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Abstract. Intrusion detection systems (IDS) suffer from a lack of scalability.
Alert correlation has been introduced to address this challenge and is generally
considered to be the major part of the solution. One of the steps in the correlation
process is the verification of alerts. We have identified the relationships and in-
teractions between correlation and verification. An overview of verification tests
proposed in literature is presented and refined. Our contribution is to integrate
these tests in an extensible generic framework for verification that enables fur-
ther experimentation. A proof-of-concept implementation is presented and a first
evaluation is made. We conclude that verification is a viable extension to the
intrusion detection process. Its effectiveness is highly dependent on contextual
information.

1 Introduction

The importance of computer security is increasing. Besides implementing security mea-
sures at the application level, operating system level and network level, there is also a
need for monitoring the protected infrastructure after deployment. This is what intrusion
detection systems (IDS) attempt to do: by monitoring local audit trails on a computer,
for example, host-based IDS attempt to detect local attacks. Network-based IDS, on the
other hand, attempt to detect attacks on the network they are monitoring.

In general, an IDS observes events and tries to detect signs of attacks. These attacks,
when successful, result in an intrusion. A correctly identified attack generates an alert,
called atrue positive. Conversely, the absence of an alert in situations where no attacks
are executed is aue negative. IDS can make mistakes: an IDS can generate an alert
when no attack actually took place, this ifatse positive. False positives are generated
because of insufficiently strict defined rules in a misuse- or policy-based IDS, or an
insufficiently trained anomaly-based IDS, among others. The absence of an alert when
an attack did happen is false negative. Anon-relevant positivéor non-contextual
positive, [1]) is an alert generated because of an actual attack, but this attack could
never result in an intrusion, for example because the target is not vulnerable.

Intrusion detection systems are faced widhr basic problemsgas stated in [2]) that
need to be solved in order to make intrusion detection more scalable:
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Too many alerts. IDS generate overwhelming amounts of alerts. Even in the ttest
all alerts are correct (i.e. true positives), a deluge of-level alerts severely de-
creases the usability of the IDS for the operator.

False and non-relevant positives.The alert stream contains a large fraction of false
alerts, both false and non-relevant positives.

Insufficient diagnostic information. The generated alerts are at a semantically low
level: they do not provide sufficient information to the adisirator to allow him
to efficiently remedy the situation.

Low detection rate. The fourth concern is the detection rate, or false negatte. r
IDS still miss a fraction of the actual number of attackdjrigito generate alerts.

These problems, when combined, make it very easy to losevieveof what is
happening on the monitored infrastructure. While it is handugih to try and get a
comprehensive overview of the current attacks and intnssfoom a large amount of
low-level alerts containing lots of false and non-relevamditives, the presence of false
negatives further complicate matters. For instance, s@yattacks necessary to com-
prehend the complete attack strategy of the attacker migie been missed by the
IDS.

Another issue is the amount of IDS sensors. Using a singledi&kly becomes
impossible for larger infrastructures. One host-basedi&ghes its limit when more
than one system needs to be protected, the visibility of wartbased IDS is limited
to the local network. However, simply deploying more IDS @sstalable solution, as
this generates an over-abundance of alerts. The reseammwuity has developed a
category of methods to counter these scalability probléesalert correlation.

Alert correlation has some problems of its own. False andnatevant positives
have a negative impact on correlation algorithms, as thghtgive rise to the genera-
tion of non-existent attack scenario’s [1]. This is what&derification tries to achieve:
it helps to improve the quality of alerts passed on to the leterelation steps. While
verification is not a complete solution by itself, it is anigpensable element of corre-
lation that has not been studied in full depth.

We have studied the interaction between correlation anificagion, as well as
available methods proposed to verify alerts. The contidbubf this paper lies in the
integration of verification approaches in a generic, extdasramework for alert veri-
fication that enables experimentation. By using differentristics, the relevance of an
alert (i.e. is the alert a true positive) is verified. A pragfeoncept implementation of
the verification framework is presented and evaluated. Franpreliminary results, we
conclude that verification is indeed a viable extension édmnkrusion detection process.

The rest of this paper is structured as follows. First, a gerechitecture for intru-
sion detection is presented in Section 2, introducing tlegsses of alert correlation
and verification. We then present a framework for alert \@tfon in Section 3 and
a proof-of-concept implementation. We discuss the statmipand related work in
Section 4 and we conclude in Section 5.



2 General Alert Correlation Architecture

In the first part of this section, a brief overview of an iniarsdetection architecture is
presented. The correlation and verification componentsiarated in this architecture.
In the second part of this section, the use of verificatiorotmter the scalability issues
of intrusion detection is elaborated upon.
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Fig. 1. Generic intrusion detection architecture, supporting verification aneletion.

A general intrusion detection architecture with verifioatand correlation compo-
nents, is shown in Fig. 1. This architecture is loosely basedhat presented in [1].
Events from the system being monitored are observed byréiffevent generators
The generators, low-level IDS, process these events Igdkincertain attack signa-
tures (in the case of misuse-based IDS) or anomalous bet{avibe case of anomaly-
based IDS). If attacks are detected, alerts are generatipbased to the normalization
component.

The normalization componerdccepts different alert formats from the heteroge-
neous sensors and outputs alerts in a normalized format -extample, the Intrusion
Detection Message Exchange Format, IDMEF [3], which is anLX¥bAsed format to
represent intrusion detection alerts. These normalizentissdre passed tovarification
engine This component tries to verify the alerts by distinguishirue positives from
false and non-relevant ones, based on information from set astabase and probing
of the system being monitored.

The asset databaseontains information on the the system being monitoreds Thi
information includes: the hosts being protected, serwifesed, vulnerability informa-
tion, etc. It provides this information to the verificatioaraponent and the correlation
component. Asset data may be manually entered into the akabr gathered auto-
matically through various processes such as network anmgbxatbility scans. This data
may also be updated by the verification component as a sieet eff the verification of
alerts.

The verified alerts are then sent to the actual correlati@mnen Alert correlation
is the process of grouping and conceptually reinterpratitrgsion detection alerts. It
accepts (low level) intrusion detection alerts, genergtesips out of these alerts and



can assign new meanings to these groups. The output is a taweper of alerts on
a higher semantic level (also calletkta-alerts[4, 1] e.a.). For example: independent
detections of strange network packets can be grouped artdnmieted as one port scan.
A brief overview of correlation strategies is presentedegti®dn 4.

The high-level alerts from the correlation component asntpresented to the ad-
ministrator. Or, in the case of intrusion prevention sysi¢at are able to actively react
to intrusions, the alerts can be fed to reactive componehishathen automatically
attempt to prevent the attack from resulting in an intrusion

The correlation process, by presenting higher-level rakgets to the administrator
in stead of low-level sensor alerts, reduces the amountesfsaand is able to com-
plement them with diagnostic information. Some correlatieethods are even able to
compensate for false negatives, by reasoning about attaatesnight have been missed
by the IDS [5]. However, as mentioned, false and non-relepasitives still have a
negative impact on the correlation results.

Verification, as an intelligent pre-processing filter in dert correlation process,
separates false and non-relevant alerts from true positizethat the actual correlation
algorithms are provided with true positives only (in theabease). By enhancing the
quality of the alert stream, it is a useful addition to eveDsl it helps to handle the
first two IDS scalability issues and improves correlatiosutts. Alert verification is
not able to solve the other scalability problems, howeviest Bf all, verification does
not change the conceptual level of alerts. The low-levelirgberts remain at their low
semantic level. Verification is also unable to take falseatiegs into account. These
issues are handled by the correlation process.

Individual sensors are generally insufficiently aware eftbntext to decide if an at-
tack is likely to be real and could have resulted in an intastThe verification process,
using information from the asset database or by activelpipmpsystems or the net-
work, is not, and can make this distinction. In principlesewnore contextual informa-
tion, like the security policy of a company, could be incagied to distinguish between
attacks that the company does not deem important (i.e. paniéng an outside firewall)
and attacks that are. In this context, verification can be asea partial replacement for
a priori policy tuning of IDS.

Verification is able to handle intentionally generateddaserts, generated on pur-
pose by an attackénWhile all false alerts (both intentionally and unintentitpaen-
erated false positives, non-relevant positives) aremetntal to IDS, intentional alerts
should be especially avoided in intrusion prevention systeas these systems are able
to actively try to prevent the attack from resulting in arrusion. The prevention func-
tionality could be misused by an attacker to turn the IDSrgjdegitimate users.

L A priori policy tuning is the process of adjusting the configuration of an, IRSore deploy-
ment, to the security policy of an organization.

2For example, if alerts are generated for port scans, an attacker coisidse nmap
(http://www.insecure.org/nmap/), a popular port scanner, to fake figgnating address or
generate decoys«S and— D options, respectively).



3 Verification Framework

3.1 Overview

In this section we present a framework for alert verificatibaccepts normalized ID-
MEF alerts, executes various verification tests and outhaetsame alerts with an added
plausibility p. This is a floating point valuep(€ [0, 1]) that expresses the level of confi-
dence in the alerp = 0 is an indication that the alert is a non-relevant or falsetpes

p = 1 suggests a true positive.
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Fig. 2. The alert verification framework and implemented tests.

A high-level overview of the platform is depicted in Fig. 2oihalized alerts (in
IDMEF-format) are accepted by tlverification managerThe alerts are passed to vari-
oustest component&ach test component attempts to verify a single aspeceddlért
to measure the likelihood that it corresponds to a true pesind assigns a partial plau-
sibility to the alert. This partial plausibility is also a éiting point value in the interval
[0, 1], but can be simply or 1 in the case of a boolean test. A test is not required to
produce relevant results in every situation. For exampkekistence of vulnerabilities
can not be verified if the alert does not contain vulnerabikfferences. In this case, a
test component is able to explicitly state that it is unabledrify the alert. A description
of the test components follows:

Sensor verificationithe sensor verification test tries to verify the reliabilitythe sen-
sor that generated the alert. A sensor may be badly configuresimpromised. By ap-
plying anomaly detection methodologies on the behaviohefdensor and optionally
correlating these results with the behavior of other semsmmfiguration problems or
misbehaving sensors can be detected. The test returngal pktisibility approaching
0 for an unreliable sensor, arfor a reliable one.

It is also possible to take into account the confidence an rmidtrator has in a
sensor. For example, an administrator is able to express tnest in a hardened NIDS



that has been carefully tuned. On the other hand, an expetaniEl|IDS on a non-
hardened host will be less trusted. By combining a staticsomeeof trust in each sensor,
and observing alerts of attacks that target the originagergsor (taking into account
their plausibility), we derive a measure of confidence initttegrity of the host of the
sensor and whether the sensor should be trusted.

Reachability check:this test attempts to check if the detected attack can rdzeh t
target. If the asset database contains a model of the netaqrlssive check can be
made to ensure that the detected attack should be able totteamtended target from
the point of detection, according to the model. This appnozan filter out alerts of
attacks targeted at non-existing hosts.

The reachability check can also verify configurations ofwialls, proxies etc. to
ensure that the attack is able to reach the intended tarbet.ifffo can be passively
gathered from the configuration of these devices, or agtiobtained using tools such
asfirewalk (http://www.packetfactory.net/projects/firewalk/) angoothers, from the lo-
cation of the detecting sensor. In this test, the plaugjtididiscretep = 1 if the target
is reachable for the specified protocol and poriy ef 0 otherwise.

Vulnerability verification: an important facet to distinguish true positives from non-
relevant ones, is the vulnerability of the target to the cet attack. This test attempts
to verify just that. Vulnerability data can be obtained gsiulnerability scanners such
asNessughttp://www.nessus.org/). This test also produces a elisaesulty = 1 if

the target is vulnerable, = 0 otherwise.

Target check:the last test component attempts to verify the target of gtealed attack.
Three aspects of the alert are verified: is the target hopbreing normally, are the
services offered by the target host responding normallyrawe any related alerts been
detected?

The first two parts of the test check if the host is still reging, that all services that
should normally be provided are still responding as expkatel that no new services
are found. The rationale behind this is that failed explsitsmetimes crash a service or
even an entire host. When a host is compromised, howevel|ysaek doors or illegal
services are installed. Information from the asset dataisasompared with results from
an nmap scan of the target: the services that the targetdsbéfal are compared with
those found. Anomalies result jn= 1, otherwisep = 0.

The third part of the test is able to verify if other, relatatbrts have been detected.
In the ideal case, the verification platform has a databate preconditions for each
attack (similar to the pre- and post-condition based catie@t approaches), so that
possible preludes to an attack can be taken into account wéréfiging an alert cor-
responding to this attack. In our simplified approach, wey dake the plausibility of
previous attacks targeted to the same host into consideratiprior alerts with a high
plausibility have been detected, the maximum of this plailisi and the results of part
one and two of the test is returned.

Note that, although this test may benefit from the same inddion as certain cor-
relation approaches (a list with pre- and postconditiomsefich attack), the purpose
of this test is not to correlate alerts. The information canused by the verification



component to verify if all preconditions necessary for aaiarattack have been ful-
filled, besides allowing the correlation of this attack watther alerts in the correlation
component.

The test results are passed to thsults managerThe results manager combines
these intermediate results usingesults algorithminto a single floating point value.
Two categories of tests can be considered: tests that taldaessary conditions (e.g.
reachability and vulnerability of the target) and testd teeck other indications of pos-
sible falsehood or non-relevance of the alerts (e.g. comj@® of the detecting sensor
or anomalous results from the target check). While the Igitevide extra contextual
information, the former should be satisfied. The asset dam@is updated with newly
gained asset information (from active scans by the verifinaests, for example), in
thecontext update

The framework is extensible in the following ways: first df aew test components
can be added easily at runtime. An example of an extra testiigioned in related work
(see Section 4). Another adjustable factor is the algoritits®d to compute the final
plausibility of alerts. While some algorithms are alreadgvided (return the minimum
or maximum of the results of the test components, computeightezl average), new
algorithms can be easily implemented and added. A thirdheitée factor is the asset
database: new contextual information on the monitorech#tfucture is added easily,
enabling a more contextually aware alert verification.

3.2 Proof-of-concept Implementation

We have implemented the platform in Java, using a MySQL afstebase, the Con-
nector/J JDBC implementation and Apache Xerces to parseBPR&lerts. The correct
operation of the platform is validated in a test setup witmssample attacks. Multi-
ple approaches are possible to evaluate the correctnesdfmiehcy of the verification
process, e.g. sets of off-line test data, like the DARPA3seisploying the verification
platform in a simulated environment or use it in a live tesipeThe active nature of
certain tests excludes the use of off-line test data, how@&herefore, preliminary tests
of the framework have been performed in a test setup.

To illustrate our verification approach, test results of mgle alert are presented.
In our setup, a web server is protected by a firewall. Two netvbased sensors (one
in front of the firewall and one behind it) and one host-basatser on the web server
monitor the infrastructure and relay their alerts, in IDMi&Fmat, to the verification
platform. No further correlation is done. An alert is gettedgfor a trinoo attack More
specifically: an attempt to contact a trinoo daemon is detkect

In the setup, the trinoo connection was blocked by a firewaltgeting the web
server. Consequently, the target is marked as being urabkcfor the attack and the
reachability test return@. The confidence in the detecting sensob.i& No irregular-
ities are detected by a port scan of the target and no othes &#lave been detected,

3 http://www.|l.mit.edu/IST/ideval/data/daiadex.html

4 Trinoo is a distributed denial-of-service attack. Trinoo daemons ardletdstan compromised
hosts. Afterward, a trinoo-master is able to remotely order these coniged hosts to execute
a denial-of-service attack against a specified target.



Table 1. Verification results for the trinoo alert.

\sensor target reachable  vulnerable final result
p\ 0.7 0.0 0.0 NO-RESULT 0.107

therefore the target check returtisThe vulnerability check does not produce results,
as the trinoo alert does not contain references to a vuliliégyaB weighted combina-
tion of these results produces a final plausibilitydaf07, marking this alert as being
likely false or non-relevant.

The quality of the results is highly dependent on the avilasset information.
If no (or insufficient) asset information is available, &eare automatically given a
high plausibility to prevent the system from marking trusitiges as false. Because of
this, it is still possible that false or non-relevant pagt receive a plausibility that is
indistinguishable from true positives, limiting the udefss of verifying these alerts.

4 Discussion and Related Work

One of the major problems of intrusion detection is, as nosetil in Section 1, the in-
ability of (simple) IDS to distinguish relevant alerts framan-relevant ones. In essence,
the IDS is insufficiently context-aware to make this didtioic. Verification raises the
context-awareness of the intrusion detection processdlifynating these non-relevant
alerts.

This context-awareness—extra information on the monitéané@structure—is a
necessity to solve the intrusion detection scalabilityofgms. The success of intrusion
detection is dependent on the quality of asset informabierit network topology infor-
mation, vulnerabilities etc. As we have seen, this inforareis used by the verification
and correlation components. Also, extra information oackis, like their pre- and post-
conditions, is required for some verification tests andalation methodologies.

As such, alert verification and correlation do not complesalve the intrusion
detection problems, but shift them to the gathering of ateuinformation on the pro-
tected infrastructure and possible attacks. The accuriiytrasion detection is pro-
portional to the quality of this information. The verificai framework allows to make
the trade-off between performance and quality of availablg&extual information for
the verification process in a centralized and configuraldbifm: the asset data could
be updated reactively, in response to a request for veiditatf an alert. Conversely,
proactive scans could keep the asset information up-te-atadll times. In other situa-
tions, active scanning could be disabled altogether. Teetasta could still be updated
by relying on passive techniques or information enterechieyaidministrator.

Currently, there is no consensus on what the correlatioogs®ois and how it should
be implemented [1]. Multiple correlation strategies exfst example: probabilistic
alert correlation [4], the STAT-framework [6], approachieveloped by Ning et al. [7,
5, 8], the CRIM-module of the MIRADOR project of the FrencHeatese department
[9] and statistical causality analysis [10]. A propositiona general correlation model
is made in [1].



There is also no definitive answer to how verification showddpbrformed. Ideas
mentioned in other works include vulnerability scanninyy fhecking network topol-
ogy and firewall configurations [11, 1], verifying the belavof the target host and
service [1], administrator preferences [4] and verificatiased on the absence of alerts
from other sensors that should have noticed the attack [2].

This last approach, as described in [2], uses a model of ttveonke to infer and
compare two sets of IDS: the set of sensors that did detecitthek and those that
should have detected the attack, but did not—the potentiatigtive set. Based on
this information, it is possible to distinguish false po&s from true positives. This
approach is not able to detect the non-relevance of alarigever.

Our work complements most of the above mentioned work. Wasoa verification
and enable the integration of the plausibility that an ateattrue positive as a factor in
the correlation process. Our future work on alert verifmatiill include searching for
a more optimal results algorithm to compute the actual ity of an alert, based on
intermediate results from the test components, and camgpdlimore exhaustive list of
verification tests.

5 Conclusion

Intrusion detection suffers from scalability problemsSi@enerate a large number of
alerts containing lots of false and non-relevant positivethe alert stream, the alerts
are of an insufficient semantic level and the IDS still misdaia attacks. While these
issues can not be solved by deploying more intrusion detestistems alone, they can
be handled in combination with alert correlation. Verifioat as an intelligent filter
before the actual correlation algorithm, plays an impdrtate by filtering out false
and non-relevant alerts.

While general architectures for correlation and multiplerelation methodologies
have been proposed, no generic framework for verificatiost®xX\We have developed
an extensible generic framework for alert verification thédws for the integration of
different verification tests, different results algorithrmnd contextual information on
the protected infrastructure, in order to enable expertatem.

Our contribution is to verify certain aspects of alerts hooeécessary for the success
of the attack (i.e. is the target reachable and vulnerabigpapects incorporating other
contextual information (i.e. is the sensor reliable and#nget behaving abnormal). Our
first experiences show that our approach enables a mordieffeiistinction between
false and non-relevant positives on the one hand, and trsie@s on the other hand.
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