Using Multi-Agent Systems for Change Management
Processes in the Context of Distributed Software
Development Processes

Kolja Markwardt, Daniel Moldt, Sven Offermann and Christine Reese

Department of Informatics, University of Hamburg, Germany

Abstract. Today software engineering is facing the problem of the development
of distributed software systems. Due to distribution these systems inherit specific
problems that need to be tackled during the development. Our approach to handle
the problem is to provide an integrated development environment that is based on
clear and powerful concepts and which allows to structure a system in a domain-
oriented way. As the conceptual basis we apply agent-oriented Petri nets. For the
practical part of the control of such applications we use agent-based workflow
management system (WFMS) technology. In this paper we illustrate for Change
Management, as an important part of the development process, how to apply our
approach.

1 Introduction

Large-scale software projects today are concerned with the development of distributed
software products. Additionally through globalisation and business process outsourcing
within the software industry, development activities as well are more and more distrib-
uted between different organisations and even geographically.

Therefore, the development of software is in itself a process that can and should be
supported by distributed software systems. Our intention is to provide the concepts and
tools for distributed software development environments.

As the conceptual background we use object-based, high-level Petri nets called ref-
erence nets (see [5]). To impose structures and patterns on our models we use the agent
paradigm (see [4]). A basic practical platform for such systems is a Multi-Agent System
based workflow management system (WFMS) as described in [10]. Important contri-
butions here are to build our approach on the integration of reference nets to ensure true
concurrency and to impose a structure on multi-agent based systems by workflow con-
cepts as the main structuring mechanism. To explain the background for the application
of our approach we will shortly introduce this system and describe how it can be used
as a basis for the development of new applications.

Ultimately the goal of this development is the aforementioned development environ-
ment. As a first case study we focus on one aspect of distributed software development,
the field of Change Management (CM). This is a central field of interest in the software
life-cycle, it involves different parties and should be handled in a well structured and
reproducible way to minimise the danger of introducing new problems in the process.

Markwardt K., Moldt D., Offermann S. and Reese C. (2006).

Using Multi-Agent Systems for Change Management Processes in the Context of Distributed Software Development Processes.
In Proceedings of the 1st International Workshop on Technologies for Collaborative Business Process Management, pages 33-41
Copyright © SciTePress

For these reasons it is a good example for an inherently psdoased, distributed ap-
plication that can be coordinated by a WFMS.

Section 2 introduces the WFMS we built, the technical baakgdoand the way,
applications can be built on top of a WFMS. Section 4 focusetheractual Change
Management application, defining the term Change Manageasdhis used here and
showing the development of a process-based applicatioedb@s a domain-specific
problem formulation.

2 Description of the Distributed WFMS

First we will describe the technical foundations, on whichl system is built, quickly
introducing reference nets, our Multi-Agent System platf@CAPA and then describing
the WFMS built on top of it.

Reference nets.Reference nets are a higher level Petri net formalism. Retsi allow
a formal specification of processes with a graphical repitesien which is especially
well suited to express concurrency and independency. GadoRetri nets allow com-
plex tokens and an expressive inscription language, udifgcts and method calls in
some other programming language. Reference nets add thepaf net instances, the
concept of synchronous channels and the concept of netswits while providing a
tight integration with Java (as an inscription language).

Net instances have a similar relation to net templates asctsbjo classes. Syn-
chronous channels allow the bidirectional informationtextge (like tokens) between
two or more transitions in one or more net instances. Thelegpplansitions are syn-
chronised and fire atomically as one merged transition wbrdd Nets within nets is
a concept that allows to hold (a reference to) a net instas@etaken on a place. This
allows to model complex systems as parts that are containeddh other. Synchro-
nisation and information exchange happens verticallyughosynchronous channels.
Reference nets are used for many years as a modelling lam@nalgas a programming
language in different settings.

The CApPA Agent Platform. Using reference nets and Java we implemented a standards-
compliant agent platform calledA®A. CAPA is modelled in layers: The agent platform
provides basic services like sending and receiving messagjag standard-compliant
communication channels like HTTP, the agents on the se@awetldre contained within

the platform. An agent contains some nets on the third laygclwmake up the agent’s
behaviour, i.e. a knowledge base and protocol nets. Thelkdge base provides process-
ing intelligence held in a decision component besides kedgg in the form of keys

and Java objects. Protocol nets are workflow-like specifinatof sub-processes. Pro-
tocol nets are instantiated either in response to a receissage or proactively.

Distributed WFMS. Using reference nets andh@a we developed a distributed work-
flow management system (WFMS) presented in [10]. A distridbstestem, as assumed
here, is made up of several local systems which are combiniedild a virtual system
on top of them. Our system architecture is illustrated inuFédL. It implies that an appli-

On top of this: A distributed, complex and interorganisational application.

Communicating WFMS agents on this level form a logical distributed interorganisational

WFMS multi level workflow management system. WFMS
]
All WFMS agents in the intranet form a distributed r All WFMS agents in the intranet form a distributed
1
WFMS WFMS] WFMS WFMS
]
Ams > CAPA pe AMS ! oF avs o, A CoF
Platform Platform ' Platform Platform
I

Fig. 1. Infrastructure as provided by the distributed WFMS.

cation such as a Change Management system is built on togsofittual WFEMS. The
local WFMS can be implemented with reference nets as we hawersin [3]. Other
implementations just have to fulfil the APIs. In our own eoviment we use an agent-
based implementation of this WFMS, which enhanced the oldsiaeiby the features
of multi-agent based systems (MAS). Each WFMS agent is coatbokinner agents.
The inner agents encapsulate the functionality and the onebundles their function-
ality. Different WFMS agents are combined and representeanoyher WFMS agent
one level higher. On top of this infrastructure, a distrdzlapplication can operate.

This described local WFMS can be used in a distributed enmigont because it
provides the agent interface and thus receives asynchsanessages via the Internet.
It can also be distributed by migrating the participatingrg to other workflow man-
agement system platform agents. In the following this iseglly interesting for our
concept of Task Agents which bridge between WFMS-internahtgyand application-
specific or User Agents. A further possibility for distrirt is to integrate several
such local systems into a distributed one using an agentefoote communication.
The whole distributed system works then like one workflow agament service. Fig-
ure 1) gives an overview of the described infrastructure:dbmmunication channel at
the bottom is provided by &PA. For CAPA, the platform agents are showdirectory
facilitator (DF), agent management syst¢AMS) and the platform agent itself). The
WFMS agent is a platform agent itself, containing nested tsgas described above
what is not detailed in the figure.

3 Building Applications

On top of the WFEMS it is possible to build process-based, idiged applications.
These applications use the WFMS as an engine to execute a ovorfifbcess def-
inition. The application consists of several differentexdp defined according to the
application domain. Standard means of capturing thesetssliee UML or BPEL can
be used to gather the requirements which are then transtdatethe corresponding as-

pects of the Multi-Agent System. In [10] the tool set whicindse used in our actual
running environment is described.

In whole, the definition of a new application consists of tbkes and agents that
execute the process, the domain objects used, the clietitapmns invoked in the
process, the workflow process and other, non process-tledafeects.

Roles. An important step in designing an application is to decidéctiypes of users,
or roles, will be working with it. This information can be @va from use case diagrams
and makes up the roles in the process definition later on.

Domain Objects. The business objects needed in an application are usuatiglfed
using methods like use cases and scenarios. For the usesef dhgects in a Multi-
Agent System a common ontology needs to be defined so tharéibginvolved can
share a common vocabulary of concepts.

For the definition of this ontology, the tool Protégé [9] canused. Our custom
plug-in for Protégé then provides the generation of Javasek that can be used in
FIPA-compliant ACL-messages between agents becauserthieyié application spe-
cific agent message handling methods.

Client Applications. Each step in the process requires some agent to execut@sncert
step to handle a task. Some tasks can be executed withouinteserction, these are
called automatic tasks and can be provided by specialissttswgithin the Multi-Agent
System or via a Webservice gateway (see [7]). Client intematasks require a human
user to interact with the system and execute some kind ofitcipplication. These
types of interaction can be standard tasks that are reuaaimeg different processes
or special tasks custom programmed as agents of their own.

Users access the system via a User Agent. It presents thdistookthe user and
allows them to choose activities and execute them. When arageests to execute
an activity, he receives a description of the task at hanés dbnsists of the type of
client application and usually associated data. A numbestaridard tasks are already
implemented in a special User Agent concept, while more ¢exngient applications
can be deployed as specialised Tool Agents [6], such as thle Agents mentioned
above.

Standard Taskg~or simple tasks that occur frequently in different proesssask han-
dlers are already implemented in the User Agent and can ket inseediately. The
most important ones are:

— Simple Confirmation Task: No action in the system needs takert by the user.
Instead with this task, the user signals the completion oéetivity outside the
scope of the application. No data needs to be exchanged.

— Choice Task: Similar to the Simple Confirmation, this taskised to get a single
decision from a user that determines the the further cofibwlof the process.

— Form Task: Many types of user interaction can be broken dovm filling out
forms, so this client application allows the presentatibéra dorm to the user to
gather information in a formalised way. To describe the layaf the form and the
data to be entered a special form ontology is used.

Task Agentslf these standardised tasks are not sufficient to model ttezaiction

needed, a specialised Task Agent can be deployed that exthime capabilities of
the User Agent. The Task Agent is created on the agent phatédrthe WFMS and
migrated to the platform of the User Agent if necessary.[6]

Once the Task Agent is located in the same Java VM as the UsaTttAgava object
references can be used to plug into the User Agents interfadask Agent can give
instant feedback to the user about data entered and chetzginceonditions before
reconnecting to the server and trying to complete the agtizor more complex client
interaction this is therefore the preferred way.

Workflow Process Definition. Since both, the WFMS as well as the underlying Multi-
Agent System, are implemented using Petri Nets as an impiletien language, it is
an obvious choice to use a Petri Net formalism for the prode§isition as well.

The workflow engine used supports special task transithattdiear inscriptions de-
noting the type of task to execute, the rules for picking veses to execute the task and
parameters that can be passed around as tokens within thEraretitions begin to fire
when the execution of a task starts. They can restore thevemrtokens if the execu-
tion is not successful (rollback functionality), as delsed detailed in [3]. This section

has shown the way in which process-based applications cdavstoped based on our
framework. It has of course not been able to demonstratespcs of developing a
complete application. Even in an application that is hggwibcess-oriented, there will
always be parts that are independent of the current proEesxample users might
want to check data which is not part of a process they are milyreorking on. These
aspects must still be taken care of in extension to our apprdzor further discussions
of software development based on agent-oriented Petrspets.g. [11].

4 Case Study - Change Management

This section describes the development of an applicatio€fange Management ac-
cording to the principles laid out in Section 3. First the ogpt of Change Management
is introduced and its position within the software life-®/cThen the requirements for
a real world sized CM application are outlined, as we see thinbigger context of
distributed software development.

Afterwards the design and implementation of a simpler &gilbon is shown to point
out the procedure for the development. Finally some notdisbwimade on how to
further develop the system according to real world requingis

4.1 Change Management

In a productive environment the requirements an applinat&eds to fulfil can change
very frequently and make adaptations necessary. Thisespigisoftware, organisation
and hardware changes, however, we will focus on softwaregesa

These adaptations unfortunately can introduce new prabliemo the software,
therefore great care needs to be taken to devise the chaogespras reliable and re-
producible as possible to minimise these risks. The IT biftecture Library (ITIL [8])

classifies Change Management as a part of service suppiwitiest The main goal is
to ensure effective and on-time implementation of chan@es.way to achieve thisin a
transparent way is to use computer supported systems forgéhidanagement. These
systems need to be distributed to support the coordinafitiredlifferent involved par-
ties. CM is a central process for anyone dealing with sofwdavelopment (see [1]).
The challenge here is to support CM in a distributed enviremmOur solution which
will be discussed here will be based on the use of a MAS-bagsdra to support the
requirements of adaptability and flexibility of such proses

4.2 CM Application in Software Development

Change Management requires the coordination of the diffestake holders in the ap-
plication from the first notion of a deficiency in the softwéwnehe final implementation
of a solution. This process in a way mirrors the originalwafe development process
and therefore can be as diverse as software developmemssrotdels. So it needs to
be customised to the individual needs. The process deddrilide following is based
on the actual process used for a medium sized web applidattbe B2B environment.

CM Process. The process can be broken down into three phases: Assesseatish-
tion and implementation. During the assessment phase asggdhange is classified
with the impact on the existing system, priority, benefit icthe department(s) using
the software or the IT coordination department. If the cleasgems to be worthwhile,
the developer is asked for an offer on the realisation of thainge. If that offer is
acceptable the change is authorised for realisation.

Realisation of the change is then given to the developeonutdcbe broken down
into several tasks based on the organisation of the dewelopehe software and the
type of change. Once the realisation is done, the task afi¢gists given to the client or-
ganisation. If the test is not successful, the developetdigsnedy this until acceptance
can be reached. Finally the changed software needs to beyeepio the production
environment.

Roles. The roles as much as the process reflect the organisationditioms in which
the system is used. Again, a sample set of roles is descried that usually are in-
volved in the CM process.

On the client side there is a number of people that can enterCieange Re-
quests (CR) based on user feedback or their own experiertbethéd system under
consideration. A change manager categorises the CRs and/@gs the CM process.
To determine concepts usually is also a task of the changagearnThe change advi-
sory board (a committee proposed by ITIL to decide on chaf8jggives authorisation
to perform a change and can thus be integrated into the systewell. Finally, the role
of a tester needs to be filled.

The service provider needs roles for submitting offers avadfzer role for the actual
realisation of a change. Additionally a role for internatteg can be added. Implemen-
tation of the changed software onto the operating systerbeg@erformed by the client
organisation itself, the developing company or anotherisemprovider, depending on
the configuration given.

The mapping of roles to users is done via an administratitexfacce not covered
here, the actual decision which users to present a certaik i@ is based on rules
defined with the tasks.

Business Objects. The central object in a CM system is the change request (ER). |
holds all information regarding a certain change and is theelfor all tasks in the
process.

A CR object holds a) basic information like title and destidp, b) classification
like priority, type, and severity, and c) additional infation gathered throughout the
process, like comments by the users involved, associatathakents etc.

Which information exactly is needed here depends very mudhemrganisation
using the system, since some of this information might conoeganisational specifics
like the integration with an ERP system. Some informatioghthalso be only accessi-
ble to certain types of users, like rating and billing inf@tion.

4.3 Developing an Example Application

The organisational environment in which Change Managemmenurs, can be very di-
verse. Therefore one CM process that fits everyone does st kxthe last section
we have described a CM application that might be used in aygtaxh context, to keep
things simple however, a smaller, simpler example will bespnted here.

CM Process. The example application for Change Management is realisedtmsic
prototype, the structure of the agent-based WFMS allowdyeadding further com-
plexity as needed later. Therefore the used workflow isaltytivery simple.

The user of a software product detects some issue in thisaafthe thinks should
be resolved. He starts a new instance of the workflow and ®thierbasic data of the
change. Once that task is finished, the workflow continuekeadeveloper who gets
the task of resolving the issue. Once that is done, the fiestigsotified again of the
resolving and the workflow completes.

Roles. The process contains only a small number of roles, the custataveloper and
the IT department. As tasks get more refined also new rolebedefined, for example
representatives from the departments using the softwBiegdrdination or the change
advisory board in the subprocess of generating the reqaimesof a change.

Ontology. For the example the CR object needs only a couple of fields hs to be

enhanced for any real life applications of course. But fownihe CR object can be
limited to the fields: CR-Id, title, description, severitydaCR-type. Severity and CR-
type can be implemented as types of their own to limit the ipd&&es here and provide

some common values to refer to.

Client Applications. For the simple example here, no new client applications have
been defined. Instead the existing standard applicationbeased to model all aspects
needed here. Figure 2 shows a form task in execution. Theititgfiof the form is
done using the standard form ontology, which describeslgraents of the form. The
mapping of form elements to information in the CM ontologyd@ne by the WFMS
Agent.

&

Workitems:

Categorise CR - Change in process logic
\Authorise CR - New user groups
Ferform Test - Login problsm

& Categorise CR M=%

CR#314

Title Internationalised workflow

Release [y105 m

Activitiss: Friority O showstopper @ mportant O Medium important () Nice to have

Categorise CR
Branches of the workflow need to be customized

Destriphion ©5 accommodate the needs for translation and localisation
in all phases.

[cancel J[done | [info][admintodl]

Fig. 2. The personal agenda of one user with a form task.

4.4 Building on the Example

As stated above, each organisation has their own requitsn@mards a CM system.
Therefore one of the most important criteria to measurenagas the flexibility and
the ease of adaptation to different requirements. It has Beewn how a sample CM
application could look like. In the following we sketch how@dapt such a system to
the specific needs of another organisation.

Each of the tasks in the process definition could be furthfered, introducing new
activities and more complex processes with choices, iteratand concurrent tasks. It
is even possible to fragment the workflow onto different WFieeg (see [2]).

Process Definition. The first aspect to focus on is the CM process needed for the
organisation. Process definitions can be edited with thé&fkeev plug-in of the Renew
tool and uploaded to the workflow definition agent, if the uses the appropriate rights.

Roles. New roles to use in workflow processes can be defined usingdimingstra-
tion interface of the User Agent. Special protocols exisat thake these known to the
administration agent.

Client Applications. For more complex applications it will not be sufficient totjuse
simple tasks like those shown in the example. New clientiegipbns can be developed
as Task Agents[6] and deployed onto the running platforncedhey are made known
to the directory service, they can be used in process defisiti

5 Conclusion

In this paper we have presented a Multi-Agent System based 8/&#la framework
for the development of process-based applications. Theeproe for this kind of de-
velopment has been shown on the example of a Change Managsystam.

The general goal of a distributed software developmentenmient has been illus-
trated by this description of a special part of the softwareetbpment process which
has to be supported in such an environment.

Further challenges are still on the one hand the concepsipacts of distributed
software systems and especially distributed softwareldpaeent environments. On
the other hand the practical requirements in constantliviginfrastructures like the
Internet, Semantic Web, Grids etc. the development of essdftware will require new
ways to handle central aspects of software developmentligtebution, concurrency,
non-determinism, mobility, adaptability. In future worlewvill extend our tool set in the
direction of a distributed development environment to cavéical parts of software
development and maintenance.

References

1. Claudio Bartolini and Matthias Sallé. Business driven prioritization ofiserincidents. In
Akhil Sahai and Felix Wu, editord)tility Computing: 15th IFIP/IEEE International Work-
shop on Distributed Systems: Operations and Management, DSOM 280#, [TA, USA,
November 15-17, 2004. Proceedingslume 3278 oLNCS pages 64—75. Springer, 2004.

2. Timo Carl. Entwicklung eines agentenbasierten verteilten Workflowagament-Systems
mit Referenznetzen. Diplomarbeit, Universitdt Hamburg, Fachideteformatik, 2004.

3. Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitscimeplémentation of
Workflow Systems using Reference Nets — Security and Operability Asdadurt Jensen,
editor,Proc. of CPN 2002. DAIMI PB: Aarhus, Denmark, August 28-30, number 560.

4. Nick R. Jennings. On agent-based software engineefirtiicial Intelligence 117(2):277—

296, 2000.

. Olaf Kummer.Referenznetzd ogos, Berlin, 2002.

6. Kolja Lehmann and Vanessa Markwardt. Proposal of an Agergeb@gstem for Distributed
Software Development. In Daniel Moldt, edit&toc of MOCA 2004pages 65—70, Aarhus,
Denmark, October 2004.

7. Sven Offermann, Jan Ortmann, and Christine Reese. Agent bagknt game, 2005. Part
of NETDEMO, demonstraion at international conference on Auton@w@ents and Multi
Agent Systems, AAMAS-2005.

8. Office of Government Commerce (OGC), editdl Infrastructure Library (ITIL) The
Stationary Office, Norwich, UK, 2000.

9. Protégé homepaghtt p: // pr ot ege. st anf ord. edu/, 2006.

10. Christine Reese, Kolja Markwardt, Sven Offermann, and DaniddtMdDistributed busi-

ness processes in open agent environmentsAclrepted at: International Conference on
Electronic Information Systems (ICEIS) 20@806. Accepted paper.

(63}

11. Heiko Rolke.Modellierung von Agenten und Multiagentensystemen — Grundlagen und An

wendungeyvolume 2 ofAgent Technology — Theory and Applicatiohegos Verlag, Berlin,
2004.

