
Workflow Semantic Description for Inter-organizational
Cooperation

Nomane Ould Ahmed M’Bareck and Samir Tata

GET/INT, 9 rue Charles Fourier, 91011 Evry, France

Abstract. The work we present here is in line with a novel approach for inter-
organizational workflow cooperation that consists of workflow advertisement,
interconnection, and cooperation. For advertisement, workflows should be de-
scribed. Nevertheless, by using a description language likeXPDL only syntac-
tic problems can be solved. In this paper, we propose a three steps method for
workflows semantic description. First, workflows described usingXPDL, are an-
notated to distinguish cooperative activities and non cooperative ones. Second,
to preserve privacy, a view, that we call cooperative interface, for each differ-
ent partner is generated. Third, cooperative interfaces are described usingOWL
according to an ontology we have defined for cooperative workflows.

1 Introduction

In context of globalization, organizations are increasingly using process-aware informa-
tion systems to perform automatically their business processes. Based on such systems,
organizations focus on their core competencies and access other competencies through
cooperation, moving towards a new form of network known as virtual organization.

To support cooperation, one has to deal with issues such as automatic workflow
discovery, established workflow preservation, and privacy respect. In fact, cooperation
needs a certain degree of inter-visibility in order to perform interactions and data ex-
change. Nevertheless, cooperation may be employed as a cover to internalize the know-
how of partners. In order to preserve privacy and autonomy, one must reduce workflow
inter-visibility to be as tiny as the cooperation needs.

For inter-organizational workflow cooperation, two main families of approaches are
developed: top-down and bottom-up. Within the top-down family, several approaches
were defined [2]. We can cite among others: capacity sharing, subcontracting, case
transfer, loosely coupled, and public-to-private approaches. The most promising ap-
proach is the public-to-private one [1] that consists of three steps. First, the organiza-
tions involved agree on a common public workflow, which serves as a contract between
these organizations. Second, each task of the public workflow is mapped onto one of
the domains (i.e., organization). Each domain is responsible for a part of the public
workflow, referred to as its public part. Third, each domain makes use of its autonomy
to create a private workflow, using some inheritance rules. Problems to be encountered
with this family of approaches include mainly autonomy of local workflow processing,

Ould N. and Tata S. (2006).
Workflow Semantic Description for Inter-organizational Cooperation.
In Proceedings of the 1st International Workshop on Technologies for Collaborative Business Process Management, pages 62-71
Copyright c© SciTePress



confidentiality that prevents complete view of local workflow [3], and especially flexi-
bility that needs no definition of a global workflow that defines cooperation between lo-
cal workflows. In addition, a drawback is the lack of the preservation of pre-established
workflows. In fact, in this approach, one has to look for whichrules, in what order and
how many times one has to apply them in order to match the pre-established workflow
with the public part which is deduced from partitioning of the public workflow. If not
impossible, this is hard to do. Moreover, there is no defined procedure to do that.

Within the bottom-up family, we have developed theCoopFlow[4, 5] approach in-
spired by the Service-oriented Architecture that requiresthree operations: publish, find,
and bind. Service providers publish services to a service broker. Service requesters find
required services using a service broker and bind to them. Accordingly, our approach
consists of three steps: workflow advertisement, interconnection, and cooperation. To be
advertised, workflow must be described. Nevertheless, languages for workflow descrip-
tion lack semantics, which holds up the issues of automatic discovery of workflows. In
line with our approach, we propose here a three steps method for workflows semantic
description.

The rest of this paper is organized as follows. Section 2 discusses related work in the
area of workflow description. Section 3 summarizes our bottom-up approach to inter-
organizational workflow cooperation. Section 4 is devoted to semantic description of
workflows. Conclusion and perspectives are presented in Section 5.

2 Related Work

To describe inter-organizational workflows, big efforts have been made and many lan-
guages have been proposed. In the following we present a survey of these propositions.

Business Process Execution Language for Web Services (BPEL) [7] is a language
for specifying business processes behavior based on Web services and business interac-
tion protocols.BPELprocess allows the definition of abstract and executable processes.
It does not support many concepts that are paramount for inter-organizational cooper-
ation. In fact, it does not profit of the rich concepts of exiting workflow management
systems as the notion of manual activities, applications, nor addresses the integration
with them, since it uses Web services exclusively which represent a limit to call other
types of services (i.e. activities).

XML Process Definition Language (XPDL) [8] was proposed and standardized by
Workflow Management Coalition. Its principal entities areWorkflow Process, Activity,
Transition, Application, andParticipant. Certainly the description provided byXPDL is
rich but it cannot be published to a registry especially for two reasons. The first is that
the description provides too many information and consequently it doesn’t preserve the
privacy of partners’ workflows. The second reason is that thedescription is syntactic
and so it doesn’t allow automatic discovery.

OWL-S[10] is an ontology and a language based onOWL [9] and dedicated to de-
scribe semantically Web services. It was developed to achieve automatic Web service
discovery, invocation, composition and inter-operation.OWL-Sontology is organized
in three modules:ServiceProfile, ServiceModel, andServiceGrounding. ServiceProfile
describes”what the service does”; it specifies inputs and preconditions required by the

63



service as well outputs and effects. Also, other important attributes for the discovery
are specified as temporal and geographical constraints.ServiceModeldescribes”how
the service works”. It describes how to interact with the service. In other term, it de-
scribe the flow of control of services.ServiceGroundingshows how an agent can access
the service.OWL-Sis not adapted to workflow description. Indeed, the information
necessary for discovery is divided between theService Profileand theService Model.
Consequently, in order to discover a workflow described withOWL-Sboth theService
Profile and theService Modelshould be published and the algorithm of matching must
jump between them to decide if two workflows match or not. Moreover OWL-Sdoes
not dictate any constraint betweenService Profileand theService Model. Consequently,
there is no mean to identify inconsistencies between them.

WSMO[12] is an ontology for describing various aspects related to semantic Web
services. It is intended to achieve automatic Web services discovery, invocation, compo-
sition and inter-operation.WSMOis based on four concepts:ontologies, web services,
goalsandmediators. Ontologiesprovide machine-readable semantics forWeb services,
GoalsandMediators. Goalspecifies objectives that a client might have when consulting
a Web services. Mediator allows to link heterogeneous resources and resolves incom-
patibilities that arise at different levels. TheWSMLlanguage [13] is used to formalize
WSMO. The use ofWSMLfor describingWSMOontologies is its main drawback. In
fact, there are not yet tools to create, parse or manipulate these ontologies. Finally the
jargon used byOWL-SandWSMOis not meaningful for workflows.

3 CoopFlow: An Approach for Workflow Cooperation

To support virtual organizations, we have developed a novelapproach that consists of
three steps: workflow advertisement, interconnection, andcooperation. In this section
we present this approach using a running example.

3.1 Example

Consider an example involving a client and a product provider. Figure 1-(a) presents
the client’s workflow using Petri nets [11]. First, the client sends an order for a product.
Then she receives a notification. When the product is ready, she receives the delivery
and the invoice. Finally, she pays for the ordered product. Figure 1-(c) presents the
provider’s workflow. First, the provider waits for an order request. Then he notifies the
client that his/her order was taken into account and he assembles the components of
the product. After that, two cases can happen: the client is asubscriber (s/he often or-
ders products) or s/he is not. In the first case, the provider sends the product and the
invoice and waits for the payment. In the second case, the provider sends the invoice,
waits for the payment and then sends the product. Cooperative activities, represented
by filled transitions in Figure 1, are the ones that send and/or receive data to/from ex-
ternal partners. The examples given here only show cooperation between two partners.
Nevertheless, our work also addresses cooperation betweenmore than two partners.

64



Fig. 1.The client and the provider workflows and their cooperative interfaces.

3.2 Workflow Advertisement

To set up cooperation, each partner has to advertise its offered and required activities
within their workflows, control flow, and data flow, that we call cooperative interface.
Broadly speaking, a workflow cooperative interface is a projection of a workflow on
the cooperative activities that interact with one partner type [4]. Figure 1-(b) presents
the workflow cooperative interface of the client and Figure 1-(d) presents the provider’s
one. Semantic description of cooperative interfaces are published to a registry (i.e. the
control flow, the data flow and a semantic description of cooperation activities).

3.3 Workflow Interconnection

Partners loking for organizations with complementary skills can make use of cooper-
ative interfaces they published. In order to construct an inter-organizational workflow,
we have to match cooperative interfaces. Matchmaking takesinto account the flow of
control, the data flow and semantic descriptions of cooperation activities. Given two co-
operative interfaces, the matchmaking result can be (1) positive (i.e. interfaces match)
(2) negative (i.e. interfaces do not match at all) or (3) conditional (i.e. interfaces match
if a given condition holds). If the matchmaking result is notnegative, the cooperative
interfaces are then interconnected. In our example presented above, the matchmaking
result is conditional: the client cooperative interface (see Figure 1-(b)) and the provider
cooperative interface (see Figure 1-(d)) match if the client is a subscriber. The result
of this step (i.e. workflow interconnection) is an inter-organization workflow, and a set
of cooperation policies that define cooperative partners and their interfaces (i.e. coop-
erative activities, their order of execution,. . . ) and constraints on workflow interactions
(e.g.the matchmaking condition).

65



3.4 Workflow Cooperation and Monitoring

The third step within our approach for workflow cooperation consists in the inter-
organizational workflow deployment and execution. To do that, we have developed the
CoopFlowframework [5] that allows different WfMSs to interconnect and cooperate
their workflows. In addition to cooperation, this frameworkmainly enforces coopera-
tion policies identified during the workflow interconnection step.

4 OWL4W: OWL for Workflow Description

One of our objectives is to allow partners to automatically discover each other. Therefor,
we focus, in this section, on identifying important information to be described to allow
inter-organizational workflow cooperation and how this information is described using
OWL-based workflow description language.

4.1 Identification of Important Information for Cooperatio n

Our goal is to describe workflows in such manner that allows, for a given need, auto-
matic and dynamic discovery. Let us, for example, suppose that a company of mobile
phones with SIM card wishes to look for suppliers. Complex requests can be formulated
as”look for a supplier located in France, able to treat an ordering of mobile phone with
SIM card and return me a notification before September 20, 2005” . Currently, this task
must be performed by human. To be able to deal with such request, it is not always
necessary to advertise all workflow activities to describe the provided service.

To identify information to be described, we considered two main aspects. First of
all, we propose to hide non co-operative activities to preserve privacy since they are only
defined to achieve internal tasks while cooperative activities interact with the external
partners. Secondly, even if the description of workflow is intended to be computer-
interpretable, it should be understandable by person who isn’t specialist. That enables
to have a high level abstraction of the workflow and as consequence allows the workflow
to be discovered by a greater number of users. To meet this end, in our description we
give only the control flow (represented by activities and their transitions), the data flow
(represented by Input/Output) and some additional attributes like deadline of activities,
quality and location of provided service. . . We do not describe information concerning
implementation of activities, resources nor activities’ execution mode.

4.2 Description of Identified Information

Several languages were proposed to describe workflows. Among those we can cite
XPDL. The description that we propose consists in starting from afirst internalXPDL
workflow description and generate from it a semantic description of cooperative in-
terfaces. The choice ofXPDL as a starting point can be motivated by the fact that it
contains all information that somebody can wish to know on a workflow. We find there
description of data flow, control flow and also a description of the resources. In the fol-
lowing we present how we proceed to generate a semantic description fromXPDLone.

66



This is done in three steps: annotation ofXPDL description, abstraction of interfaces,
and semantic description.

The first step consists in annotating the initial description of workflow by adding for
each cooperative activity information about the partner (formal parameter) with which
it will interact. Thanks to annotations, the second step generates a set of interfaces for
each workflow. The Figure 1-(d) shows the interface generated for the workflow shown
in Figure 1-(c). Finally, the third step describes each interface usingOWL. The partial
conversion from XPDL to OWL description that is out of this article’s scope can be done
automatically. In the following we give theXPDL description of the example given in
figure 1-(c) and we use this example to illustrate these steps.

4.3 XPDL Description of the Example

Since descriptions of all the activities of the example are broadly the same, we give here
the description of theNOTIF activity (i.e. the provider notifies the client that his/her or-
der was taken into account). We suppose that we have an application calledEmailwhich
implement the activityNOTIF. Email has two inputs,orderNumandEmailAdss, and
one outputMessagewhich is the notification sent to the partner.EmailAdssis extracted
from the order and theorderNumis generated by the activityRECEIVE ORDER.
<Activity Id="2" Name="NOTIF">
<Implementation>
<Tool Id="Email" Type="APPLICATION">
<ActualParameters>
<ActualParameter>orderNum</ActualParameter>
<ActualParameter>EmailAdss</ActualParameter>
<ActualParameter>Message</ActualParameter>

</ActualParameters>
</Tool>

</Implementation>
<TransitionRestrictions>
<TransitionRestriction>
<Split Type="AND">
<TransitionRefs>
<TransitionRef Id="notif2compo1"/>
<TransitionRef Id="notif2compo2"/>

</TransitionRefs>
</Split>
</TransitionRestriction>

</TransitionRestrictions>
<StartMode>Automatic</StartMode>
<FinishMode>Automatic</FinishMode>
<Performer></Performer>

</Activity>

4.4 Step 1: XPDL Description Annotation

To distinguish between non cooperative and cooperative activities that interact with ex-
ternal partners on one hand and between cooperative activities that interact with differ-

67



ent partners on the other hand, this first level of description was introduced. For this end
we add an attributePartnerwhich is specified for each cooperative activity and which
is defined by the means of the elementExtended Attribute. Cooperative activities of a
workflow which will cooperate with the same partner (those which will belong to the
same interface) will have the same name. This acts like a formal parameter. The value of
this element (the identity of the client and if s/he is a subscriber or not) will be provided
only at the interconnection (cf. Section 3.3) step within theCoopFlowapproach.

<ExtendedAttribute Name="Client" Value="" />

In our example we quote that the following activities are cooperative:RECEIVE
ORDER, NOTIF, SEND INVOICE, RCEIVE PAYMENT, SEND PRODUCT, SEND PROD-
UCT AND INVOICEandRECEIVE PAYMENT. The others are not. The value ofname
for NOTIF cooperative activities isClient. We give in the following the description of
this activity. The description of the others can be easily deduced.

<Activity Id="2" Name="NOTIF">
<Implementation><!-same as above-></Implementation>
<TransitionRestrictions>
<!-same as above->

</TransitionRestrictions>
<StartMode><!-same as above-></StartMode>
<FinishMode><!-same as above-></FinishMode>
<Performer></Performer>
<ExtendedAttribut Name="Client" Value="" />

</Activity>

4.5 Step 2: Interfaces Abstraction

The realization of a consequent task requires the implication and the cooperation of a
set of organizations. However, this cooperation should notlead to the disclosure of the
know-how of each organization. In order to preserve this know-how we abstract each
workflow by a set of interfaces and those interfaces will be advertised. Each interface
consists of a set of activities which will cooperate with thesame partner. Abstraction is
done using an original technique based on the exploitation of linear invariants in Petri
nets [6]. This abstraction became possible thanks to the annotation done in step 1.

Figure 1-(d) shows the abstract interface of the workflow in figure 1-(c). Now we
give the description of the interface shown in figure 1-(d). We can observe that the ac-
tivity NOTIF is not connected any more to the activitiesCOMPONENET 1andCOM-
PONENT 2but it is now connected toSEND INVOICEand SEND INVOICE AND
PRODUCTwhich are cooperative. The impact of this modification is that the transition
restriction of theNOTIF will change. The type of restriction wasAND and it becomes
XORbecause the restriction type ofASSEMBLEactivity wasXOR. Since this later will
be hidden then the restriction on the transition betweenNOTIF activity on the one hand
andSEND INVOICEandSEND INVOICE AND PRODUCTactivities on the other hand
will be XOR. We give in the following the description of thisNOTIF activity. The de-
scription of the others can be easily deduced.

68



<Activity Id="2" Name="NOTIF">
<Implementation>
<Tool Id="Email" Type="APPLICATION">
<ActualParameters>
<ActualParameter>orderNum</ActualParameter>
<ActualParameter>EmailAdss</ActualParameter>
<ActualParameter>Message</ActualParameter>

</ActualParameters>
</Tool>
</Implementation>
<TransitionRestrictions>
<TransitionRestriction>
<Split Type="XOR">
<TransitionRefs>
<TransitionRef Id="notif2SenInv"/>
<TransitionRef Id="notif2SenInvAndProd"/>
</TransitionRefs>

</Split>
</TransitionRestriction>

</TransitionRestrictions>
</Activity>

4.6 Step 3: Semantic Description with OWL

The description we present here consists in defining ontology for the co-operative work-
flows. This ontology aims at describing, in a non ambiguous way, the cooperative work-
flows so that a software agent can automatically exploit information on those. Benefits
of the use of an ontology are known and multiple, but the first which can come to mind
relates to the improvement of the discovery of workflows’ interfaces and their inter-
connection to construct an inter-organizational workflow.This ontology endeavors to
describe workflows in order to be able to carry out the automatic workflow discovery.
The ontology we propose here is the semantic description of the interface obtained in
step 2. It thus describes, inOWL, the data flow, the control flow and a set of additional
attributes for workflows. Also it gives a textual description of the provided service and
the name and the address of the company which holds the workflow.

The ontology we give here enables the semantic description of abstract interfaces
obtained in the step 2. We point out that an interface is a workflow. The upper concept
in this ontology is theInterface(see Figure 2). TheInterfaceis composed of a set of
activities. Each activity has a set of transitions (transition), a set of parameters (param-
eter), a deadline and possibly some restrictions (restriction) on transitions. An activity
can be located at a well specified place and it could have attribute which specify the
quality of provided service. Each parameter has a type and anorder. Theorder makes
it possible to order inputs and outputs when this is necessary and it is used primarily
by the matchmaking algorithm. For example, let us consider that we have two activi-
tiesA1 andB1 and each one has one input and one output.A1 receives a product and
then sends the payment whileB1 receives the payment and then it sends the product.
Even if inputs and outputs of these two activities refer to the same concepts of an on-
tology, these two activities don’t match because the sending and reception order of the

69



parameters is not the same. To deal with this issue, we added the attributeorder. To
express the deadline of the activity we define the classDeadlineas being an instance
of the classTemporalThingsof theTimeontology1 employed inOWL-S. Eachtransi-
tion has a starting activity (TransTo), an arrival activity (TransFrom) and also it has a
condition. We represent aconditionas logical Formula. The conceptRegionrefers to
an ontology containing the areas of the world. Thequality of services provided by the
activity should be specified by a third entity. Finally, there are four kinds ofrestrictions
an activity could have on transitions:SplitXOR, SplitAND, JoinXOR, andJoinAND. A
Splitspecifies that the incoming transitions of the activity are split. A Joinspecifies that
the outgoing transitions of the activity are joined. The type of bothSplit andJoincould
be AND or XOR. AND means that the transition are executed in parallel.XORmeans
that one transition is executed.

Activity

TransitionhasTrans

Parameter

hasRest Restriction

hasDeadline Deadline

LocatedIn Region

hasTemporalThing

TemporalThing

hasActivity

Inteface

xsd#Integer

anyURIhasType

hasOrd

TransTo

TransFrom

Condition

hasCond

hasParam

Fig. 2.OWL4W: classes and properties.

Now we give the description of theNOTIF activity given in example. Firstly we
define the type of input/output used by the activity. Each type refers to a concept in an
ontology. Then, we give the definition of theNOTIF activity and one of its transitions.

<Input rdf:ID="orderNum">
<hasType
rdf:resource="http://www.w3.org/2001/XMLSchema#Integer"/>

</Input>
<Input rdf:ID="Email">
<hasType
rdf:resource="http://www.bpOnto.org/order#EmailAddress"/>

</Input>
<Output rdf:ID="Message">
<hasType rdf:resource="http://www.bpOnto.org/order#Notificat"/>

1 http://www.isi.edu/ pan/damltime/time-entry.owl

70



</Output>
<Activity rdf:ID="NOTIF">
<hasInput rdf:resource="#orderNum"/>
<hasInput rdf:resource="#Email"/>
<hasOutput rdf:resource="#Message"/>
<hasRest rdf:resource="#SplitXOR">
<RsetOn rdf:resource="#notif2SenInvAndProd"/>
<RestOn rdf:resource="#notif2SenInv"/>

</Activity>
<Transition rdf:ID="notif2SenInv">
<TransFrom rdf:resource="NOTIF" />
<TransTo rdf:resource="SendInvoice"/>

</Transition>

5 Conclusion and Perspectives

In this paper we presented a new approach for workflow inter-organizational coopera-
tion, by proposing a workflow description combiningXPDLandOWL. This description
is semantic and preserve the privacy of partners. To elaborate this description, workflow
is firstly described inXPDL. Then we identify the cooperative activities of workflow.
Once the cooperative activities are identified, they are described usingOWLaccording
to an ontology we have defined for cooperative workflows. Our objective now within
theCoopFlowapproach is to develop a registry to which we can publish semantic de-
scriptions of workflows to enable dynamic and automatic discovery of workflows. We
are currently implementing a matchmaking algorithm based on graph similarity.

References

1. van der Aalst W.-M.-P., Weske, M.: The P2P Approach to Interorganizational Workflows.
CAiSE (2001) 140-156

2. van der Aalst W.-M.-P.: Loosely Coupled Interorganizational Workflows: Modeling and An-
alyzing Workflows Crossing Organizational Boundaries. Information and Management Jour-
nal37 (2000) 67-75

3. Zhao, J.-L.: Workflow Management in the Age of E-Business. The35th HICSS. (2002)
4. Chebbi, I., Dustdar, S., Tata, S.: The view-based approach to dynamic inter-organizational

workflow cooperation. Data Knowl. Eng.56(2)(2006) 139-173
5. Chebbi, I., Tata, S.: CoopFlow: A Framework for Inter-organizational Workflow Coopera-

tion. OTM Conferences(1) (2005) 112-129
6. Kali, K., Tata, S.: Abstraction-based Workflow Cooperation Using Petri Net Theory. 14th

IEEE WETICE. Sweden (2005)
7. T. Andrews and al.: Business Process Execution Language for Web Services. (2003)
8. Workflow Management Coalition. XML Process Definition Language. (2005)
9. Smith, M. K., Welty, C., McGuinness, D. L.: OWL Web Ontology Language Guide. (2004)

10. M. David and al.: Bringing Semantics to Web Services: The OWL-S Approach. Semantic
Web Services and Web Process Composition Workshop. (2004) 26–42

11. van der Aalst W.-M.-P. : Interorganizational Workflows: An Approach based on Message
Sequence Charts and Petri Nets. SAMS journal. (1999)34(3)335–367

12. Feier, C., Domingue, J.: D3.1v0.1 WSMO Primer, Final Draft. DERI. 2005
13. J. De Bruijn and al.: Web Service Modeling Language, Final Draft. DERI. 2005

71


