated until there are no ab-
stractions left. Using the lead sheet model, it is possible to compare and identify music
in whatever instantiation it is played. Furthermore, it is not only possible to recognise
simple patterns of music but also combinations of motifs and complex structures. While
[7] showed that it is possible to use the LSM on symbolic documents, [8] successfully
applied the above mentioned mapping process to audio data.
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3 Inexact Matching of Motifs

Section 2 introduced characteristic motifs as the lead sheet model’s basic elements.
Thus, it is essential to develop functions that identify such motifs in audio documents.
Considering music performed live and improvised, these functions have to be robust
against small modifications—intended as well as unintended—of a motif. This paper
presents a method for inexact matching of motifs in symbolic representation of music.

Existing approaches to identification of symbolic music are predominantly based on
a representation and comparison of the shape or contour of a melody. Basically, there
are three different methods for coding the shape of a melody ([2], [11]):

1. a sequence of exact intervals (semitones), e.g. +7, +3, -2, 0, -12,
2. 3-level representation, e.g. up, up, down, equal, down or
3. higher-level representation, e.g. Up, up, down, equal, Down.

Identification methods for such representations of music, e.g. calculcating the string
edit distance, are mainly statistics-based and lack any musical background. They can-
not determine, how similar two motifs are concerning the listener’s overall impression.
Thus, Rentzsch ([6]) introduces a different operation to compare a characteristic motif
and a sequence of tones (melody) and to calculate a concrete degree of equality. This
operation is based on the examination of five different features—parameters—of mu-
sic: melody, rhythm, tempo, harmony and voice. Each of these features is processed
separately. Thus, five individual equality values Ep are calculated.

The equality values for melody and rhythm EM and ER are determined using a
string representation of both features. Between these representations of the motifs, the
Levenshtein distance is calculated and considered in relation to the number of tones.
The bigger the Levenshtein distance is, the smaller is EM and ER respectively. The
equality value for tempo ET is determined regarding the lengths of the first tones in the
motifs that have be compared. The bigger the relation of the longer one to the shorter
one of these tones is, the smaller is ET .

To compute EH , harmonies are compared for each tone in the considered motifs.
Each comparison returns hi ∈ {0, 0.5, 1.0}, depending on whether the harmonies are
unequal, similar2 or equal. Then, the overall equality value for harmony EH is the av-
erage of all hi. The last parameter—the value for voice—EV is determined considering
the voice that the motif appears in. If the motif is settled in the main voice, EV is set to
1. In all other cases, EV is 0.

Melody
Rhythm
Tempo
Harmony

Fig. 3. Weighting of Ep (Wp).

2 e.g. C and C7
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Each comparison of the musical features resulted in an equality value Ep with
Ep = 1 if motif and melody are completely equal. Yet, it is useful to develop a pro-
cedure to combine those values to one final degree of equality E. As some of the indi-
vidual values are more important for the identification of music than others, not all Ep

should have the same impact. Thus, Rentzsch defined a set of weighting values Wp as
shown in Figure 3. The equality value for voice EV is supposed to have a special impact
on the final value. Thus, it affects the resulting formula as a “global” factor. Given the
five equality values Ep and a set of weightings Wp, the overall degree of equality E can
be calculated E = EV

∑
p WpEp width p ∈ {M,R, T, H}.

4 Comparing Template Structures

In this part of the paper, we will introduce an approach to comparing entire pieces
of music based on the set of characteristic motifs they contain. Having identified all
motifs—that are known to the system—in a symbolic document and considering the
structure defined in the lead sheet model, every piece of music can be represented as
a graph as shown in Figure 4. This graph is called document template. All edges are
attributed with the relation—specified in the lead sheet graph—and the equality value
ei by which this CM had been identified.

Verse Refrain

(Motif, 0.95)(Motif, 0.85)

LS0

LS1 CM3

CM1 CM2

Fig. 4. Document template.

Now, the attempt to compare two pieces can be reduced to comparing these tem-
plates. Thus, it is possible to take advantage of existing approaches to graph matching.
However, using one of these mainly syntax-based matching methods does not incor-
porate the semantic functions the modifications hold. Futhermore, the time frame cov-
ered by the template—thus, by the identified motifs—has no influence on the resulting
distance. Hence, a different approach—a semantic-based metric—has been developed
([6]). This metric compares document templates in four levels: time level, structural
level, semantic level, and motif level. Each comparison delivers a distance value Di.
The resulting overall distance is a tuple D = (DTime, DStruct, DSemant, DMotif).

As a first step, the common sub-template (CST), i.e. all lead sheets and motifs oc-
curring in both pieces, is determined. On the time level, the time frame that this sub-
template covers in both documents is taken into account. The distance on time level
DTime is defined as the average value of the two time frames. The distance on structural
level DStruct is used to consider small modifications, e.g. the repetition of a motif. Each
modification is rated depending on type and relation to the parent lead sheet. Then,
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DStruct is the average value of all such ratings. The semantic level determines and eval-
uates the relations between the elements in the common sub-template. Result is a set of
values between 0 (motifs from different lead sheets) to 5 (same song/piece). In many
cases, quite a number of different relations is detected. Thus, the distance value DSemant
is the average value of all relations weighted by the time frame they cover. The last
level analyses the average degree of equality by which all motifs in the CST have been
found. Therefore, DMotif is bigger, if many motifs appear unmodified.

As mentioned before, the final distance is a tuple of the four single distance values
DTime, DStruct, DSemant, and DMotif. It depends on a concrete application how these values
are treated. Hence, it is possible to combine these values to one overall value as it is
used for the equality value. However, this would shorten the number of (semantically)
different queries that this metric can process.

5 Results and Future Work

In this paper, we have presented a semantic-based approach to comparing symbolic rep-
resentations of music. This approach uses the lead sheet model as a conceptual model
for music identification. Applying this method to two documents determines a tuple of
distance values marking the four levels of comparison. Considering this partitioning, it
is possible to respond to quite a number of different types of queries: “find pieces con-
taining song s unmodified”, “find pieces using different motifs from s1 and s2”, “find
pieces containing the refrain of song s”, and many more. To put the methods described
in Sections 3 and 4 in practice, we have implemented the prototype application CoSMIc
(Comparing symbolic musical instances). This application determines the document
templates of two MIDI documents and returns the resulting distance values to its user.
To show the applicability of our approaches, we want to briefly describe a small exper-
iment and its results.

Table 1. Distances to “Auld Lang Syne”.

Levels
Piece Time Structural Semantic Motif
Original 0.91 0 5 0.95
Motif changes 0.91 0 5 0.91
Medley 0.35 0 3.1 0.95
Different song 0 0 0 0

We have compiled a set of four songs: “Auld Lang Syne” (original), “Auld Lang
Syne” with modified motifs, “Oh, when the saints”, and a medley of “Auld Lang Syne”
and “Oh, when the saints”. Each of these songs has been processed by CoSMIc and
compared to the original “Auld Lang Syne”. The results of this experiment—thus, the
four distance values of each comparison—are presented in table 1. To make understand-
ing these results easier, we have illustrated them as a 3D chart in Figure 5. Thus, we
have omitted the values on the structural level, as they are all 0.

Apparently, it is possible to classify the first two songs as instances of “Auld Lang
Syne”. They are situated in one region of the chart. “Oh, when the saints” reveals no
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Fig. 5. Distance diagram.

similarities. The medley of different motifs from “Auld Lang Syne”, and “Oh, when the
saints” is situated in between these key points. Running a number of experiments using
different songs from diverse genres proved the general applicability of the techniques
we have introduced. Thus, our semantic-based approach to comparing and clustering
different pieces of music which can be variations of the same composition succeeds.

Future work should focus on adopting the methods presented in this paper to sub-
symbolic audio data using hypotheses-based recognition ([8]). Being able to detect dif-
ferent instances of the same song in whatever representation shall finally provide us with
the required techniques to develop a music retrieval system that implements a cluster
index-based access to its document repository. Hence, these techniques will assure that
diverse queries considering the semantics of music will be processable efficiently.
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