
An Electronic Voting System Supporting Vote Weights

Charlott Eliasson1 and Andŕe Zúquete2

1 Blekinge Institute of Technology, Karlskrona, Sweden

2 IEETA / University of Aveiro, Portugal

Abstract. Typically each voter contributes with one vote for an election. But
there are some elections where voters can have different weights associated with
their vote. In this paper we provide a solution for allowing an arbitrary number
of weights and weight values to be used in an electronic voting system. We chose
REVS, Robust Electronic Voting System, a voting system designed to support
Internet voting processes, as the start point for studying the introduction of vote
weights. To the best of our knowledge, our modified version of REVS is the
first electronic voting system supporting vote weights. Another novelty of the
work presented in this paper is the use of sets of RSA key pairs with a common
modulus per entity, for saving both generation time and space.

1 Introduction

Electronic voting protocols should respect some basic properties of elections, namely
accuracy, democracy, privacy and verifiability [1]. One of those properties, democracy,
states that “each eligible voter is allowed to vote and to vote at most once´´. This prop-
erty is a normal requirement in most electoral processes but is far from being axiomatic.
In fact, there are some scenarios where the votes from some persons have, or should
have, a different weight than the other votes. For instance, some communities, such as
the associates of a football club, can have a weight somehow proportional to duration of
the membership; or a member from an administration board can have a different weight
for solving draw situations. Thus, voting weights are a useful, real-life form of differ-
entiating participants in voting processes. However, as of today we have no knowledge
of electronic voting systems with support for weighted votes.

This paper will focus on the support for weighted votes a particular voting system
— REVS (Robust Electronic Voting System [2]). REVS is a fault-tolerant electronic
voting system designed for voting through the Internet. It uses replication as the basic
mechanism to tolerate system failures in communications, servers and voters’ applica-
tions. Furthermore, it also tolerates failures in the correct behavior of the several entities
running the voting protocol: neither voters nor servers, until a certain level of collusion,
can interfere with the correct behavior of the system without notice.

Supporting weighted votes means that, when voting, a voter’s vote is worthw votes.
To implement this service in REVS, several requirements were considered. The basic
requirement was to minimize the modifications on the protocol of REVS, in order to

Eliasson C. and Zúquete A. (2006).
An Electronic Voting System Supporting Vote Weights.
In Proceedings of the 4th International Workshop on Security in Information Systems, pages 246-255
Copyright c© SciTePress



reduce the probability of introducing new vulnerabilitiesin the final protocol. Other
more specific requirements were the following:

– Scalability: support for an arbitrarily large set of available weights and support of
arbitrarily high weights;

– Efficiency: the performance of the system should not be notably disturbed when
extensively using different weights;

– Usability: for a voter it should be equal to vote the “traditional´´ way or using a
weight attribute; and

– Anonymity: a weighted vote, or a set ofw votes provided by a voter with weight
w, should not provide any hint about the voter who cast it.

The final solution respects all these requirements except the last one, anonymity: in
some particular cases, a voter can be linked to his vote. In fact, when there is a single
voter allowed to cast a vote with a specific weight, or a singlevoter that actually used
a specific weight, the voter can be link to his vote. This problem was not solved in the
protocol presented in this paper because we didn’t find a fairly easy solution that does
not interfere too much with any of the other requirements. Furthermore, this anonymity
problem already appears in paper-based voting systems, where voters with different
weights use bulletins of different colors or cast their votes in different ballot boxes, one
per each weight.

REVS uses RSA [3] keys and Chaum’s algorithm [4] for blindly signing votes from
authorized voters. For supporting weights we extended thisbehavior by using sets of
RSA keys for the signing process. But, for saving time and space, we used sets of RSA
keys sharing the same modulus. As far as we know, this was never used before.

Our solution for supporting weighted votes was implementedin the code of REVS,
which is publicly available3. REVS is fully implemented in Java, which makes its de-
ployment very easy.

This paper is structured as follows. Section 2 overviews REVS. Section 3 presents
some approaches that were considered for adding weighted votes to REVS but aban-
doned in favor of the solution presented in Section 4. Section 5 discusses the security of
the solution. Section 6 presents some details of its implementation. Finally, Section 7
draws some conclusions and forecasts future work. Since we have no knowledge of
other electronic voting systems supporting vote weights, there is not one section dedi-
cated to related work.

2 Overview of REVS

REVS is a blind-signature based voting system designed for secure and robust elec-
tronic voting [2, 5, 6]. The REVS architecture, depicted in Figure 1, includes a client
application, an electoral Commissioner, and a set of electoral servers — Ballot Distrib-
utors, Administrators, Anonymizers and Counters. All electoral servers can be arbitrar-
ily replicated for improving load balance, availability orfor preventing collusion-based
frauds. Valid votes can be cast repeatedly in several Counters, and even in the same
Counter, without affecting the final tally.

3 http://www.gsd.inesc-id.pt/˜revs

247



Fig. 1. Architecture of REVS.

REVS uses a blind-signature protocol that resulted from theevolution of three
other protocols: FOO, EVOX and EVOX Managed Administrators[7–9]. Figure 1 also
presents REVS’ protocol steps, which are the following:

1 - Ballot distribution. The Voter contacts a Ballot Distributor to get a ballot for a
given election. The Ballot Distributor returns him the requested ballot, the election’s
public key and the election’s operational configuration (e.g. servers’ keys and loca-
tions), all signed by the Commissioner. Voting bulletins are XML documents, signed
by the Commissioner, providing a set of rules for presentingand verifying the voting
options for voters.

2 - Ballot signing. After expressing his will on the ballot, the voter commits tothe
ballot with a random bit string and generates a digest of the committed ballot. Then the
voter’s module generates a random blinding factor, appliesit to the digest and sends the
result to a subset of the Administrators for signing.

An Administrator, after receiving a signing request, verifies if it had already signed
a blind digest for the requesting voter. If not, it signs the vote and saves that signature;
if it had signed before, it returns the previously saved data. After receiving the signa-
ture, the voter’s module removes the blinding factor and verifies its correctness using
the Administrator’s public key. This process is repeated until a required number oft
signatures is collected. The value oft must be higher thanN/2, to prevent voters from
getting more than one valid vote.

3 - Ballot Submission. The voter’s module constructs the ballot submission package,
joining the ballot, its signatures and the bit commitment. Then he submits this package
to the Counters through the Anonymizers, encrypted with a hybrid cryptosystem using
a random symmetric session key and the election’s public key, concluding the voting
protocol. A voter can submit the same package to any Counter as many times as he feels
necessary to be sure that the ballot has reached his destination.

4 - Tallying Phase. After the end of the election the Commissioner discloses theelec-
tion’s private key. Then the counting process is performed by the set of Counters and
involves the following steps: (i) decryption of submissionpackages with the election’s
private key; (ii) verification that all requiredt signatures from the Administrators are
present; (iii) removal of repeated votes, i.e., the ones with the same bit commitment;
(iv) tallying the remaining votes from all Counters.

248



3 Evaluation of Possible Solutions

The basic idea of this work is to give a weight to a vote (or to a voter) and, at some
point in the system, multiply the vote by its weight. This canbe done in a number
of ways and many ideas of how to make the implementation have been considered.
Before describing our solution, we start by describing the alternatives considered and
the reasons for discarding them when facing the requirements.

3.1 Votes with an Embedded Weight

A possibility was to include weights in voting bulletins distributed to voters, which
would then be copied into the votes sent to Counters. But thisapproach requires a
strong assumption: the voters’ application must be trustednot to forge weights. Since
the voters’ application may be tampered in some scenarios, namely when “voting any-
where” is considered, the voters’ side cannot be trusted to give the correct input for the
system when weights are considered.

The simple copy/paste of weights could be strengthened by adding a cleartext value
of the weight when submitting a blinded vote digest for getting a signature from an
Administrator. Then, the weight, checked and signed by all the required Administra-
tors, could be added to the final vote submitted to Counters. Abit commitment value
should also be added to the weight to prevent stolen, signed weights, to be used by other
voters. The drawback of this approach is that protocol messages from voters to Admin-
istrators and from voters to counters would increase in size, namely would double in
size. This collides with the requirement of keeping the performance of system close to
the performance of the initial version of REVS.

3.2 Casting of Votes Accordingly to a Weight

Another possibility is to multiply a vote by giving the voterw number of votes to deal
with. A voter could only fill in one ballot but then the voter’sapplication would run the
voting protocolw times, usingw different bit commitments.

This approach has many drawbacks. In terms of performance, it scales badly with
the valuew: (i) The voter would have to keepw different bit commitments; (ii) The
voter would have to run the protocolw times; (iii) Administrators would have to keep
w signed votes for the voter; and (iv) Counters would have to store and countw different
votes for the voter.

Moreover, one of the mechanisms currently used by REVS to deal with fault toler-
ance — the need oft signatures fromN Administrators,N/2 < t ≤ N — could allow
voters to get more valid votes than the ones they are entitledto. For instance, with 3
Administrators andt = 2, a voter withw = 2 could get 3 valid votes. We can use well
suitedN andt values for an election for tackling this specific weight boost vulnerabil-
ity, but at the end that would complicate the deployment of the system due to the use of
weights.

This approach, however, has the advantage of providing anonymity for voters. Fur-
thermore, it gives voters the ability of casting different votes among the set of votes
allowed by their weight.

249



4 Our Solution

The solution we chose for this work was to cast different signatures on votes for dif-
ferent weights. The Administrators are given differentW signing keys, one for each
possible weight, and the knowledge of the weightw for each voter. Furthermore, Ad-
ministrators return to a voter the weight bound to its vote bythe Administrator’s signa-
ture.

The Counters are given differentN×W validation public keys, one for each Ad-
ministrator and possible weight. For each vote they use a setof N public keys, corre-
sponding to the signing keys representing the same weight. When voters download a
voting bulletin for a particular election they also get their weight and the public keys of
all Administrators bound to the weight or, otherwise, all theN×W public keys used by
Counters.

The knowledge of weights bound to keys does not provide information on specific
voters; and the knowledge of a voter’s weight is official knowledge. This way, except in
special circumstances, privacy is ensured.

4.1 Changes in the Protocol

The changes in the protocol are minor. For each election we need to define the number
W of possible weights and their value. For each allowed weightthere will be an associ-
ated asymmetric key pair per Administrator. The Commissioner establishes a mapping
between each weight and each public key of each Administrator (hereafter referred to
as theWKpub table ). This table is sent to the Counters for the tally process.

The process of registering voters must be enriched to accommodate the specification
of one weight per voter. The mapping between voters and weights must then be sent to
Administrators; they need it for choosing the correct private key for signing a voter’s
vote according to his weight.

In REVS, voters get the public keys of all Administrators on the voting bulletin,
for validating the signatures provided by the latter. When weights are considered, for
distributing the right information to voters on voting bulletin two solutions are possible:

1. Distribute a generic bulletin to all the voters, a bulletin containing the WKpub table.
This simplifies the task of the Distributor but the size of theWKpub table may be a
problem for performance.

2. Distribute customized bulletins to voters, i.e., bulletins with the public keys of Ad-
ministrators corresponding to the voters’ weights. In thiscase, the Commissioner
has to produceW different, signed bulletins and the Ballot Distributors must use
the mapping between voters and weights for giving voters theright bulletins. This
complicates the task of Ballot Distributors but keeps the current size of bulletins.

In both cases, the voter get its weight when it gets blind signatures from Adminis-
trators. In the first case that helps him to select the proper public keys from the WKpub
table for validating the Administrators’ signatures. In both cases, it allows the voting
application to present to the voter the weight that is being considered for his vote.

If all the voting weights got from Administrators are not thesame, the voter must
complain for a configuration problem. Otherwise, it propagates its weight to the ballot

250



submission package sent to Counters. The propagated weightis not mandatory for the
final tally, it is only for accelerating the counting process; even if wrong, the vote can
still be counted, though with more computational overhead for Counters.

At the end of an election, the votes submitted to Counters arevalidated. This means
deciphering them with the election’s private key (disclosed by the Commissioner) and
checking the Administrators’ signatures. A vote is valid ifit is correctly signed by at
leastt Administrators and all of them used their private key for thesame weight. Thus,
a votes’ weight can be directly inferred from the Administrator’s signatures on it and if
the vote is valid, then it counts as many times as its weight. Counters may use the weight
in a received voting package as a hint for getting the right set of Administrators’ public
keys. But, in case of failure, Counters try other sets, corresponding to other weights.

4.2 Optimizations

The number of Administrator’s asymmetric key pairs grows proportionally with the
numberW of weights. This as an impact on scalability, both in the generation ofW×N
key pairs, required by all Administrators, and in the WKpub table used by Counters and
possibly distributed in bulletins. However, the production of multiple RSA signing keys
has an opportunity to minimize this scalability issue. Namely, the process for creating
W RSA keys for a single entity can create the modulus,n, once and latter use the same
n for making all RSA keys.

The optimized generation process runs as follows. The first key pair is calculated
with the original behavior of the RSA algorithm, wheren is the modulus,e is the public
exponent andd is the private exponent [3]:

1. Generate two large random primes,p andq, of approximately equal size such that
their productn = pq is of the required bit length, e.g. 1024 bits, and compute
n = p q andφ(n) = (p− 1) (q − 1).

2. Choose a (small) integere, 1 < e < φ(n), such thatgcd(e, φ(n)) = 1 and compute
the secret exponentd, 1 < d < φ(n), such thate d ≡ 1 (mod φ(n)).

3. The public key is(e, n) and the private key is(d, n).

The otherW − 1 key pairs with the samen are the computed as follows:

1. Choose a (small) integere′, e < e′ < φ(n), such thatgcd(e′, φ(n)) = 1. For pre-
venting the deduction of straightforward relationships betweend values,e′ should
also be coprime to all othere values computed for the samen.

2. Compute the secret exponentd′, such thate′ d′ ≡ 1 (mod φ(n)).
3. The public key is(e′, n) and the private key is(d′, n).

Using the same modulusn for all key pairs of each Administrator has several ad-
vantages. First, we save computational time and space when computing the key pairs
— only two large prime valuesp andq need to be generated per Administrator. Second,
we save memory and bandwidth for storing and transmitting the WKpub table.

This optimization cannot be extended to encompass all Administrators´ key pairs,
because when we have severald values for the same modulusn, all d values must be
known only by the key pair owner. Otherwise, the owner of oned value could discover
all otherd values using the common modulus attack [10, 11].

251



4.3 Computing Blind Signatures Using Different Key Pairs

The voter’s application only gets the voter’s weight in the replies of Administrators. But
this raises a problem, because the Chaum’s RSA-based blind signature scheme used in
REVS requires the voter knowing in advance the key pairs thatAdministrators will use
(thus, knowing in advance the voter’s weight):

1. The voter gets a randomk and computesk−1 such thatk·k−1 ≡ 1 (mod n).
2. The voter blinds the vote digesth(v) by computingke·h(v) mod n, and sends the

result,h′(v), to the Administrator.
3. The Administrator computesh′(v)d mod n and sends the result to the voter.
4. The voter computesk−1·h′(v)d mod n and getsh(v)d mod n.

As we can clearly see, in steps 1 and 2 the voter needs to know the public components
e andn of an Administrator key pair for blinding the vote digest.

We handled this problem by changing the blind signature computations and not the
protocols messages. Given the fact that all key pairs of an Administrator have the same
modulusn, then the computations are done as follows:

1. The voter gets a randomk and computesk−1 such thatk·k−1 ≡ 1 (mod n).

2. The voter blindsh(v) by computingk
∏W

i
ei ·h(v) mod n, wherei represents a

weight,ei the public key of the Administrator for that weight andW the number
of weights; the result,h′(v), is sent to the Administrator.

3. The Administrator computesh′(v)dw mod n, wheredw is the private key for the
weightw of the voter, and sends the result andw to the voter.

4. The voter computesk−1·k−
∏W

i6=w
ei ·h′(v)dw mod n and getsh(v)dw mod n, the

intended result.

When we have a single weight (W = 1), it is easy to see that these calculations are
exactly the same that were performed in the original REVS system.

5 Security Evaluations

The security of REVS was already evaluated and discussed when it was proposed
(c.f. [2, 5]). Therefore, here we will mainly discuss the security of the upgrades in-
troduced in order to support vote weights.

The introduction of weight capabilities adds three extra requirements to the voting
system: (i) it is not possible for a vote weight to be altered;(ii) it ensures that eligible
voters use their correct weight; and (iii) neither authorities nor anyone else can use vote
weights to link any ballot to the voter who cast it.

Regarding the first requirement, a vote cannot be altered because that requires chang-
ing t signatures, just like in the original REVS. Since the weightis embedded in the
signatures, changing a vote weight requires changing all the signatures on a vote. A set
of t colluded Administrators can do it, but mainly in theory, since that requires access
to all the copies of that vote stored in the Counters. Therefore, it requires a larger col-
lusion, involving allt Administrators and an undetermined, arbitrarily large percentage
of Counters.

252



Regarding the second requirement, vote weights are forced by Administrators and
not arbitrarily chosen by voters. Thus, Administrators manage proper weights just like
they manage the list of eligible voters. And single Administrators cannot cheat, because
that would make them disagree between each other.

Regarding the third requirement, there are privacy issues.In fact, if a single voter is
entitled to a specific weight, or if a single voter uses a specific weight, then anyone with
access to the authorization databases used by Administrators can link the vote to the
voter. Nevertheless, current paper-based voting processes do not handle this problem
either. Unless a voter could break its weighted vote in many unitary votes, which may
be tedious or infeasible for large weights, the voter must use a different bulletin or cast
the vote in a differentiated ballot box, thus raising the same privacy problem. Conclud-
ing, our solution is not worse than existing paper-based solutions, mainly when large
weights are considered. Solving this problem and keeping the system scalable remains
an open issue.

Finally, we need to discuss the security implications of sharing a common modulus
by all the RSA key pairs of each Administrator. There are someknown problems in
using the same modulus for different RSA key pairs [11, pag. 289] but in our case they
do not apply:

– The private component of the keys pairs with the same modulusmust be known
only by a single entity. Otherwise, an entity knowing a private valued could com-
pute other private valuesd′ used by other entities (all of them sharing the same
modulusn, of course) [10]. In our case, this is not a problem: each Administrator
chooses ann and computesW different(ew, dw) pairs for it. At the end, all(ew, n)
pairs are published as the Administrator’s public keys and the Administrator keeps
privately all thedw values.

– The same messagem encrypted with two RSA public keys sharing the same mod-
ulusn can be decrypted without knowing the private keys [12]. Again, in our case
this is not a problem because we do not use the RSA key pairs forconfidentiality,
but for signing votes. Thus, we do not encrypt with public components, we only
encrypt with private components.

Concluding, in terms of security our solution is capable of enforcing a correct use
of vote weights but presents some privacy issues that may appear when small sets of
voters share the same weight. Furthermore, the shared modulus optimization for the
RSA signing keys does not, as far as we can see, introduce new vulnerabilities in the
voting protocol. Namely, all the known shared modulus attacks do not apply to our
protocol.

6 Implementation

REVS is fully implemented in Java and uses MySQL databases tostore configuration
information used by REVS servers. These databases are also used to store information
produced and/or gathered by servers, such as signatures provided by Administrators
and voting submission packages sent to Counters.

253



In this section we briefly describe the changes required in REVS in order to support
our solution for handling vote weights. The changes are minor, since the basic protocol
was mainly left unchanged, and where all implemented.

Commissioner. At the Commissioner, new options to manage weights were added to
the graphical interface. The number of weightsW is entered first and thereafter the valid
weights and the weight for each voter. The data of allowed weights is then to be sent
to the Administrators, which required only a minor additionin handling the exchange
of data between Commissioner and Administrator. There where also additions in the
exchange of data from the Commissioner to the Administrators and to the Counters to
include the WKpub table.

Administrators. The information of allowed weights from the Commissioner isused
as a template to make the signing keys for each Administrator. An entirely new func-
tion was written for the making of optimized RSA key pairs, since no such function
was available in Java libraries. The private component of each key pair is saved in a
database table with the corresponding weight (WKpri table ), which was added in the
Administrators database.

When a vote arrives, the weight of the voter is checked in the voters table. The
weight is then used to check, in the WKpri table, which signingkey to use for the given
weight and the vote is signed with it.

Ballot distributors. Two solutions where discussed for distributing information to vot-
ers, in Section 4.1. We do not consider the WKpub table to be of alarge enough size to
cause any performance problems for this work, so we chose thefirst solution; to attach
the WKpub table to the bulletin and to use only one bulletin forall voters participating
in an election.

The solution we chose leaves the Ballot Distributors without any knowledge of the
voters’ weights and keeps them fast and simple. It also provides less changes needed to
the system.

Voter’s module. The voter’s module was changed to deal with the WKpub table, that
is now part of the bulletin. The blind signing algorithm was also changed to the new
one presented in Section 4.3, the weights replied by Administrators are checked (they
must be all equal) and presented to the voter in the graphicalinterface. Finally, the
vote weight is propagated in the submission package sent to Counters for accelerating
counting procedures.

Counters. In the validation of each vote was added code to check the weight of the
vote, forwarded by the voter in the submission package, and to get the corresponding
public keys from the WKpub table. This validation includes the risk of the weight being
altered by the voter. The counting of valid votes only neededthe minor addition of
counting the votes as many times as the weight says, instead of only counting them
once.

7 Conclusions and Future Work

In this paper, we evaluated different possibilities to makea support for weighted votes
in the electronic voting system REVS and described the best solution for the system.

254



Namely, our solution relies on using sets of signing key pairs to represent the different
weights allowed in an election. We also presented a performance enhancing solution for
making the, sometimes large, set of RSA signing key pairs from the same modulus.

To the best of our knowledge, this is the first electronic voting system supporting
votes weights. The same happens with the optimization used for theW RSA key pairs
for each Administrator, we do not know of any system using it.

Considering our requirements — scalability, efficiency, usability and anonymity —,
the first three of them were attained. Regarding anonymity, there is still a problem for
the case of a single voter with a weighted vote. This is a fundamental problem, since it
also exists in paper-based elections. We tried to find a solution to this problem without
interfering with the basic characteristics of REVS but at the end we rejected all the
ideas of how to deal with the problem in this work. Consequently, and in the context of
REVS, our main issue for future work is to deal properly with this privacy issue.

References

1. Cranor, L., Cytron, R.: Sensus: A security-conscious electronicpolling system for the Inter-
net. In: Proc. of the Hawaii Int. Conf. on System Sciences, Wailea, Hawaii, USA (1997)

2. Joaquim, R., Źuquete, A., Ferreira, P.: REVS – A Robust Electronic Voting System. IADIS
Int. Journal of WWW/Internet1 (2003)

3. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining DigitalSignatures and
Public-Key Cryptosystems. Comm. of the ACM21 (1978)

4. Chaum, D.: Blind signature system. In: Advances in Cryptology – CRYPTO ’83 Proc., New
York, USA, Plenum Press (1984) 153–153

5. Lebre, R., Joaquim, R., Zúquete, A., Ferreira, P.: Internet Voting: Improving Resistance to
Malicious Servers. In: IADIS Int. Conf. Applied Computing 2004, Lisboa, Portugal (2004)

6. Joaquim, R.: A fault tolerant voting system for the internet. Master’s thesis, IST / UTL
(2005)

7. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale
Elections. In: Advances in Cryptology – AUSCRYPT ’92 Proc. (LNCS 718), Queensland,
Australia, Springer-Verlag (1992)

8. Herschberg, M.: Secure Electronic Voting Using the World Wide Web. Master’s thesis, MIT
(1997)

9. DuRette, B.: Multiple Administrators for Electronic Voting. Bs.C thesis (1999)
10. Simmons, G.J.: A “weak” privacy protocol using the RSA crypto algorithm. Cryptologia7

(1983) 180–182
11. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.

CRC Press (2001) 5th Printing.
12. DeLaurentis, J.M.: A further weakness in the common modulus protocol for the RSA cryp-

toalgorithm. Cryptologia8 (1984)

255


