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Abstract. Choices in business processes are often based on the process history
saved as a log-file listing events and their time stamps. In this paper we intro-
duce a finite-path variant of the timed propositional logics with past for speci-
fying guards in business process models. The novelty is due to the introduction
of boundary pointstart and now corresponding to the starting and current ob-
servation points. Reasoning in presence of boundary points requires three-valued
logics as one needs to distinguish between temporal formulas that hold, those
that do not hold and “unknown” ones corresponding to “open cases”. Finally, we
extend a sub-language of the logics to take uncertainty into account.

1 Introduction

In this paper we consider case management systems, an important and generic class of
Enterprise Information Systems. An important part of a case management system is a
workflow management system (WfMS) that takes care of the distribution of work to
agents, which can be either human or application software.

Routing decisions taken by a WfMS can depend on previous observations. For in-
stance, a bank can propose more interesting loan conditions to those customers who
paid off the previous loans on time. We call processes executed by such a M&tdey-
dependent processes. Importance of history-based decisions in workflow management
has been recognised in the past [10, 12]. In history-dependent processes actions can be
guarded by conditions on the process history. In this paper we propose a temporal logic
for specifyinghistory-based guards models of history-dependent processes that we
call LogLogics.

At any given moment of time, history is a finite object. The inherent incompleteness
of our observations should be taken into account. Consider for example a guard saying
that every bill was paid within four weeks where we would like to obtaire in case
every bill was indeed paid within four weekglseif there is a bill that was not paid
within four weeks andinknownin case there is a bill issued not later than four weeks
ago which is not paid yet, while the bills issued more than four weeks ago are paid on
time. In some cases the decision on the continuation of the process is made giving the
benefit of the doubt, i.einknowrleads to the same choicetase in other cases it leads
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to the same choice dalse and in a number of cases evaluating a guardrtknown
leads to enabling a special procedure to handle the case.

A number of three-valued (untimed) temporal logics, inahgdL-TL, have been
proposed by Nakamura [9] and investigated in [8]. Similady -TL, if a LogLogics
formula is evaluated ttrue or falseat a given time point, this value cannot be changed
in the future (i.e., whenowincreases), whilenknowrncan becomérue or false Unlike
L-TL, not everyLogLogicsformula has to be eventually evaluatedtee or false In-
deed, as we are going to see, there exgfl ogicsformulasg such thatJe will always
be evaluated tanknown

Since history is a finite linear sequence of timed events, evssider linear timed
temporal logics (defined on infinite sequences) that hava tieesubject of intensive
research in the past, starting with [1-3, 6]. More recenks@n the subject include [4,
13]. Due to the nature of history we need to consider not oature but also past
temporal operators. Therefore, we have chosen to extered {imopositional logic with
past (TPTL+Past) [1-3].

An alternative to TPTL+Past might have been the metric titogdt (MTL) [6, 13].
The reasons for opting for TPTL+Past rather than for MTL avefold. First of all,
TPTL is “more temporal”: it uses real clocks to express timedstraints. This allows
to express such common for EIS constraints as “epemtcurred between January 1,
2005 and January 1, 2006”. Unlike TPTL, MTL reasons in terfrdistances between
events. Hence, in order to express the same constraint veetoértroduce a special
eventq that occurred on January 1, 2005 and require fifatlowed g within one year.
Second, as recently shown in [4] TPTL+Past is strictly magpressive than MTL+Past.

Two different semantics for timed temporal logics can bestgred: point-wise
semantics, where formulas are evaluated over discreteesegs of timed events, and
interval-based semantics, where formulas are evaluadoowntinuous time line [11].
We believe that discrete sequences of timed events arer Isefted for specifying
history-based guards in business processes and we cheqgseitit-wise semantics.

Although processes we consider are in general not probabifirocesses and his-
tory is not always a reliable source for forecasting thereiteehaviour (the client who
always paid his bills on time can suddenly go bankrupt)jstteal data on history are
still widely used to make choices. Following the observadiof [5], we define a num-
ber of guard patterns for our logic. For these patterns wenekbur framework by
introducing certainty values that allow us to check, fotémge, whether issued bills
paid on time in 95% of cases.

2 LogLogics

In this section we preseritoglLogics LogLogicsaims at the modelling of history-
dependent processes based on log-files. Log-files usuallydeseries of events such
as “withdraw 100 euro” or “drug A has been administered”. ldwer, when making

decisions, we sometimes would like to reason on statesrrdtae on events, e.g. “the
balance is negative” or “the temperature is higher than 3fed=s". Therefore, given
an initial state and a series of events presented in a logxteae the log by replacing

events by pairge,s) wheree is an event and is a state after the occurrenceeffFor
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the initial state, the event is empty. For the sake of redithabie refer to these pairs as
states The set of all states is denot&d

LogLogicsis an adaptation of the Timed Propositional Temporal Logtbwast [1,
4] to finite sequences of events limited by two special timimtgostart andnow. The
start point refers to the beginning of observations rather thathéoabsolute begin.
While such an absolute begin is well-suited for modelling ble@aviour of software
systems that have been invoked at some moment of time, gssalepropriate for busi-
ness processes, where the observations could be avaitatderécent period of time
only. Similarly,nowis the last time point where observations are available.

Due to the finiteness of observations, the values of trathtitemporal operators can
become unknown. Consider, for instance, a predipateat istrue is a given apple is
green. However, as some apples change colour with timeattéhfat during the entire
period of observations the apple stayed green does notsagdamply that “always
green”is true. Nor, in fact does it imply that “always greémnfalse. In such a situation
we would like to say that the value of “always green” is unknowo formalise this
intuition we make use of the three-valued logics with trudituesfalse unknownand
true such thafalse< unknown< true, min(S) and maxS) are defined for a s&with
respect to<, and

‘_| def

(XAY) = min{x,y}
false true .
unknownunknown (Ix:x € S:@(x)) :::max{(p(x) |xe S}
true  |false (Vx:x € S:gx)) = min{g(x) | X € S}

Next we introduce the syntax @fogLogics We assume that a countable Bebf
atomic prepositions and a countable getf clock variables are given. ThehoglLog-
ics-formulasg are built from atomic propositions, boolean connectivesitit” U and
“since” § operators, clock constraints and clock resets. IntuitivglZi@, means that at
some point of time in the futurg, holds and till therp; holds. Similarly,@. 5S¢ means
that at some point of time in the pagt holds and from that point onwards holds.
Finally, clock resek.@, also known as “freeze”, sets the value of clodo the current
time.

Formally, LogLogicsformulas@ are inductively defined agi:= p|x~y-+c| X~
c| x.@| false| unknown —@| @ A @ | @1 UP | ;.S@, wherex,y eV, pe P, ~is one
of <,>,<,>,=,+# andc € N. We also assume that the abbreviations>, <, true are
defined as usual.

In order to define the formal semanticsladglLogicswe introduce time sequences
and timed words.

Definition 1. A time sequence= 1gT1...T, is a finite sequence of timesc N, i € N
such thatr; < t;,1 for alli.

A state sequenae= 0p01 ...0p, is a finite sequence of statese 2, i € N. For any
atomic proposition e P and any i€ {0,...,n}, g; F p is either true or false.

A finite timed word = (g, 1) is a pair consisting of a state sequernz@nd a time
sequence of the same length n. We also write a timed word as a sequengairsf
(00,70) ... (On,Tn).
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We assume thadtart, nowe N are two special points such thetart < now. Using
the notion of timed state sequences we can introduce thergiesaf LoglLogics The
semantics of TPTL+Past has to be adapted to stéet andnowinto account. For the
sake of simplicity, we define the semantics in the same waydbne for infinite timed
words. For that purpose, for any finite timed wdtktart, Tstart) - - - (Onow, Tnow) we
define a corresponding infinite timed word (Ostart_1, Tstart-1), (Ostart, Tstart) - - -
(Onow, Tnow), (Onows-1, Tnows1) - - - Such thatti = tnow+ (i — now) for i > nowand
Ti = Tstart+ (i — start) for i < start It should be noted that for a given finite timed
word there exist infinitely many corresponding infinite tongords. Moreoverg; - p
is defined to beinknowrfor anyp € P, i ¢ {start ..., now}.

Definition 2. Let p be an infinite timed word. Letd¢ Z anda : V — R be a partial
valuation for the clock variables. Then

— (p,i,0) = pis equal tog; + p.

(p.i,a)
( ) = unknownis alwaysunknown
— (p,i,a) =x~ cis trueifa(x) ~ ¢, and false, otherwise;
( ) Ex~y+cistrueifa(x) ~ a(y) +c, and false, otherwise;
( ) |E x.@is equivalent tap,i,a[x+— Tj]) E @
<p7i7a> ':_'(pis
o trueif (p,i,a) = @isfalse
o false if(p,i,a) = @is true ;
e unknown, otherwise;
- <pviaa> ':(pl/\(pz is
e trueif (p,i,a) =@ and(p,i,a) = @, are true;
o false if(p,i,a) = @ or (p,i,a) = @ is false
e unknown, otherwise;
— (p,i,0) E @U@ is equivalent todj : i < j: ({p,]J,0) E@AVK:i<k<j:
(p,k,a) = @);
— {p,i,0) E@S@isequivalenttddj: j<i:({(p,j,0) E@AVK: j<k:(p,koa)E
@);

We say that d ogLogicsformula isclosedif any occurrence of a clock variable
is in the scope of a freeze operator™ For instancex.(x > y+ 1A p) is not a closed
formula sincey does not appear in the scope gf"* One can show that the truth value of
a closed.oglLogicsformula is completely defined by the timed word and the timia
i.e., if @is a closed.ogLogicsformula, then(p,i,a) = @is equivalent tdp, i, B) = ofor
any timed wordp, time pointi and clock valuationst andf3. From here on we restrict
our attention to closetogLogicsformulas and writeg = @ wheneverp,now &) = @
whereeg is the empty valuation function.

Intuitively, (p,i,0) &= @ Uq, is evaluated tdrue in the same cases as in the tra-
ditional two-valued logics. It is evaluated falsewhen eithenp, is evaluated tdalse
everywhere starting from or, whenevexy, is evaluated tainknownor true, ¢; gets
evaluated tdalsebefore. In particular{p,i,a) = pU unknowrevaluates tdalseif and
onlyif oj - pisfalsefor somej < i. In all other casesp, i, a) = pUunknowrevaluates
to unknown
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It is evident that although for a given finite timed word theseést infinitely many
infinite timed words corresponding to it, the truth value dbglLogicsformula depends
only on the finite timed word itself:

Lemma 1. Let (Ostart, Tstart) - - - (Onow, Tnow) be a finite timed word and lgt’ =

; (O-/start_”]_aTS'[artfl)a (Gstart,Tstart)~--(UnowyTHOW)’(Uhoml}ﬂnovwl)--~ and let
p"=...(Ostart 1-Tstart-1), (Ostart, Tstart) - - - (Gnow; Tnow), (Gnows1: Tnows1) - - - be
two corresponding infinite timed words. Thg = @is equivalent t” = ¢ for any
LogLogics-formulap.

Based on the temporal operatgfsand U we introduce additional temporal op-
erators “eventually” ¢¢ := trueUq), “always in the future” Qg := —(0—@)), “once
in the past” @ := trueSg) and “always in the past™ := —(&—@)). The following
proposition provides a more direct way to evaluatglLogicsformulas using the four
additional temporal operators.

Proposition 1. The following statements hold:

<p,|,cx> E Qgis equivalenttadj i < jA(p,j,a) =
— {p,i,0) =0@is equivalenttovj i > jV{(p,j,a) = ¢
<p,|,0(> = o@is equivalenttdj j <iA{p,j,a) =
— (p,i,0) = Eois equivalenttorj j > iV (p,j,a) =@

Example 1.Let us evaluate the formul@x.(p=- Qy.(qAYy < x+4)) on the finite timed

word p = ((0070)7 (Gla 1)a (027 1)7 (0372)7 (04a S)a (057 8)) such thastart= 0, now= 5,

o; - pistruefor i =1 andi = 4, andfalsefor i € {0,2,3,5}; oj - q is truefori = 3

andfalsefori € {0,1,2,4,5} (see Fig. 1). Intuitively, this formula says that wheneger

was encountered in the pagtwas encountered not later than four time units after that.
We need to evaluate this formula with respectgob, €). First, we observe that we

need to minimis€p,i,&) = x.(p= 0y.(qAy < x+4)) for all i <5. This is equivalent

to minimising the value ofp,i, [x+— Ti]) = p= 0y.(qAy < x+4) fori < 5. Fori =

0,2,3,5, (p,i,[x— Ti]) = pisfalseand therefore the implication teue. The cases left

are:

—-i=4.
Sinceoy b pistrue, the truth value of the implication coincides with the truttiue
of (p,4,[x— 5]) = Oy.(qAYy < x+4). To determine the latter value we need to
maximise the value ofp, j, [x— 5]) = y.(QAY < x+4) for j > 4, i.e., the value of
(P, j,x—5,y—T1j]) = (gAY < x+4). For eachj > 4 the value of the conjunction

p uftfftfuu
i 012345
T 011258
q uf fftffuu

Fig. 1. Finite timed word.
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p uftff ffuu
i 012345
Ti 011258
qg uf fftf fuu

Fig. 2. Finite timed word.

is the smaller value ofp, j,[x— 5,y — T1j]) =qand(p, j,[x— 5y—Tj]) Fy <

X+ 4.

If j=4o0rj=5,0;F qisfalseand, hence, the value of the conjunction always
coincides with it. If j > 6, oj - g is unknown Recall that sincg >= now, Tj =

8+ (j—5).If j =6, thent; =9 and(p, j,[x— 5,y— 1j]) [y < x+4 evaluates to
true. Hence, the value of the conjunction in this casangnownIf j > 6,1; > 9
and(p, j,[x— 5,y 1;]) =y < x+4 evaluates tdalse Hence, the smaller value
in this case idalse To determine the value of the implication fio= 4 we should
take the maximal value, which imknown obtained forj = 6.

— i =1. As above, since; - pis true, the truth value of the implication coincides
with the truth value of the maximum (gn> 1) of the smaller of the two following
values:(p, j,[x— Ly~ 1j]) =Eqand(p, j,[x— Ly—T1j]) Ey < x+4.

If j€{1,2,4,5}, theno; I- g is falsg and so is the value of the conjunction. If
j >6thentj =15+ (j—5),i.e.,Tj > 8+1. Hencep, j,x— Ly—T1j]) Ey <
X+ 4 evaluates tdalseand the same is true for the conjunction. Finally, fet 3,

0j Fqistrueandt; = 2 < 14 4. Hence, both conjuncts evaluatettoe and the
conjunction as well. Hence, the maximal valugrige, (p, 1, [x+— 1]) = Oy.(qAy <
X+ 4) evaluates taérue and the truth value of the implicationtisie.

— Finally, consider the cade< 0. In this caseo; - p evaluates tainknown Hence,
the value of the implication is eith@enknownor true.

It should be noted that we do not need to complete the analysie last case, as to
find the truth value of the original formula, we need to talketmallest value obtained.
This value isunknownand it is obtained for = 4. O

Example 1 also explains the true meaninginknown The formula is evaluated to
unknowndue to the behaviour on the boundaries of the observatiareseg. Consider
the finite timed word in Fig. 2 which differs from the one frongFL only fori = 4. One
would expect that the response property from Example 1 isieied to true, but due to
unknownvalues beforstart it still be unknown In such a case one might like to exclude
the interval beforstartand/or aftenowfrom the consideration. The formulation of the
response property that givestrue in case allp are followed byg within 4 time units,
unknownin case there are songewithin the distance 4 fromowthat are not followed
by q (yet) and all othep are followed byg within 4 time units, andalsein case there are
somep farther than 4 units fromownot followed byg can be formulated as following:

@ =Ex(X<TstartVX> thowV (p= OY.(QAY < X+ 4))) (€N
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This formula is evaluated tonknownfor the word from Fig. 1 and ttrue for the word
from Fig. 2.

Since similar restrictions turn out to be useful for expimgsnteresting business
properties, we introduce the following short-hand notatio

Ooamx.e(x) = def . (X < Tstart VX > TnowV @(X))
OgtarX-@(X) d_Ef <>X (X < Tstart VX > TnowV @(X))
EQ{’a"p’tx.cp(x) " . (X < Tstart VX > TnowV @(X))

ooX.@(X) def OX.(X < Tstart VX > TnowV QX))

Subscripts and superscripts of boxes and diamonds can lieedmihen only one of
boundaries is of interest. Using the short-hand notatioméde (1) can be written as

Cldarx- (P = OY.(QAY < X+4)). 2

Lemma 2. Let a restricted_ogLogicsformulasy be inductively defined asph := p|
x~y+c|x~c|xy|false| | Y1 AWz | Oggnd | Eprd | Osand | © sand, where
Xy €V, peP,~isone of<,> <, > = +# and ce N. Thenp* = Y is evaluated to
true or false for any extensigpi* of a finite timed worg .

3 Typical Guards of Interest

Dwyeret al.[5] have identified a number of property specification patidor software
verification. In this section we analogously considegLogicsguard specification pat-
terns for business processes.

Occurrence patterns. The first pattern concerns the occurrence of a certain desire
event, or dually, the absence of a certain undesirable elrettie most general form
this pattern requires that in a given scope a given eventre@uleast and at mosb
times. In particular, ib = 0, the event does not occur at all, and #quals the number
of time points in a scope, the event occurs through the scope.

Occurrence. For instance, we would like to check that the software lieehas been
renewed in 2005. To encode this property we wgite(pAx > 'January 1, 2005\ x <
'December 31, 2003; wherep stands for the licence renewal. In general, this pattern
has the following form® x.(@A X > t1 AX < t2). The valueunknownis returned in case
[t1,to] Z [start,now.

Bounded OccurrenceThis pattern is similar to the previous one but requires tager
event to occur at leagttimes within a scope:
OX1.(QAXL > i AXg <t A
X0 (PAX2 >t AXo <O AXp £ X1 A ...
OXe (PAX > i AX ST AXi £ XL A A Xk 7 Xi1))
Variants of this pattern require the event to occur exacty at mostk times. Using

this pattern we can express the demand that the employday bas been increased
at least three times between January 1, 2000 and Januar9d., 20
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Absence.This pattern is dual to the occurrence pattern and can beewad-=1x. (—@(x)
VX < 11 VX > to), whereg denotes an event undesired between time poirgadt;. In
this way we can check that during the last year the daily neserever fell beyond a
given threshold.

Universality. This pattern allows to express properties that should Huldugh the
period fromty to to: EX.(@(X) VX <t VX > to).

Ordering patterns. Ordering patterns can be constructed from the occurreriterps.
by demanding that one of them occurs in a scope within a tioteo$lanother one.

Bounded responseThis extremely common pattern (an instance of which we con-
sidered in Example 1) allows us to express such guards asy“eieis paid within

30 days”. In general, the pattern has the following fde2nX. ((@1(X) A TH (X)) =
Qy.(m(X) ATR(X,Y))), wherety and T, are predicates on the clock values. Require-
ments on business processes typically restrict the valydrom above.

Precedence.The precedence pattern requires that any occurrenpasopreceded by
an occurrence af within a scopeEIx.((@1(x) ATu(X)) = V.(¢(X) ATR(X,Y))), where
1y andTp, are predicates on the clock values. For instance, we fotmalguard saying
that every failure is preceded by some specific event.

Compound patterns. Finally, compound patterns can be constructed from the et
above by means of conjunction.

4 Introducing Statistical Values

From here on we restrict our attention to temporal formutasstructed according to
patterns discussed in Section 3. Furthermore, we assurmhththéormulas have been
rewritten to the negation normal form, i.e. negation is &gapto atomic propositions
only.

Now we would like to distinguish between propositions thlabld almost all the
time” and those that “almost never hold”. To this end we redethe semantics as
function® from formulas tdo, 1], where 0 corresponds to falsity and 1 to truth. This will
allow us to define guards that take into account statistigaéets of history rather than
a presence or universality of events. For instance, a bampgpose more interesting
loans to those customers who pay off the previous loansme-iti at least 95% of the
cases. In the current paper we present the refined semantjcoo pattern instances
where all formulas are in fact atomic propositions.

To this end we need to determif@ 1] truth value of a formulap with respect to the
given timed wordp, indexi and clock valuatiom.
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Occurrence patternsOccurrence and bounded occurrence are always mapped either
to 0 or to 1 according to the traditional semantics.
The truth value of(p,i,a) = Ox.(pAX >ty AX < tp) for universality formulas is
defined as
Z[oikp]:true(TiJrl - Ti)
min{nowt,} — max{start,t;}

For absence, replade; - p] = truein the formula above byo; - p] = false The
formula says which part of the period of interest the propstayed true/false.

Ordering patterns. Since the sub-formulas are atomic prepositiomgx,y) has the
following form Timin(X) <y < Thax(X). If one of the inequalities is ommitted we take
the value ofx instead. Using this observation we define the truth valugpdfa) = @
for bounded response and precedence as

Zrp(i,i,p) G
|{J | qurp(i, ja p)}‘ '

whereWpp(i, , p) d:8f(i > jAi > startA j < nowA Ty (T)) Ao F p| =true), anddj is
defined as
1 if Im:: Eprp(j, M Q) Astart< m < now
0 if =3Im:: Ebrp(jy m, q) A Tstart < T[min<Tj)/\
T[rnax(Tj) < Thow
(Tmax(Tj) —Tnow) +(Tstart—Tin(T} ) otherwise

Timax(Tj)—Tmin(Tj)

while Eprp(j, m,q) d:ef(m: ] AThnin(Tj) < Tm < Thnax(Tj) A [Om 0] =true). For bounded
response- is >, for precedencer is <. If a restricted form of a pattern is usesfart <
m < nowshould be added to the definition &fip(j, m,q).

The value obtained indicates in which percentage of caseprthperty of interest
holds.

Compound formuladruth valued of compound formulas is determined from the truth
values of the sub-formulas according to the following rule:

8((p,i,a) = o Ag2) E'8((p.i,a) = 1) +6((p,i,a) = @)

Example 2.Let @ be Eganx.(p = Oy.(gAYy < x+4)) andp, startandnowas in Ex-
ample 1. This formula is an instance of the bounded respoaiserp and it is already
normalised, so we can compute the corresponding truth value

Then, for givemow, Yy holds forj = 1 andj = 4. Hence, the denominator is equal
to 2. If j = 1 there existsn= 3 such thagpp(1,m,q) andstart < m < now. Therefore,
{1 =1.If j =4 there is no sucm. However,TinaxTj), i.e., 5+4 = 9 is greater than
Tnows and the third case of the definition &f applies. Hencels = %—indeed three
quarters of the expected “responce period” have passedm&tiging these observa-

tions we conclude that the truth valuepf= @is —* = 3. O
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5 Conclusion

In this paper we have proposed a logics for guards in modelsistbry-dependent
processes. Since at any given moment of time informatiomitefand inherently in-
complete, we had to adapt existing timed temporal logicschvhesulted in a three-
valued logicsLogLogics presented above. Moreover, we have shown how guard pat-
terns common for business processes can be expressed iogies &nd defined an
additional extension allowing to express certainty.ofLogicsformulas for these pat-
terns.

For the future work we consider creating a compositionakgalization of our ex-
tension of the logic with uncertainty that would be applieaio all formulas. We also
plan to create a simple textual language for working withtgras targeted on non-
specialists and to build a tool for checkihgglLogicsformulas on history logs. As
shown in [7], the complexity of checking whether a finite patbatisfies an LTL+P
formulad is O(Ju| x |¢|). Therefore the complexity of checking formulas of our logic
will not form an obstacle for applying it in practice.
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