Toward a Pi-Calculus Based Verification Tool for Web
Services Orchestrations

Faisal Abouzaid

Ecole Polytechnique de Montreal,
2500-chemin de Polytechnique,
Montreal (Quebec) H3T 1J4 , Canada

Abstract. Web services constitute a dynamic field of research about technolo-
gies of the Internet. WS-BPEL 2.0, is in the way for becoming a standard for
defining Web services orchestration. To check the good behaviour of the pro-
duced compositions, but also to check equivalence between services, formaliza-
tion is necessary. In this paper a contribution to the field of Formal Verification
of Web services composition is presented usintgcalculus-based approach for

the verification of composite Web services by applying model checking methods.
We adopt the possibility of exploiting benefits from existing works by translating

a Business Process Language such as BPEL to a system modehefaailus

for which analysis and verification techniques have already been well established
and there are existing tools for model checking systems. We therefore present
the basis of a framework aimed to specification and verification, related to some
temporal logic, of Web services composition. . ..

1 Introduction

Web services are a typical example of technologies supporting Service Oriented Ar-
chitectures (SOA). They allow to develop applications taking advantage of the Internet
infrastructure. These distributed applications communicate by messages and use stan-
dardized protocols all based on XML. These Web services can be composed to form
more complex applications. Such a composition is called an orchestration, if there is
a coordinator between interacting services, and a choreography if not. These new con-
cepts raise some challenges: How to be sure that a composite Web service works cor-
rectly? How to make sure that two or several Web service interact correctly and that
the result of the interaction is acceptable in comparison with the initial specification?
How to make sure that two services are compatible so that one can substitute them one
for the other, where necessary? To answer these question a formal specification of the
compositions is needed and justified by the need for developing reliable services which
fulfill the requirements of the users.

These problems are not recent, nor specific to Web services. Techniques and many
tools exist which make it possible to specify formally and to check properties on var-
ious systems. However, Web services have particular characteristics which require to
be studied specifically. For example, concerning the composition of Web services, a
service can dynamically establish a transaction with a service whose behavior is not

Abouzaid F. (2006).

Toward a Pi-Calculus Based Verification Tool for Web Services Orchestrations.

In Proceedings of the 3rd International Workshop on Computer Supported Activity Coordination, pages 23-34
DOI: 10.5220/0002501900230034

Copyright © SciTePress



24

known in advance. An abstract representation of the belswoioall the participants,

in an adequate formalism, can help to reason in an automaticlwthe same way the
formalism can help to design a reliable automatic compwsitif services. On another
side, mobility is essential in the world of Web services :ige can communicate with
customers whose address is not known in advance, but digzbglaring the execution.
Some formalisms do not make it possible to express it cdyrehe w-calculus does.

In this work we study the problem of formally design Web Seegi compositions
expressed by means of a BPM language such as BPEL, ustadculus. We compare
different formalism and show that process algebras andrticpéar 7-calculus, are well
suited for the purpose of formally specifying such composg. We aim to provide a
thoerotical and concrete framework to design and formadhyfy Web Services compo-
sitions. Our purpose is to develop a framework dedicatectdigation and design of
robust and complex Web services that is based-oalculus formalism. The first step in
this way is to provide a-based semantics for Web services orchestrations exprbgse
the means of BPEL, which seems to be the most popular BPM éyggBased on this
semantics, we propose a mapping between main BPEL corstandir-calculus. We
present ther-logic, an extension of the-logic, associated withr-calculus that allows
us to express properties we want to verify. We illustrateraathod by a significative
example. Finally we present a basic architecture for oufigation framework based
on model-checking of this formalism.

In this paper, we will proceed in the following way: after iray introduced Web
services and their compositions in section two, we justifyneed for formalization in
section three, and we briefly discuss various formalismd tmethis purpose. We then
highlight the fact that process algebras are well suitetiel services formalization. In
Section four, a brief presentation of the syntax and semsnfither-calculus is given.
The r-logic is also presented. In section five we present a mapginde from BPEL
to w-calculus and we show its relevance with a concrete exanmmplsection six we
discuss fundamental basis for a framework dedicated todlization and verification
of composite Web services. In section seven we concludereseptation by reporting
some conclusive remarks and a summary of the works. We alse@agid some hints for
future works.

2 Web Services

A Web service is an application provided by a service pravidaning on the internet
and accessible to the customers through standard intentecpls. The W3C consor-
tium defines a Web service as an application or a componentstidentified by an

URI and whose interfaces and links are described in WSDL, ahXlslsed language.
Definitions of Web services can be discovered by other sesuiy means of the UDDI
protocol and they can interact directly with other servibgsising XML language and
SOAP protocol.

2.1 Orchestration and Choreography Languages

Because each service provides a limited functionnaliig, then necessary to compose
these basic Web services in order to build a more complex ositgservice, providing



25

a fonctionnality of higher level of abstraction in order &mluce development costs, to
provide strong reactivity to customers requests, and smaBomies.

Several communities act in production of standard langsiagelescribe specifi-
cations of orchestration but we focus our work on the languagich seems to join
together around him greater unanimity, namely BPEL (in thet BPEL4WS) [1]. This
language supported by IBM and Microsoft, is in the way to lbee@ standard. It is
a programming language for implementing the executionclagia business process
based on interactions between the process and its parth&BEL process defines
how multiple service interactions with partners are caweitid internally to achieve a
business goal (orchestration).

While orchestration depends on a coordinating service gdgvaphy is concerned
with global, multiparty peer-to-peer collaborations nafgerable between any type of
components. WS-CDL is a language in which a choreographyrigésa is speci-
fied[2]. A WS-CDL specification describes the observable bieiaf collaborations
between services. WS-CDL is not a programming languagenitti®xecutable.

3 Formalization of Web Services Orchestrations

3.1 Formalization

Formalization of composite Web services is justified by teedhfor the checking prop-
erties which attest the correct behavior of the whole sysk¢amy works are devoted to
the field of modeling and verifying Web services and their position. An approach
to process behaviour analysis and modelling of these sdtar@hitectures can be con-
structed to provide tools for verification and validationgpiecified properties of the
model against design specifications and implementations.,

Various researches concerning Web services compositibbased on various for-
malisms were proposed among such as Petri Nets [3], ASM (Atisbtate Machines)
[4], Automata with guards [5] or CCS [6].

3.2 Formalisms

Abstract State Machines. The interest of the ASM lies in their expressivity and their
simplicity. They make it possible to conceive achievablecdjcations that makes it
possible to check directly on the model. However, this tepmm is not adapted to ap-
plications that process lot of data and it is the case of Welicgewhich can exchange
very significant volumes of information.

Petri Nets. Petri nets make it possible to model events and states irtrébdied sys-
tem. They make it possible to simply express sequentialitgcurency and asynchro-
nous control based on events. They present some advantagesflow modeling such
as offering a formal semantics, though graphic. Other ahggms are that their seman-
tics is based on states and not only on events and there @xidttbols for analysis.
However, Petri nets are not free from problems [7]. Thusatertlifficulties ap-
pear with usage such as difficult to represent multiple msta of a sub-process or to
represent some complex synchronization patterns (catiogllpattern (cleaner) ).



26

Process Algebras.Most of the problems raised by the previous techniques fieat th
solution by using process algebras. They are used in vadoomsins, thanks to their
great capacity of modeling and to their relative simpliaitywriting. They make it
possible to describe the evolution and the behavior of zehle interactions within
concurrent systems and they often are represented by pnogrg languages reduced
to a simple expression. [8]

They are suitable to describe Web services, because theyeofbrmal description
of dynamic processes, which facilitates their automatidieation. They allow a great
expressivity and provide constructions that are adaptezbtoposition because they
have compositional properties, Finally their textual tiotais adapted to the descrip-
tion of real size problems , although it is less readable trarsitions systems.

Process algebras are useful both at the time of design arfréferse engineering’.
They offer the possibility of automatically generating Igtens of code thanks to a
translation from the algebra to an executable language.

CCS. The Calculus of Communicating Systems [9] is a calculus fsctibing sta-
tic networks of processes that synchronize via channel$ @aesn't allow to pass
channel-names as arguments while the main advantagealculus is that it does.

4 Them-calculus

4.1 Introduction

The w-calculus [10], is a process algebra that can describe mabihcurrent compu-

tation in an abstract way. It provides a way to define labaladsition systems which
can exchange communication channels as messages. Nameunmation, together

with the possibility of declaring and exporting local nani@sope extrusion), gives this
calculus a great expressive power.

4.2 Them-calculus Syntax

We refer to [10] for a detailed description of thecalculus, but we will give here a brief
introduction to its syntax.

Ther-calculus consists of a s&f of names (for actions) arattion prefixesy that
are a generalization of actions. An action prefix represeititer sending or receiving
a message (a hame), or making a silent transitign Actions syntax and the set of
m-calculus process expressions are given in Table 1.

The meaning of each process defined above is as follows :

Null: O is the deadlocked process which cannot involve with aaysition.

Prefixed sum}_,_; m; P; can proceed t@; by taking the transition of the action prefix
m;: Transitions and nondeterministic choices are describgaefixed sums.

Parallel composition P, | P is a process consisting @, and P, which will operate
concurrently, but may interact with each other throughomdico-actions.

Restriction (va) P means that the action/co-actiaror @ in P can neither be observed
outside, nor react with a @routside the scope d?.



27

Table 1.7-calculus Actions and Process syntax.

Action syntax Process syntax
P ::=z(y) receiveyalong k° := 0 (null)
T(y) sendy along x | > ;e mi P (Prefixed sum)

7  silent action | P (Parallel composition
(va)P (Restriction)
=y|P (Match)

T
P (Replication)

=

Match [z = y] P behaves likeP if namesz andy are identical, and otherwise like
Replication | P means that the behavior &f can be arbitrarily replicated.

Structural operational semantics of the&alculus is given by reaction and transition

rules as shown in Table 2.

Table 2.reaction and transition rules of thecalculus.

TAU : 7P+ M — P REACT : —
T.(y).P | 2(2).Q — P |{y/z}Q
P— P P—p
PAR: 7})'@ — P[0 RES : )P — (va)P

P=PP —QQ=¢
P— P’

STRUCT

4.3 Model Checking in therr-u-Calculus

Some logics have been proposed [11], [12] to express piep@ftr-calculus processes.
These logics are extensions, witkcalculus actions, name quantifications and parame-
terizations, of standard action based logics [13]. THegic [14] extends the modal

logic introduced in [11] with some expressive modalitiés.dyntax is given by :
Gu=true| ~P|P&P | EX{u}®| <p>®|EFP

The interpretation of the logic formulae is as follows :

P [ true holds always;

PE ~d@ifandonlyifnotP | &;

- PE®&P ifandonlyif Pl=dandP = &' ;
P = EX{u}® if and only if there exists”’ such that? £> P’ andP’ = & ; This is the
next operator.



28

— P =< pu > @if and only if there existP, ..., P,,n > 1, such thatP = Py = P;... =
P._1 % P,andP, = @; This is theweak nextoperator.

— P = EF® if and only if there existPy, ..., P, and p1, ..., un, With n # 0, such that
P=p % p.. Y PnandP, = &.

Derived operators can be defined like this :

— &|¢’ stands for~ (~ P& ~ &'). Itis the OR operator;

— AX{u}® stands forr EX{u} ~ @. This is the dual version of the strong next operator;

— [p]@ stands forv< p >~ @. This is the dual version of the weak next operator;

— AG® stands for~ EF ~ . This is thealways operator, whose meaning is thats true
now and always in the future.

Example of formula: For instance, deadlock freeness can be specified as follows:
NoDeadLock = AG(< in?* > true| < out!x > true)

It asserts that every time (always) it is possible to perfarmnput (on channeln) or
an output (on channelut), insuring that the system will never block. Note that we use
the HAL syntax (see Section 5.3) which is slightly differémm the previous one.

4.4 g-calculus Tools

The main existing tools for model-checking thecalculus are the "Mobility Work-
bench (MWB)” [15] and the HAL toolset [14].

MWB is a model-checker for the polyadic-calculus which allows handling and
analyzis of concurrent mobile systems. It allows checkiflgigimulation which can be
very useful for verifying Web services comptability.

HAL is apromising tool which exploits a novel automata-likedel which allows
finite state verification of systems specified in thealculus. The HAL environment in-
cludes modules which support verification of behaviorapgrties ofr-calculus agents
expressed as formulae of suitable temporal logics.

For our example, we will use the HAL tool, which provides a Walsed interface.

5 Mapping BPEL Constructs to 7r-calculus

5.1 Web Service Composition Operators

Among basic constructions common to the majority of the Wetlyise composition
languages, one finds the following operations : servicedation {nvoke, messages re-
ception (eceive, answer keply), sequencialitygequenceor parallelism flow). Mech-
anisms for compensatiodgmpensate and errors handlingfdult handle), are also
used.



29

Table 3. Mapping BPEL activities tar-calculus.

BPEL 7r-calculus
Basic Activity
invoke invoke = Tg (i) | y(a)
< invoke partner="" operation=""> | The channel 5 identifies
a specific operation of a service.
receive
< receive partner="" operation="> [receive(zs, i = xg(r,).7(aQ)
reply
< reply partner="" operation”> reply = T5(6) | y(a)
empty
<empty > empty = y(a)
Concurrent Activities
<flow> flow(Ap, Ag) = (vy/)(vy")(A1.y/(@') | Ag.y7(a”)
< ...activityy... > v/ (a’).y” (@) g(a)
< ...activityg... >
</flow>
< sequence .> sequence(Aq, Ag) = (vy')(Ay.y/ () |y (@).As)
< ...activityy... >
< ...activityg... >
< /sequence>

5.2 Formalization

The first step in the formalization process is to map BPEL ifipations intor-calculus
processes. The mapping is required to provide explicitggsaepresentation behind
that of the BPEL constructs activities and other processitiefis. The semantics used
here is based on the work presented in [16].

Note thatz denotes a set of values a process sends or receives-ptueess core-
sponding to a BPEL process executes an activity and flaggowb signal its termina-
tion in order to support sequential composition.

It is very natural to map basic construct from BPELecalculus. Thereby, an
i nvoke or ar epl y statement will be translated using an output action while a
r ecei ve statement will be translated to an input actiorf. lPlow activity will be trans-
lated using a parallel composition operatorsAquence activity can be translated
using a parallel or a prefixed operator (see Table 3 for thepingjp

Note thatz denotes a set of values a process sends or receives-ptueess core-
sponding to a BPEL process executes an activity and flagglowb signal its termina-
tion in order to support sequential composition.

A whi | e construct can be expressed by means of a replication actiday, using
recursion and awi t ch construct is mapped using a Match actionpiAick construct
is mapped by means of a prefixed sum action (see Table 4)..

The mapping presented here is limited to some usual consthive refer to [16] for
a detailed specification dfaul t handl i ng andscope specification. More com-
plex patterns from the world of workflow have been transldmeithot presented here.

5.3 An Example

In order to illustrate the use of the- calculus and the HAL tool on a concrete way, we
present the simple example of a company which receives froostomer information
about an order. The company treats the order and then tremisna the supplier who
in his turn reply by sending information on the delivery. ttmmpany will retransmit



30

Table 4. mapping BPEL structured activities tecalculus.

< while condition ="exp ='yes”> |while(cond, A1) = (vy)(y(o)
<sequence | [cond].5(D
< ...activity;... > | T(D) v/ (@)
</sequence>
</while>

< switch>

< case condition=""> switch(xz, Ay, ..., Ap) = [z =a1]A) . T(a)
< ...activityy... > | [z = ag]Ag.7(a)
</case> | An.g(a)

< otherwise>

< ...activityp... >

y.while()
)

</otherwise>
</switch>
<pick > pick((z1,01, A), (T2, 42, A) =

standard-elements xq(i1)Aq.g(a)
<onMessage partnerLink="+ + x5 (ig)As.y(u)
operation="">+
< correlations>?
<correlation set="">+ a; : channel for a specific service
</correlations>
activity
</onMessage>
</pick>

< compensationHandles compensate = zlo | y(a)
< ...activityy... >
< /compensationHandlex

these information to its customer. This company must thime&eand document the
trade process which it must implement.

We thus have 3 services that interact bdyerwho sends a purchase order number
and a credit card number to the company. He receives in respamelivery date at
his address. Aseller (the company) receives the purchase order and the credit car
number. He sends the parcel weight and the customer addréss supplier. Finally a
shipperreceives a parcel weight and a customer address. He retaelvary date to
the received address.

The BPEL specification and the mapping tor -calculus. In this example, we give the
BPEL specification of the Seller which plays the role of a dimator between the three
processes. The corresponding translation-talculus is also given. The verification of
the correcteness of the example was made using the HAL Thelsyntax used in this
tool is different from the standard one. The tool us@gy) to denote an input;!y to
denote an output| for the composition operator arid) P to denote restriction. The
syntax of the other operators is standard. The correspand@culus translation of
each BPEL component of our example is given by Table 5.

Finally the complete translation (simplified and optimiZedverification reasons)
is as follows :

The seller receivego, cc and MyChan on the channet,, from the customer. He
sends the parcel weight and a customer channel nameon the channet, to the
shipper, or a fault name; to the fault handler.

Seller(ci,ca, f) = (w)(2)(sy)
(c1?(po, cc, z).(c2l(w, 2).y!a + flsy))

In order to verify the correctness of the whole system, weltespecify the other
processes involved in the intercation. We abstract fromaildedf the translation from
BPEL tor-calculus.



31

Table 5. Example of a mapping.

BPEL m-calculus
<f aul t Handl er s>
<catch faul t Name="NoDel i very" >

<i nvoke partner="customer" FH(f) = f?sr.ylu
port Type="del i ver PT"

oper at i on="sendRef usal " fault handling

i nput Cont ai ner="refusal "/ >

</ catch>

</ faul t Handl er s>
The shipper receives a request from Buyer
<recei ve partner="custoner", Ay = (y)o?(po, cc, me).ylu

port Type="0Or der PT",

operation="Order", o : channel for reception

vari abl e="Pur chaseQr der " po : Purchase Order

vari abl e=" Cr edi t Car dNunber " cc Credit card number

vari abl e="M/Channel " m c Channel for response

He refers to shipper to get a Delivery date :

<i nvoke part nerLi nk="Shi pper" Ag = (to)(y)to!(w, rc) || re?dd.ylu
operation="Transfert O der"

i nput Vari abl e="Del i ver yDat e" to: operation
out put Var i abl e="r equest Del i very" | rc : response channel
port Type="r equest Del i veryPT" /> |w, dd: weigth and delivery date
He then sends the response to the customer:

<reply partner="customer", Ag = (sd)(y)sdldd || ylu
port Type="del i vrer PT",
operati on="sendDel i veryDat e", sd:operation
vari abl e="Del i veryDat e"/ > dd:delivery date
<process name="ProcessQrder” ProcessOrder =
<faultHandlers .... /> (y1)(y2)(y3) (A1 .y1tu || y1 ?u. Ag.yg'u

lyo?u Ag.yslu.ylu
<sequence>
<flow>...</flow>
</ sequence>

m-calculus specification of the entire system

The buyer sends a purchase order numiegra credit card numbetc and a chan-
nel nameMyChan to the company. He receives in response a delivery date the
channelM yChan. He can also send a fault nandg, to the fault handler

Buyer(ci1, MyChan, f) = (po)(cc)(MyChan)(by)
(e1l(po, cc, MyChan).(MyChan!d.y!(@) + flbs))

The shipper receives a parcel weight and channel name Hasedwlelivery date
on the received channel. In case of error he sends a messdigeryl fail’, dy, to the
fault handler.

Shipper(cz, z, f) = (d)(dy)(c2?(w, 2).(zld.yla + fldy))
The fault Handler receives a fault name and processes Isdtreeed to cancel all
pending activities. To do this it sends a cancel messagestsatbpe.
FaultHandler(n) = fn.yla
The whole system is represented as follows :

ProcessOrder() = (c1)(c2)(MyChan)
Buyer(c1, MyChan) || Seller(ci1, c2) || Shipper(cz, z) || Fault Handler(n)

This example is an illustration of mobility and of the needrftanaging it since the
shipper does not know in advance the delivery address fqraheel.

From the formal specification and by using an adequate mdustker, we can
check some properties of the system that prove its correstne



32

5.4 Properties inmr-logic

Here are for example, some temporal properties that askedriect behavior of the
system described previously :
Let P, be the property : "will the date of delivery be always senthe tustomer

after he requests it?”.
We can express it as follows :

P, = AG([MyChan?d] N EF ([MyChan!d]true))
And using the In HAL syntax :
P1 = AQ [ nc?d] EF<nc! d>true)

In the second example, 1%, be the property : "will the number of the credit card
never be revealed to other people but the salesman?”. Wadtaiit in HAL syntax by :

P2 = AQ[cl?cc] EF<cl! cc>true & <c2!cc>fal se)

6 A Framework for the Verification of Web Services Compositimns

We are actually working on the specification and design ofrasrenment for devel-
opping complex reliable composite Web services for whictifieation tools will be
integral part. This platform should also be able to proposéstfor reverse engineer-
ing’ i.e. the possibility of creating specifications in BPEtarting from formal models
expressed im-calculus.

We briefly present, here, the architecture of the systemgbmirplemented and
which should enable us to check the relevance of the sugfestecepts. An ambi-
tious objective is to design an integrated platform for cosifion of Web services.
This one will consist of:

— An editor for generic specifications (nonrelated to a paléiclanguage),

— A module for mapping of WSDL and BPEL (and other) specificaitor-calculus,

— A verification tool : an interface with exisitng tools , MWB ot for instance,

— A tool for 'reverse engineering’ that allows designing repécifications from for-
mal definitions,

— A runtime environment.

Figure 1 shows the basic architecture of the verificatioméwaork. Such an ap-
plication receives as input a specification expressed inobiseveral BPM languages
(BPML, BPEL...) and rules (properties) that will be verifithe tool will make it pos-
sible to automatically translate these specificationsintalculus processes. Properties
will be then checked, using an appropriate model-checkdiiracase of fault, a trace
of the faulty executions would be generated.

We are also interested in the study of equivalences betwesdmsétvices. We are
developping and working on a complete theory of equivaledeénition, comparison
with bisimulation and algorithms. It is very important toedk such equivalence that
decide of compatibilty between Web services, in order testute a service to another,
in case of fault or any other problem. Our environment aimartwide such tools.



33

TIME

RU

Vol |

Fig. 1. A Platform for Formal Verification of Web Services Orchestrations.

7 Conclusion

Web services offer a remarkable potential of developmem.groblems are numerous,
in particular for the verification of composite services &gbr or equivalence between
services. The existing techniques can be adapted and usedRwtri nets or ASM
were studied and used abundantly in this context. Howeeeguse it allows specifying
mobility in an easy manner (it is possible to transmit chamagnes that then can be
used by any process receiving them) , and because compeasitimperties of process
are fundamental, the-calculus is clearly shown to be a very suitable tool for Web
services formalization. We have shown with some exampbgstiiis aspect is essential
in formalization of orchestrations.

We have shown how a business process modelling languagedbrséfvices or-
chestrations can be modelled to a specification languageisé BPEL as our BPM
language and the-calculus as our target specification language and thexefa@ have
translated a program written in BPEL to a system model inatfelculus. Once the
system model is achieved, it is possible to apply model dhgctechniques within
existing tools, thus, allowing an automatic verificationBREL specifications. Tech-
nigues we have applied here for translating a BPEL spedditatn be applied for any
BPM language for gaining a model in thecalculus. We have also shown that the use
of analysis methods and tools based on this formal modeb{culus) in some real life
setting, is not an evident task.

The goal of this paper has been to provide theroritical amtieie basis for the ar-
chitecture of an environment for analyzing Web servicespasition. This framework
integrates a tool for model-checking of specifications egped in various languages
and a tool for ’ reverse engineering’ making it possible toca@ve formal orchestra-
tions starting from formal specification, expressed inthgalculus. For its durability,
a significant asset of such a tool is that it will have to be petelant from any speci-
fication languages for orchestrations which are in perpetaution. For this purpose
we introduced a pi-based semantics for BPEL, inspired frb&} {o express the main
construct of compositions languages. We have adapted thargies to fit the HAL



34

tool. This semantics allows us to specify systems from taéwerld and thus to verify
them, using model-checking techniques.

We consider this paper as the first step towards the defirgfiarformal framework
for reasoning on orchestrations and choreographies. &8eesearch directions open in
front of us. We are continuing our work by working on algomitfior mapping business
process specifications ontecalculus instructions. We are also exploring ways to de-
fine some behavioural equivalences on Web services thatl teulised to study their
compatibility. Finally and to complete this work, we havédke into consideration data

mapping.

References

1. Curbera, F., al.: Business process execution language forerelbes, version 1.0. Stan-
dards proposal, BEA Systems, International Business Machine®oign, and Microsoft
Corporation, http://www-106.ibm.com/developerworks/library/ws-b(2003)

2. Kavantzas., N.: Aggregating web services: Choreography asddiv Technical re-
port, http://lists.w3.org/Archives/Public/www-archive/2004Jun/att-000BCDL- April200
4.pdf (2004)

3. Hamadi, R., Benattallah, B.: A petri net based model for ws coitipos In: In Proc.
Fourteenth Australasian Database Conference (ADC2003), Adefugé&alia (2003)

4. Fahland, D.: Translate the informal bpel-semantics to a mathematichdnAbstract state
machines. Technical report, www.informatik.hu-berlin.de (2004)

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web servitesProceedings of the
WWW2004, New-York, NY, USA (2004)

6. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web $ezwhoreographies.
In Elsevier, ed.: Proceedings of First International Workshop ob Bkervices and Formal
Methods, Pisa, Italy (2004)

7. Van-Der-Aalst, W.: Pi calculus versus petri nets: Let us eat heipie rather than further
inflate the pi hype. Technical report, Twente University, Nederla®®42

8. Ferrara, A.. Web services: a process algebra approactRrdoeedings of the 2nd interna-
tional conference on Service oriented computing, New York, NY, U3304) 242-251

9. Milner, R.: Communication and Concurrency. Series in Computem8eiePrentice Hall
(1989)

10. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Ciagd University
Press, Cambridge, UK (1999)

11. Milner, R., Parrow, J., D.Walker: Modal logics for mobile prazs Theoretical Computer
Science, (1993)

12. Dam, M.: Model checking mobile processes. In: In Proc. CORC3, LNCS 715,
Springer-Verlag, Berlin (1993)

13. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism asttarrency. Journal of
ACM (1985)

14. Ferrari, G., Gnesi, S., Montanari, U., Pistore, M.: A model klmegverification environ-
ment for mobile processes,. Technical report, Consiglio NaziondleeRieerche, Istituto di
Scienza e Tecnologie dell'lInformazione "A. Faedo’ (2003.)

15. Victor, B., Moller, F.: The mobility workbench - a tool for thecalculus. In Springer-Verlag,
ed.: Proceedings of CAV'94. (1994)

16. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ped-bJournal of Logic and
Algebraic Programming, Elsevier press (2005)



