
A NEW PERFORMANCE OPTIMIZATION STRATEGY FOR
JAVA MESSAGE SERVICE SYSTEM

Xiangfeng Guo, Xiaoning Ding, Hua Zhong, Jing Li
Institute of Software, Chinese Academy of Sciences, Beijing, China

Keywords: Java Message Service, Performance Optimization.

Abstract: Well suited to the loosely coupled nature of distributed interaction, message oriented middleware has been
applied in many distributed applications. Efficiently transmitting messages with reliability is a key feature
of message oriented middleware. Due to the necessary persistence facilities, the performance of transmitting
is subject greatly to the persistence action. The Openness of Java platform has made the systems
conforming to Java Message Service Specification supported widely. In these applications, many consumers
get messages periodically. We bring forward a new efficient strategy using different persistence methods
with different kinds of messages, which improves system performance greatly. The strategy also utilizes
daemon threads to reduce its influence to the system. The strategy has been implemented in our Java
Message Service conformed system, ONCEAS MQ.

1 INTRODUCTION

Message oriented middleware was used widely for
its loosely coupled nature. It provides three
decoupling dimensions (Eugster et al., 2003): time
decoupling, space decoupling and control
decoupling. Many industrial specifications including
CORBA Notification Service (OMG, 2002) and Java
Message Service (JMS) (Sun Microsystems, 2002)
have been proposed due to the population of
message oriented middleware. Among the
specifications, JMS Specification has been
supported widely by industrial products due to the
popularity of Java Platform. There are lots of famous
products conforming to JMS specification, including
Websphere MQ (IBM, 2004), Weblogic (BEA
Systems, 2003) and JBossMQ (JBoss Group, 2004).

JMS provides two kinds of communication
paradigms: PointToPoint and Publish/Subscribe.
JMS summarizing message queue systems and
publish/subscribe systems provides wealthy
operations and related semantics for us to build
powerful applications.

JMS provides two persistence modes to transmit
messages: PERSISTENT and NON_PERSISTENT.
With NON_PERSISTENT mode the message may
be lost due to system crash, but we can get a better
throughput. While with PERSISTENT mode, each

message will be logged into persistence store for
reliability and will not be lost on system failures.

Many crucial enterprise applications, such as
online stock trade system and working flow system,
require high reliability. Persistence mechanism is
employed to implement reliability, which usually
logs messages into persistence store based on
database or file system. Persistence operations are
usually costly because of involved database or file
operations. Therefore these operations influence
system performance greatly. Using message cache is
an effective approach to improve system
performance.

We introduce subscriptions with additional
information indicates whether the message consumer
will get required messages periodically. In our
approach, these messages will be prefetched to the
cache. We use daemon thread to do the prefetching
tasks to reduce the influence of the prefetching
action.

The rest of the paper is organized as follows:
section 2 introduces the background and the
performance problem. Section 3 discusses the
optimization strategy and implementation. Section 4
gives our evaluation. Section 5 reviews the related
works. And we conclude the paper in the last
section.

520
Guo X., Ding X., Zhong H. and Li J. (2006).
A NEW PERFORMANCE OPTIMIZATION STRATEGY FOR JAVA MESSAGE SERVICE SYSTEM.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 520-523
DOI: 10.5220/0002498005200523
Copyright c© SciTePress

Figure 1: Architecture of OnceAS MQ.

2 BACKGROUND

2.1 OnceAS MQ

OnceAS MQ is a message system conforms to JMS
specification v1.1. It has several advanced features
including:
– Supporting both PointToPoint and

Publish/Subscribe communication paradigms.
– Supporting multiple communication protocols.
– Supporting multiple persistence policies,

including policy based on database and policy on
file system.

The architecture of OnceAS MQ is illustrated in
Fig. 1. As we can observe from Fig. 1, OnceAS MQ
was mainly composed by several components.
CommunicationManager is responsible for the
communication between clients and server;
LogManager records all of the communication
events and message processing events;
SecurityManger is responsible for security issues,
such as authentication and authorization;
DestinationManager manages all destinations in the
system, including Queues and Topics;
MessageCache is the caching component for
improving performance, which will be introduced
later in detail; PersistenceManager takes charge of
persistence issues.

2.2 Reliability Guarantee

To achieve a reliable message transferring, we need
combine both a reasonable persistence mechanism
and a reasonable transferring protocol. In ONCEAS
MQ, following protocol shown in Fig. 2 was
employed to guarantee the reliability of transferring:
1. The message producer sends its message to the

message broker.
2. The message was stored into a persistence media.
3. The message broker sends an acknowledge

message to the message producer.
4. The consumer fetches the message from the

message broker.
5. The consumer sends an acknowledge message to

the message broker.
6. The message broker deletes the message from

the persistence media.
We import the caching service for a better

performance, which was managed by MessageCache
in OnceAS MQ. The cache is stored in RAM for a
higher speed than in persistence store. However,
RAM is a scarce resource in system. So some
policies must be applied to utilize it more effectively.

3 OPTIMIZATION STRATEGY
AND IMPLEMENTATION

In many applications based on message systems, for
example online stock trade system, data sampling
system and weather information system, message
consumers get messages periodically. But message
system does not know whether a message consumer
will get messages periodically or not because its
submitted subscription has no information about
that. Our System allows message consumers to
declare whether they will get specific messages
periodically. Some applications may want message
system to push messages to them. The push manner
requires message consumer to register a
MessageListener and usually requires message
system to maintain a connection between message
system and message consumer. This manner will be
costly and the applications usually pull messages
from message system to get a better performance.

We mainly focus on performance optimization of
the pull manner. We also find that when a message
consumer gets a message it usually will also get
some related messages. We introduce extended
subscription to improve performance, which is with
additional information indicates whether required
messages will be consumed periodically.

Figure 2: Architecture of OnceAS MQ with a cache.

A NEW PERFORMANCE OPTIMIZATION STRATEGY FOR JAVA MESSAGE SERVICE SYSTEM

521

Message system decides whether a message will
be got from the system periodically through the
following two ways:
– Consumers declare the feature explicitly in their

subscriptions. This can be done by adding extra
information to the parameter of createConsumer()
or createDurableSubscriber() operation.

– System can use a heuristic method to predict
consumers’ periodically getting actions. This is
useful when there are a lot of periodical getting
actions but consumers have not declared their
periodical actions.

Our approach is to prefetch periodical messages
into the message cache just before the time
consumers get them. We must decide which
messages to be prefetched and when do the
prefetching tasks, as we will discuss below.

3.1 Message Prefetching

Due to the limited size of the cache, we should only
cache messages which are most likely recently used.
Our approach is based on the LRU algorithm
considering the periodical getting actions of
consumers and message relations.

When a message producer sends a message to
message system, the message will be logged directly
into the persistence store if it will not be used
recently according to subscription information.
Otherwise the message will be put into the cache. If
the cache is full, a message less important in the
cache will be deleted from the cache so that the new
message can be put into the cache. The importance
of a message is decided by the following factors:
message size, message priority, reside time in the
cache and user defined factors. We can use
administration tool to configure these factors.

Suppose a message will be got at time T
according to subscription information, we must
prefetch the message to the cache before time T.
Related messages will also be prefetched to the
cache because they may also be got from the system.
We must decide the time to begin to prefetch
messages. If we prefetch messages too early, the
cache will be used unnecessarily. We must estimate
the time Tprefetch, time used in getting messages from
the persistence store to the cache. We can begin the
prefetching tasks at time T - Tprefetch so that messages
will not reside in the cache unnecessarily.

But doing this leads to another problem. At time
T - Tprefetch there may be a lots of messages need to
be prefetched. This will cause the system too busy
and subsequently decrease system performance.
Therefore we should do the prefetching tasks

without causing the system too busy. We can do
prefetch messages at a time before time T - Tprefetch.
The performance is also influenced due to doing all
the prefetching tasks as one unit as shown in Fig. 3.

To reduce the influence of prefetching to other
system activities, the prefetching tasks is divided
into many pieces in our approach, as shown in Fig.
3.

We also use daemon threads to do the prefetching
tasks so that the prefetching action can be done at
time system is not busy. However, we can not
predicate when daemon thread will run. Thus we can
not guarantee that the prefetching tasks will be
finished before consumer gets the messages.

In ONCEAS MQ, we proposed a new approach,
which does the prefetching tasks in system idle time
using daemon thread to some extent and can also
guarantee the tasks will be finished before the time
consumer gets messages from the system.

We divide the tasks into n parts, and all the work
must be done in a time interval Tprefetch before time T,
the time consumer gets messages from the system.
We delegate daemon thread to do the tasks, but if the
daemon thread hasn’t finished x% of the tasks when
the time elapsed x%, the system will do the
prefetching tasks using another non daemon thread
until x% of all the work finished.

3.2 Average Occupying Time in the
Cache

When a message has been sent to the system,
whether put it to the cache or just log it into the
persistence store is decided by the interval between
the time the message has been sent to the system and
the time the consumer gets it out from the system.
We must decide the value of the interval. In our
approach we define the value as the average
occupying time of a message in the cache. Suppose
the cache size is S, in a time interval of T, N
messages have been got out. The average occupying
time of a message is T*S/N. If a message will

Figure 3: Diffrent prefetching methods.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

522

occupy the cache no longer than the interval value it
will be put into the cache. Otherwise we just log it
into the persistence store.

4 EVALUATION

We deploy an online stock trade application on
ONCEAS MQ system. In the online stock trade
application, message producers will send stock
information wrapped in messages to the system
while message consumers will subscribe messages
they interest in.

We give a simulating application that has 30
message consumers interested in different
information of 100 stocks. The consumers get
messages every 15 minutes on different time. The
evaluation result is shown in Fig. 4.

From Fig. 4, we can see that by applying
subscriptions with periodical information, we got an
average performance improvement of about 30% for
the consumers. By dividing prefetching tasks into
pieces, we get another performance improvement of
about 11% than doing the prefetching tasks as one
unit.

5 RELATED WORK

Considerable research has been done in using cache
to improve system performance in many areas,
including general purpose application level cache
(Iyengar, 1997), web cache (Li et al., 2000) and
caching performance of Java platform (Rajan, 2002).
Java Temporary Cache (JCache) (Sun Microsystems,
2001) has been proposed by Oracle and provides a
standard set of APIs and semantics that are the basis
for most caching behaviours. But there is few work
considering how to improve performance of
applications based on messaging systems. JBoss MQ
has implemented a message cache simply based on
the LRU algorithm with no consideration of
characteristics of the messaging system. BEA

Weblogic and IBM Websphere MQ have no
consideration of characteristics of subscriptions. Our
approach allows the user to use subscriptions with
periodical information and apply corresponding
optimization strategy to improve system
performance.

6 CONCLUSION

This paper proposed optimization strategy to
improve performance of message system with
message cache. We extend subscriptions with
periodical information and prefetch messages to the
cache efficiently. Our approach does the prefetching
tasks using daemon thread as likely as possible. To
reduce the influence of the prefetching action to the
system, we split prefetching tasks into pieces and do
them at different time.
 In future research, we will incorporate the
features of Java Virtue Machine into our strategy to
achieve further improvement. Caching
Optimizations in distributed environment will be
studied. We will also focus on tuning of difference
parameters of the caching system, such as cache
size, number of pieces and number of threads.

REFERENCES

BEA Systems, 2003. Programming WebLogic JMS.
 http://e-docs.bea.com/wls/docs81/jms/.
Eugster, P., Felber, P., Guerraoui, R. and Kermarrec, A.-M.

The many faces of publish/subscribe. ACM Computing
Surveys, 35(2), pages 114 – 131, Jun. 2003.

IBM, 2004. Websphere MQ.
http://www.ibm.com/software/ts/mqseries/.
Iyengar, A. Design and Performance of a General-Purpose

Software Cache. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems,
December 1997.

JBoss Group, 2004. JBoss MQ.
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMQ.
Li Fan, Pei Cao, Jussara Almeida, Andrei Broder.

Summary Cache: A Scalable Wide-Area Web Cache
Sharing Protocol. IEEE/ACM Transactions on
Networking, 8(3), pages 281 – 293, 2000.

OMG, 2002. CORBA Notification Service specification
version 1.0.1. http://www.omg.org/corba.

Rajan, A., 2002. A Study of Cache Performance in Java
Virtual Machines, Master’s Thesis, University of
Texas at Austin.

Sun Microsystems, 2001. JCache: Java Temporary
Caching API. http://www.jcp.org/en/jsr/detail?id=107.

Sun Microsystems, 2002. Java Message Service (JMS)
API Specification. http://java.sun.com/products/jms/.

0
50
100
150
200
250
300
350

1 25 50 75 100

no optimization

prefetch in one block

prefetch task into pieces

number of conconrent clients

 a
ve

ra
ge

 r
ec

ei
ve

d
m

es
sa

ge
s/

se
c

Figure 4: Evaluation Results using different methods.

A NEW PERFORMANCE OPTIMIZATION STRATEGY FOR JAVA MESSAGE SERVICE SYSTEM

523

