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Abstract. Intrusion detection systems (IDS) suffer from a lack of scalability.
Alert correlation has been introduced to address this challenge and is generally
considered to be the major part of the solution. One of the steps in the correlation
process is the verification of alerts. We have identified the relationships and in-
teractions between correlation and verification. An overview of verification tests
proposed in literature is presented and refined. Our contribution is to integrate
these tests in an extensible generic framework for verification that enables fur-
ther experimentation. A proof-of-concept implementation is presented and a first
evaluation is made. We conclude that verification is a viable extension to the
intrusion detection process. Its effectiveness is highly dependent on contextual
information.

1 Introduction

The importance of computer security is increasing. Besides implementing security mea-
sures at the application level, operating system level and network level, there is also a
need for monitoring the protected infrastructure after deployment. This is what intrusion
detection systems (IDS) attempt to do: by monitoring local audit trails on a computer,
for example, host-based IDS attempt to detect local attacks. Network-based IDS, on the
other hand, attempt to detect attacks on the network they are monitoring.

In general, an IDS observes events and tries to detect signs of attacks. These attacks,
when successful, result in an intrusion. A correctly identified attack generates an alert,
called atrue positive. Conversely, the absence of an alert in situations where no attacks
are executed is atrue negative. IDS can make mistakes: an IDS can generate an alert
when no attack actually took place, this is afalse positive. False positives are generated
because of insufficiently strict defined rules in a misuse- or policy-based IDS, or an
insufficiently trained anomaly-based IDS, among others. The absence of an alert when
an attack did happen is afalse negative. Anon-relevant positive(or non-contextual
positive, [1]) is an alert generated because of an actual attack, but this attack could
never result in an intrusion, for example because the target is not vulnerable.

Intrusion detection systems are faced withfour basic problems(as stated in [2]) that
need to be solved in order to make intrusion detection more scalable:
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Too many alerts. IDS generate overwhelming amounts of alerts. Even in the case that
all alerts are correct (i.e. true positives), a deluge of low-level alerts severely de-
creases the usability of the IDS for the operator.

False and non-relevant positives.The alert stream contains a large fraction of false
alerts, both false and non-relevant positives.

Insufficient diagnostic information. The generated alerts are at a semantically low
level: they do not provide sufficient information to the administrator to allow him
to efficiently remedy the situation.

Low detection rate. The fourth concern is the detection rate, or false negative rate.
IDS still miss a fraction of the actual number of attacks, failing to generate alerts.

These problems, when combined, make it very easy to lose overview of what is
happening on the monitored infrastructure. While it is hard enough to try and get a
comprehensive overview of the current attacks and intrusions from a large amount of
low-level alerts containing lots of false and non-relevantpositives, the presence of false
negatives further complicate matters. For instance, some key attacks necessary to com-
prehend the complete attack strategy of the attacker might have been missed by the
IDS.

Another issue is the amount of IDS sensors. Using a single IDSquickly becomes
impossible for larger infrastructures. One host-based IDSreaches its limit when more
than one system needs to be protected, the visibility of a network-based IDS is limited
to the local network. However, simply deploying more IDS is no scalable solution, as
this generates an over-abundance of alerts. The research community has developed a
category of methods to counter these scalability problems,i.e. alert correlation.

Alert correlation has some problems of its own. False and non-relevant positives
have a negative impact on correlation algorithms, as they might give rise to the genera-
tion of non-existent attack scenario’s [1]. This is what alert verification tries to achieve:
it helps to improve the quality of alerts passed on to the later correlation steps. While
verification is not a complete solution by itself, it is an indispensable element of corre-
lation that has not been studied in full depth.

We have studied the interaction between correlation and verification, as well as
available methods proposed to verify alerts. The contribution of this paper lies in the
integration of verification approaches in a generic, extensible framework for alert veri-
fication that enables experimentation. By using different heuristics, the relevance of an
alert (i.e. is the alert a true positive) is verified. A proof-of-concept implementation of
the verification framework is presented and evaluated. Fromour preliminary results, we
conclude that verification is indeed a viable extension to the intrusion detection process.

The rest of this paper is structured as follows. First, a generic architecture for intru-
sion detection is presented in Section 2, introducing the processes of alert correlation
and verification. We then present a framework for alert verification in Section 3 and
a proof-of-concept implementation. We discuss the status of our and related work in
Section 4 and we conclude in Section 5.
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2 General Alert Correlation Architecture

In the first part of this section, a brief overview of an intrusion detection architecture is
presented. The correlation and verification components aresituated in this architecture.
In the second part of this section, the use of verification to counter the scalability issues
of intrusion detection is elaborated upon.

Fig. 1.Generic intrusion detection architecture, supporting verification and correlation.

A general intrusion detection architecture with verification and correlation compo-
nents, is shown in Fig. 1. This architecture is loosely basedon that presented in [1].
Events from the system being monitored are observed by different event generators.
The generators, low-level IDS, process these events looking for certain attack signa-
tures (in the case of misuse-based IDS) or anomalous behavior (in the case of anomaly-
based IDS). If attacks are detected, alerts are generated and passed to the normalization
component.

The normalization componentaccepts different alert formats from the heteroge-
neous sensors and outputs alerts in a normalized format — forexample, the Intrusion
Detection Message Exchange Format, IDMEF [3], which is an XML-based format to
represent intrusion detection alerts. These normalized alerts are passed to averification
engine. This component tries to verify the alerts by distinguishing true positives from
false and non-relevant ones, based on information from an asset database and probing
of the system being monitored.

The asset databasecontains information on the the system being monitored. This
information includes: the hosts being protected, servicesoffered, vulnerability informa-
tion, etc. It provides this information to the verification component and the correlation
component. Asset data may be manually entered into the database, or gathered auto-
matically through various processes such as network and vulnerability scans. This data
may also be updated by the verification component as a side effect of the verification of
alerts.

The verified alerts are then sent to the actual correlation engine. Alert correlation
is the process of grouping and conceptually reinterpretingintrusion detection alerts. It
accepts (low level) intrusion detection alerts, generatesgroups out of these alerts and
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can assign new meanings to these groups. The output is a lowernumber of alerts on
a higher semantic level (also calledmeta-alerts, [4, 1] e.a.). For example: independent
detections of strange network packets can be grouped and reinterpreted as one port scan.
A brief overview of correlation strategies is presented in Section 4.

The high-level alerts from the correlation component are then presented to the ad-
ministrator. Or, in the case of intrusion prevention systems that are able to actively react
to intrusions, the alerts can be fed to reactive components which then automatically
attempt to prevent the attack from resulting in an intrusion.

The correlation process, by presenting higher-level meta-alerts to the administrator
in stead of low-level sensor alerts, reduces the amount of alerts and is able to com-
plement them with diagnostic information. Some correlation methods are even able to
compensate for false negatives, by reasoning about attacksthat might have been missed
by the IDS [5]. However, as mentioned, false and non-relevant positives still have a
negative impact on the correlation results.

Verification, as an intelligent pre-processing filter in thealert correlation process,
separates false and non-relevant alerts from true positives, so that the actual correlation
algorithms are provided with true positives only (in the ideal case). By enhancing the
quality of the alert stream, it is a useful addition to every IDS: it helps to handle the
first two IDS scalability issues and improves correlation results. Alert verification is
not able to solve the other scalability problems, however. First of all, verification does
not change the conceptual level of alerts. The low-level input alerts remain at their low
semantic level. Verification is also unable to take false negatives into account. These
issues are handled by the correlation process.

Individual sensors are generally insufficiently aware of the context to decide if an at-
tack is likely to be real and could have resulted in an intrusion. The verification process,
using information from the asset database or by actively probing systems or the net-
work, is not, and can make this distinction. In principle, even more contextual informa-
tion, like the security policy of a company, could be incorporated to distinguish between
attacks that the company does not deem important (i.e. port scanning an outside firewall)
and attacks that are. In this context, verification can be used as a partial replacement for
a priori policy tuning of IDS1.

Verification is able to handle intentionally generated false alerts, generated on pur-
pose by an attacker.2 While all false alerts (both intentionally and unintentionally gen-
erated false positives, non-relevant positives) are detrimental to IDS, intentional alerts
should be especially avoided in intrusion prevention systems, as these systems are able
to actively try to prevent the attack from resulting in an intrusion. The prevention func-
tionality could be misused by an attacker to turn the IDS against legitimate users.

1 A priori policy tuning is the process of adjusting the configuration of an IDS, before deploy-
ment, to the security policy of an organization.

2 For example, if alerts are generated for port scans, an attacker couldmisuse nmap
(http://www.insecure.org/nmap/), a popular port scanner, to fake the originating address or
generate decoys (−S and−D options, respectively).
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3 Verification Framework

3.1 Overview

In this section we present a framework for alert verification: it accepts normalized ID-
MEF alerts, executes various verification tests and outputsthe same alerts with an added
plausibilityp. This is a floating point value (p ∈ [0, 1]) that expresses the level of confi-
dence in the alert:p = 0 is an indication that the alert is a non-relevant or false positive,
p = 1 suggests a true positive.

Fig. 2.The alert verification framework and implemented tests.

A high-level overview of the platform is depicted in Fig. 2. Normalized alerts (in
IDMEF-format) are accepted by theverification manager. The alerts are passed to vari-
oustest components. Each test component attempts to verify a single aspect of the alert
to measure the likelihood that it corresponds to a true positive and assigns a partial plau-
sibility to the alert. This partial plausibility is also a floating point value in the interval
[0, 1], but can be simply0 or 1 in the case of a boolean test. A test is not required to
produce relevant results in every situation. For example, the existence of vulnerabilities
can not be verified if the alert does not contain vulnerability references. In this case, a
test component is able to explicitly state that it is unable to verify the alert. A description
of the test components follows:

Sensor verification:the sensor verification test tries to verify the reliabilityof the sen-
sor that generated the alert. A sensor may be badly configuredor compromised. By ap-
plying anomaly detection methodologies on the behavior of the sensor and optionally
correlating these results with the behavior of other sensors, configuration problems or
misbehaving sensors can be detected. The test returns a partial plausibility approaching
0 for an unreliable sensor, or1 for a reliable one.

It is also possible to take into account the confidence an administrator has in a
sensor. For example, an administrator is able to express more trust in a hardened NIDS
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that has been carefully tuned. On the other hand, an experimental HIDS on a non-
hardened host will be less trusted. By combining a static measure of trust in each sensor,
and observing alerts of attacks that target the originatingsensor (taking into account
their plausibility), we derive a measure of confidence in theintegrity of the host of the
sensor and whether the sensor should be trusted.

Reachability check:this test attempts to check if the detected attack can reach the
target. If the asset database contains a model of the network, a passive check can be
made to ensure that the detected attack should be able to reach the intended target from
the point of detection, according to the model. This approach can filter out alerts of
attacks targeted at non-existing hosts.

The reachability check can also verify configurations of firewalls, proxies etc. to
ensure that the attack is able to reach the intended target. This info can be passively
gathered from the configuration of these devices, or actively obtained using tools such
asfirewalk(http://www.packetfactory.net/projects/firewalk/) among others, from the lo-
cation of the detecting sensor. In this test, the plausibility is discrete:p = 1 if the target
is reachable for the specified protocol and port, orp = 0 otherwise.

Vulnerability verification: an important facet to distinguish true positives from non-
relevant ones, is the vulnerability of the target to the detected attack. This test attempts
to verify just that. Vulnerability data can be obtained using vulnerability scanners such
asNessus(http://www.nessus.org/). This test also produces a discrete result:p = 1 if
the target is vulnerable,p = 0 otherwise.

Target check:the last test component attempts to verify the target of the detected attack.
Three aspects of the alert are verified: is the target host responding normally, are the
services offered by the target host responding normally andhave any related alerts been
detected?

The first two parts of the test check if the host is still responding, that all services that
should normally be provided are still responding as expected and that no new services
are found. The rationale behind this is that failed exploitssometimes crash a service or
even an entire host. When a host is compromised, however, usually back doors or illegal
services are installed. Information from the asset database is compared with results from
an nmap scan of the target: the services that the target should offer are compared with
those found. Anomalies result inp = 1, otherwisep = 0.

The third part of the test is able to verify if other, related,alerts have been detected.
In the ideal case, the verification platform has a database with preconditions for each
attack (similar to the pre- and post-condition based correlation approaches), so that
possible preludes to an attack can be taken into account whenverifying an alert cor-
responding to this attack. In our simplified approach, we only take the plausibility of
previous attacks targeted to the same host into consideration. If prior alerts with a high
plausibility have been detected, the maximum of this plausibility and the results of part
one and two of the test is returned.

Note that, although this test may benefit from the same information as certain cor-
relation approaches (a list with pre- and postconditions for each attack), the purpose
of this test is not to correlate alerts. The information can be used by the verification
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component to verify if all preconditions necessary for a certain attack have been ful-
filled, besides allowing the correlation of this attack withother alerts in the correlation
component.

The test results are passed to theresults manager. The results manager combines
these intermediate results using aresults algorithminto a single floating point value.
Two categories of tests can be considered: tests that validate necessary conditions (e.g.
reachability and vulnerability of the target) and tests that check other indications of pos-
sible falsehood or non-relevance of the alerts (e.g. compromise of the detecting sensor
or anomalous results from the target check). While the latterprovide extra contextual
information, the former should be satisfied. The asset database is updated with newly
gained asset information (from active scans by the verification tests, for example), in
thecontext update.

The framework is extensible in the following ways: first of all, new test components
can be added easily at runtime. An example of an extra test is mentioned in related work
(see Section 4). Another adjustable factor is the algorithmused to compute the final
plausibility of alerts. While some algorithms are already provided (return the minimum
or maximum of the results of the test components, compute a weighted average), new
algorithms can be easily implemented and added. A third extensible factor is the asset
database: new contextual information on the monitored infrastructure is added easily,
enabling a more contextually aware alert verification.

3.2 Proof-of-concept Implementation

We have implemented the platform in Java, using a MySQL assetdatabase, the Con-
nector/J JDBC implementation and Apache Xerces to parse IDMEF alerts. The correct
operation of the platform is validated in a test setup with some sample attacks. Multi-
ple approaches are possible to evaluate the correctness andefficiency of the verification
process, e.g. sets of off-line test data, like the DARPA sets3, deploying the verification
platform in a simulated environment or use it in a live test setup. The active nature of
certain tests excludes the use of off-line test data, however. Therefore, preliminary tests
of the framework have been performed in a test setup.

To illustrate our verification approach, test results of a sample alert are presented.
In our setup, a web server is protected by a firewall. Two network-based sensors (one
in front of the firewall and one behind it) and one host-based sensor on the web server
monitor the infrastructure and relay their alerts, in IDMEFformat, to the verification
platform. No further correlation is done. An alert is generated for a trinoo attack4. More
specifically: an attempt to contact a trinoo daemon is detected.

In the setup, the trinoo connection was blocked by a firewall protecting the web
server. Consequently, the target is marked as being unreachable for the attack and the
reachability test returns0. The confidence in the detecting sensor is0.7. No irregular-
ities are detected by a port scan of the target and no other alerts have been detected,

3 http://www.ll.mit.edu/IST/ideval/data/dataindex.html
4 Trinoo is a distributed denial-of-service attack. Trinoo daemons are installed on compromised

hosts. Afterward, a trinoo-master is able to remotely order these compromised hosts to execute
a denial-of-service attack against a specified target.
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Table 1.Verification results for the trinoo alert.

sensor target reachable vulnerable final result
p 0.7 0.0 0.0 NO RESULT 0.107

therefore the target check returns0. The vulnerability check does not produce results,
as the trinoo alert does not contain references to a vulnerability. A weighted combina-
tion of these results produces a final plausibility of0.107, marking this alert as being
likely false or non-relevant.

The quality of the results is highly dependent on the available asset information.
If no (or insufficient) asset information is available, alerts are automatically given a
high plausibility to prevent the system from marking true positives as false. Because of
this, it is still possible that false or non-relevant positives receive a plausibility that is
indistinguishable from true positives, limiting the usefulness of verifying these alerts.

4 Discussion and Related Work

One of the major problems of intrusion detection is, as mentioned in Section 1, the in-
ability of (simple) IDS to distinguish relevant alerts fromnon-relevant ones. In essence,
the IDS is insufficiently context-aware to make this distinction. Verification raises the
context-awareness of the intrusion detection process, by eliminating these non-relevant
alerts.

This context-awareness—extra information on the monitoredinfrastructure—is a
necessity to solve the intrusion detection scalability problems. The success of intrusion
detection is dependent on the quality of asset information,be it network topology infor-
mation, vulnerabilities etc. As we have seen, this information is used by the verification
and correlation components. Also, extra information on attacks, like their pre- and post-
conditions, is required for some verification tests and correlation methodologies.

As such, alert verification and correlation do not completely solve the intrusion
detection problems, but shift them to the gathering of accurate information on the pro-
tected infrastructure and possible attacks. The accuracy of intrusion detection is pro-
portional to the quality of this information. The verification framework allows to make
the trade-off between performance and quality of availablecontextual information for
the verification process in a centralized and configurable fashion: the asset data could
be updated reactively, in response to a request for verification of an alert. Conversely,
proactive scans could keep the asset information up-to-date at all times. In other situa-
tions, active scanning could be disabled altogether. The asset data could still be updated
by relying on passive techniques or information entered by the administrator.

Currently, there is no consensus on what the correlation process is and how it should
be implemented [1]. Multiple correlation strategies exist, for example: probabilistic
alert correlation [4], the STAT-framework [6], approachesdeveloped by Ning et al. [7,
5, 8], the CRIM-module of the MIRADOR project of the French defense department
[9] and statistical causality analysis [10]. A propositionfor a general correlation model
is made in [1].
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There is also no definitive answer to how verification should be performed. Ideas
mentioned in other works include vulnerability scanning [1], checking network topol-
ogy and firewall configurations [11, 1], verifying the behavior of the target host and
service [1], administrator preferences [4] and verification based on the absence of alerts
from other sensors that should have noticed the attack [2].

This last approach, as described in [2], uses a model of the network to infer and
compare two sets of IDS: the set of sensors that did detect theattack and those that
should have detected the attack, but did not—the potentiallyreactive set. Based on
this information, it is possible to distinguish false positives from true positives. This
approach is not able to detect the non-relevance of alerts, however.

Our work complements most of the above mentioned work. We focus on verification
and enable the integration of the plausibility that an alertis a true positive as a factor in
the correlation process. Our future work on alert verification will include searching for
a more optimal results algorithm to compute the actual plausibility of an alert, based on
intermediate results from the test components, and compiling a more exhaustive list of
verification tests.

5 Conclusion

Intrusion detection suffers from scalability problems: IDS generate a large number of
alerts containing lots of false and non-relevant positivesin the alert stream, the alerts
are of an insufficient semantic level and the IDS still miss certain attacks. While these
issues can not be solved by deploying more intrusion detection systems alone, they can
be handled in combination with alert correlation. Verification, as an intelligent filter
before the actual correlation algorithm, plays an important role by filtering out false
and non-relevant alerts.

While general architectures for correlation and multiple correlation methodologies
have been proposed, no generic framework for verification exists. We have developed
an extensible generic framework for alert verification thatallows for the integration of
different verification tests, different results algorithms and contextual information on
the protected infrastructure, in order to enable experimentation.

Our contribution is to verify certain aspects of alerts, both necessary for the success
of the attack (i.e. is the target reachable and vulnerable) and aspects incorporating other
contextual information (i.e. is the sensor reliable and thetarget behaving abnormal). Our
first experiences show that our approach enables a more effective distinction between
false and non-relevant positives on the one hand, and true positives on the other hand.
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