
Analyzing Preauthentication Timestamps To Crack
Kerberos V Passwords

Ahmed Alazzawe, Anis Alazzawe, Asad Nawaz and *Duminda Wijesekera

*ISE Department, CSIS and C4I,
George Mason University,

Fairfax, VA 22030.

Abstract. Platforms, including Microsoft Windows 2000/2003 Servers, utilize
Kerberos V for authentication services. Kerberos V introduced several improve-
ments over its predecessor including a preauthentication scheme that authenti-
cates KDC bound requests prior to issuing tickets. Timestamps are incorporated
within the preauthentication scheme causing a weakness. The time needed to ob-
tain a password is decreased by capturing and subsequently utilizing this times-
tamp. This paper examines the computational efficiency obtained by utilizing the
timestamp in attacking Kerberos V preauthentication data. We developed a pro-
gram that would parse the preauthentication data in an attempt to recover the
client’s password. It uses a well-known cryptographic library and one embodi-
ment thereof omits the last HMAC computation used in the verification process.
Instead a timestamp is used to determine the success of the decryption process.
Our findings indicate that utilizing the timestamp saves considerable processing
time.

1 Introduction

As users of computing devices in securely networked environments, we are often obliv-
ious to the many interactions between numerous computing devices within the network
that assist us in accomplishing our tasks. One of the many transparently executed tasks
is the mapping and provision of services to each individual user. This seemingly simple
task requires quite a bit of sophistication. For example, a user must first be authenticated
to a server or service. Sometimes mutual authentication is required where the server is
also authenticated to the user. Many protocols have been implemented to help accom-
plish this task. One such protocol is Kerberos. Kerberos provides a method whereby
a trusted third-party authentication service is utilized in verifying user identities [1].
As with the advent of any technology, there will always be flaws and exploits to its
weaknesses. In an effort to secure a network and its contents against such flaws and
weaknesses, one must understand the root of the problem. Unfortunately, this requires
an in-depth knowledge of the innerworkings of the authentication system. Hence, a
brief overview of the origins of Kerberos, its components, its deployment, and compar-
ison between released versions will be presented prior to a detailed discussion of the
weakness exhibited by a Kerberos-utilizing system.

Alazzawe A., Alazzawe A., Nawaz A. and Wijesekera D. (2006).
Analyzing Pre-authentication Timestamps To Crack Kerberos V Passwords.
In Proceedings of the 4th International Workshop on Security in Information Systems, pages 267-277
Copyright c© SciTePress



1.1 Background

Kerberos was developed by the Massachusetts Institute of Technology (MIT) to protect
network services. This was a collaborative effort by major computing firms to create a
coherent, platform independent computing environment that would scale up to 10,000
computing devices, termed Project Athena. This protocol received its name from the
Greek Mythological three-headed guard dog of Hades.

The first three versions of Kerberos were never released and remained internal to
MIT and Project Athena. Steve Miller and Clifford Neuman published Kerberos version
4 in the late 1980s. Over time, this protocol exhibited serious limitations and security
problems. Therefore, John Kohl and Clifford Neuman designed a new version (version
5) that was formalized in RFC1510 and then updated in RFC4120 (in July 2005). The
current and updated version of Kerberos incorporates many new features and modifi-
cations that are at the very least noteworthy. A detailed description of key differences
of Kerberos V over its predecessors can be found in The Evolution of the Kerberos Au-
thentication System [2]. Briefly, Kerberos V allows for the use of different encryption
algorithms as opposed to DES only. Ticket lifetime is no longer limited to 1280 minutes
as was the case with Kerberos IV. New features in Kerberos V also include forwarding
credentials from one client to another, use of ASN.1 encoding, allowing postdated tick-
ets to be issued, and allowing proxying of credentials. Yet, one of the most significant
modifications of Kerberos V over its predecessors is the inclusion of a preauthentication
phase [see Fig.1].

Fig. 1. Preauthentication step.

Kerberos has quickly become an attractive choice for an authentication protocol
because it does not transmit passwords in plaintext over the network. Furthermore, a
Kerberos system centralizes user information (i.e. username, password information,
etc) allowing for readily manageable and maintainable data. Using Kerberos will in-
herently eliminate the need for a user to store password information of each resource
locally, thus reducing the security consequences should the user’s machine be compro-
mised. These features, along with many other features, have made Kerberos one of the
most widely implemented authentication protocols today. Many applications and server
products have been kerberized. Post Office Protocol (POP) has been modified to uti-

268



lize Kerberos in authenticating users who wish to retrieve e-mails from the server. Sun
Microsystems’ Network File System has also incorporated Kerberos to enhance secu-
rity. Many implementations of Kerberos for authentication purposes across the WWW
are also available. For example, Kerberos can be used to provide password verification
over an SSL-protected connection. Kerberos has also been employed in authenticating
X Windows connections.

But perhaps the most important, at least for our discussion, is the specification of
Kerberos V as used in Windows 2000 and 2003. Microsoft’s implementation of the en-
cryption and decryption process of the preauthentication data will be the foundation of
our discussions in this paper. The reason for this is two-fold. First, this implementation
employs known algorithm, RC4 and HMAC. Second, it is one of the most widely de-
ployed implementations of Kerberos. By being so widely deployed and having a known
encryption algorithm, one is able to reverse engineer Microsoft’s implementation into
an automated program for exploiting preauthentication vulnerabilities. But before one
delves into these details, a brief summary of exactly what Kerberos is and what it ac-
complishes is paramount to our discussion.

Kerberos is an authentication protocol that is built upon the Needham-Schroeder
protocol. Kerberos provides a form of mutual authentication in which both the user and
the server are able to ascertain the other party’s identity. This requires a trusted third
party called a Key Distribution Center or KDC for short. The KDC consists of two log-
ically autonomous parts, the authentication server and the ticket-granting server. The
KDC will authenticate the client and grant it a ticket that is subsequently honored by
other servers in the network. The use of a KDC in any security system has its inher-
ent advantages and disadvantages. The use of a KDC allows for easier key distribution
throughout the system. A disadvantage of using a KDC is that it has the potential to be
a single point of failure if it is not properly secured.

Kerberos has a name for every entity that it must authenticate to and for every entity
that must be authenticated to it. These entities, called principals, can include but are not
limited to users, hosts, and other services. For every principal, there exists a secret key
that is confidential and only disclosed to the principal and the KDC, as will be discussed
later. These keys are utilized in authenticating and transmitting secure messages. This
secret key is created differently for each principal. For instance, users derive their key
from their passwords. Hosts, on the other hand, simply have a lengthy, random number
as a key. Usually these keys are part of a symmetric cryptosystem. This would allow
the same key to encrypt as well as decrypt data. The naming convention also differs
for each principal. Generally, the principal is in primary/instance@realm format. The
realm simply identifies the Kerberos Realm to which the principal belongs and remains
constant for all types of principals. The primary/instance portion of the name format
depends on the type of principal. For instance, if the principal is a user, the primary por-
tion is the username while the instance is either a string identifying special privileges
or empty. For hosts, the primary portion would describe the type of service while the
instance portion indicates the location from which the service is based.
In more detail, Kerberos has three main parties, without which, the protocol cannot be
implemented. The first is a client wishing for a given service. The second is a server
that is able to provide that given service. The third part of concern is the aforemen-

269



tioned KDC, a trusted third-party that mutually authenticates the client and the server.
Kerberos maintains a database of secret keys. Each party involved shares a key with
Kerberos. Furthermore, Kerberos generates a session key that is used to secure the in-
teractions therewith. Initially, the client must authenticate itself to the KDC, without
which anyone can request a Ticket Granting Ticket (TGT). This interaction will be re-
ferred to as the preauthentication scheme. In this exchange, a timestamp, defined as
KerberosTime in RFC1510, is transmitted. This first transaction between the client and
the KDC is in the form of a KRB AS REQ. Contained within this request are

CLIENT ID, TGS, PADATA (1)

wherein CLIENT ID represents the client identification, TGS represents the Ticket Grant-
ing Server the client is attempting to provision the services from, and PADATA repre-
sents the preauthentication data as previously described.

1.2 Preauthentication Vulnerability

A weakness exhibited by Kerberos through the introduction of the preauthentication
scheme is the ability to perform an offline attack for any given user of a kerberized
system. In Kerberos IV, the KDC would transmit the TGT encrypted with a hash of
the user’s password for any client that asks for a TGT on behalf of a user [2]. This
allowed an attacker to request a TGT for any user, and then peform a brute force attack
by generating possible passwords until he/she is able to decrypt the TGT successfully.
Kerberos V added the ability to do preauthentication via the preauthentication phase.
This forces a client to prove to the KDC that the client is who it claims to be. This
prevents an attacker from sending a request to obtain a TGT for any user, and thus
preventing an attacker from performing a password attack on any user of choice.

Kerberos V is described using Abstract Syntax Notation One (ASN.1). It uses Dis-
tinguished Encoding Rules (DER) to encode and decode all protocol messages. Two
sources we utilized in investigating and further comprehending the data structures in-
volved, are RFC1510 and the Brezak et al disclosure. The Brezak specification provides
the encryption and decryption process in a Microsoft Windows environment. This is es-
pecially important since a significant amount of workstations operate in a Microsoft
Windows environment.

In the proposed offline attack, the main focus is on the PA-ENC-TIMESTAMP
preauthentication method. Here a timestamp is encrypted with a key derived from the
used password. There are several methods that can be used for preauthentication, such
as a smart card. With preauthentication enabled, the client needs to prove that they
are who they claim they are. In this scheme [see Fig. 2], during the generation of
KRB AS REQ, a timestamp is added that is encrypted with a hash of the user’s pass-
word. The purpose of this timestamp is to prove to the KDC that this is neither a replay
of a request nor is it a request made by any other client. Rather, this procedure ensures
that it is the user in question who is making the request. However, the threat is not elim-
inated [3,4], rather the attacker simply waits for a KRB AS REQ packet, such as when
the user logs on. In a Windows network environment, the attacker has to only capture
the packet that is sent when the user logs on by using CTRL-ALT-DELETE.

270



Fig. 2. Ethreal capture of AS-REQ.

Although there is no public implementation, a number of researchers have discussed
this vulnerability [5]. Once the preauthentication data is captured, we can run a num-
ber of different types of attacks against the encrypted data. Such attacks are offline in
nature and can take the form of a dictionary or brute force. Due to the nature of the
attack, in that each decryption attempt is independent, we can parallelize the attack us-
ing multiple machines. For any of these attacks, the attacker must be able to sniff the
packets that traverse the path between the client and the KDC. Once the attacker in-
tercepts the relevant packet, they can do the rest of the processing offline. The capture
can be accomplished using any popular, widely available sniffers, such as Ethereal. The
packet of interest is the AS-REQ packet. Within this packet is a piece of information of
padata-type PA-ENC-TIMESTAMP.

This portion of the packet is of great interest to us because it includes a timestamp
known as KerberosTime that is in the form of YYYYMMDDHHMMSSZ, where the
last letter is a capital ’Z’. We will use this knowledge of the timestamp to verify a suc-
cessful decryption process. This is due to the fact that checking for a string of a known
format in a known location is computationally inexpensive relative to performing an
HMAC. We apply a general rule, if it appears to be a timestamp, then it most likely
is a timestamp. The 52-byte PA-ENC-TIMESTAMP, has three fields in which the first
two are considered the header. The first field is a 16-byte long checksum of the other
two fields. The next field is an 8-byte confounder. The last field is 28 bytes of data [see
Fig. 3]. These last two fields are the only fields encrypted. The data field includes the
timestamp.

Fig. 3. Packet information.

An attack is now possible. Using our program, we will run through a list of possible
passwords; this can be generated as a dictionary or a brute force permutation over a
specific alphabet. For each such possibility, we convert the potential password to an

271



MD4 hash of the Unicode in a function called ’String2Key’. The resultant is in the
same form as the hash stored on the KDC, which it uses in the decryption process.

Decryption function adapted from Brezak specification

function decrypt(K, T, edata) {
HMAC (K, &T, 4, K1);
memcpy (K2, K1, 16);
K3 = HMAC (K1, edata.Checksum);
RC4 (K3, edata.Confounder);
RC4 (K3, edata.Data);
// verify generated and received checksums
checksum =
HMAC (K2, concat(edata.Confounder, data.Data));
if (checksum != edata.Checksum)

print("CHECKSUM ERROR !!!!!!\n"); }

The decryption process can be run in one of two modes. The first mode in which
the decryption process is done according to the Brezak specification [6] adapted to our
environment [see decrypt function above]. In the second mode we omit the checksum
check and replace it with a search for a timestamp. In this mode, we apply our afore-
mentioned rule and simply check for a resemblance of a timestamp. Any attempt that
does not result in a suitable timestamp format is rejected. Otherwise, if it is determined
that there is data in the form of a timestamp, we perform a single and final checksum
check confirming that the result was indeed the user’s password. The pseudo-code be-
low defines the verification process in detail.

Function to see if data contains timestamp signature

function verify(edata)
if(Z_AT_RIGHT_LOCATION(edata.Data))

//like YYYYMMDDHHMMSS
if(Contains_TimeStamp_Digits(edata.Data))

return VERIFIED;
else

return WRONG_PASSWORD;
else

return WRONG_PASSWORD;

If the verification process fails, the next password is attempted. If the verification
process succeeds, a total of one checksum computation is performed merely as a san-
ity check. This is done because although it is extremely rare and improbable, it is still
theoretically possible for decryption using the wrong password to yield a plaintext that
resembles a Kerberos timestamp. Note that for the computationally heavy verification,
one must compute the checksum for each possibility and then compare it to the inter-
cepted packet data. An example will be the following:

Encrypted: AB 26 6C CC E4 DD 17 AE 7E 7D A9 CD 75 DA A 34 B6 29 CF 5F E0
6B 73 72 9B 6E F4 8D BA CD 6D A 51 DA ED A6 B8 34 E9 34 35 35 67 B4 A5 8F
DE D3 4 E8 9B 4E

272



Decrypted: AB 26 6C CC E4 DD 17 AE 7E 7D A9 CD 75 DA A 34 85 89 CF 4F 6F
56 D3 F4 30 1A A0 11 18 F 32 30 30 35 31 31 32 32 32 32 31 36 35 36 5A A1 5 2 3 4
1A 32

To confirm our findings, an HMAC(Key2, Confounder + Data) is performed allow-
ing us to compare the checksum of the encrypted packets and our decryption result.
If the two match, then we have successfully discovered the password. The timestamp
verification method, however, provides a computationally light option in simply parsing
the string to locate a capital ’Z’ in a specific location along with numbers preceding it.
Here is an of a timestamp found within a string:
. . . 2 0 0 5 1 1 2 2 2 2 1 6 5 6 Z . . .

Here, all that is necessary is to determine the position where a ’Z’ is expected and
to verify that the previous 14 characters are digits. At this point, the program would
terminate and output the password that produced the result.

2 Lab Setup and Result

The hardware utilized [see Fig. 4], comprised of two computers running around 3 GHZ
with 2 Gigabytes of RAM each, are attached to a gigabit switch. One computer,(A), was
designated to run the client operating systems (Windows 2000 Professional & Windows
XP Professional) while computer (B) was designated to run the server (Windows 2003
Server). On each of the two computers we ran VMware Workstation v5.5. VMware
Workstation allows us to run different virtual machines on the same physical machine.
”The computer and operating system instance that executes the VMware Workstation
process is referred to as the host machine. Instances of operating systems running in-
side a virtual machine are referred to as guest virtual machines.” [7] In our setup, we ran
Windows XP Professional as the host operating system. On computer (A), we ran Win-
dows 2000 Professional and Windows XP Professional as the guest operating systems.
On computer (B) we ran Windows 2003 Standard server.

We configured the server to act as a domain controller and thus, operate as a KDC.
We also changed the group policy settings to remove complex password requirements
set by default. This was done to help mimic the real world, where some passwords are
only 4 or 5 characters long. We then joined both client operating systems, Windows
2000 Professional and Windows XP Professional, to the domain we called ”lab.dom”
running on the Windows 2003 Standard Server, computer (B). On the server, we created
some test accounts with varying length passwords. For our test lab, we were presented
with the choice of where to place the packet sniffer. A packet sniffer is a program that
captures packets passing over a digital network such as a program called Ethereal. We
decided to put the program on the host of computer (B) which was running Windows
XP Professional. VMware guest operating systems share the physical network adapter
of the host. Thus in essence, it is similar to having a hub between the virtual network
adapter and the physical adapter. Conversly we could have chosen to put the sniffer on
the host of computer (A), or on a totally separate computer, attached to either computer
(A) or computer (B) via a hub. It is not easy for an attacker to sniff a switch. Switching

273



Fig. 4. Lab setup.

technology, by definition, switches packets from one destination port to another, without
passing it to any other port. An attacker might try to enable port shadowing/forwarding,
if he/she has access to the managed switch, otherwise he/she might try to perform ARP
poisoning, which is not trivial and has a low success rate.

Here the steps peformed to conducte the attack:

1. Windows 2003 server is started on computer (B) as the guest OS.
2. Either Windows XP Professional or Windows Professional is started as the guest

OS on computer (A).
3. Ethereal is started on the host of computer (B).
4. A log-on to the domain with a username and password takes place on the guest

OS on computer (A). So, CTRL-ALT-DEL is pressed and the login information is
entered.

5. Ethereal is stopped. Here we are looking for AS-REQ (specifically PADATA) sent
from the TGS (Windows 2003 Standard Server) to the client (being either Windwos
XP Professional or Windows 2000 Professional).

6. That data is exported and transformed using a program called dumpasn1 [8] before
we run it through our program which we detailed earlier.

The time needed to find the password is dependent on the length and complexity of
the password. We executed the program twice, initially using the timestamp informa-
tion, and again without using the timestamp information. The purpose was to compare
the efficiency gains in terms of the average time per password try.
The figure below [see Fig. 5] shows the Kerberos packet captured by Ethereal formatted
in ASN.1. It is noteworthy to mention that it was necessary to adjust our program be-
cause there is a minute difference between a Windows 2000 Professional and Windows

274



Fig. 5. ASN.1 on different platforms.

XP Professional packet. We ran our program against passwords with lengths ranging
from 4 to 6 characters. We found that using a timestamp required on the average 26%
less time to find the password, than not using a timestamp.

We ran a total of 11 rounds. The first 2 passwords were four characters, followed by
7 five-character passwords, and ending with 2 six-character passwords. The blue color
line represents the time in seconds required to find the password using the timestamp in-
formation. The other line, represents the same thing but without the use of a timestamp.
It is very evident from the graph in figure 4 that the 26% becomes more noticeable as
we see longer passwords [see Fig. 6].

Fig. 6. Time comparison.

3 Possible Remedies

There are a few measures an administrator can take to dramatically increase the dif-
ficulty of a potentially successful attack using the method described above. However,
it should be noted that each such ”solution” has its own tradeoffs. For example, an
administrator can specify within their policy to expire the passwords more frequently.

275



Therefore, if a user’s password is ultimately compromised, the attacker has a limited
amount of time to perform an attack. In addition, the administrator can force users
to choose a longer minimum password or require complex passwords used, or both.
Complex passwords use upper-case and lower-case letters, include one or more digits,
include special characters, and prohibit the use of dictionary words. The length and vari-
ability of the password would greatly increase the time needed to crack a password via
brute force methods. A major tradeoff of the above methods is that an average user has
the tendency to forget the password and therefore would tend to write it down. Other
approaches would include the use of different login mechanisms such as smart cards
and/or biometrics. Tunneling protocols, such as VPN, can also be used to protect the
entire transaction. In each case, there will be tradeoffs such as cost, CPU overhead, and
other factors that will determine the best solution for a specific environment.

4 Related Work

In a paper titled, Limitations of the Kerberos Authentication System, Bellovin et al of
AT&T Bell Laboratories present a number of flaws and weaknesses exhibited by a
Kerberos-utilizing system [9,10]. However, it was explicitly indicated that since the
release of their paper, ”a new draft of the Version 5 protocol has been released. . . [So]
many of the problems we discuss have been corrected”. Initially, when a client requests
a TGT, the ticket received by the client in a message that is encrypted by a key that is
derived from the client’s password. An attacker would be able to make the same request
for any user. Thus allowing the attacker to choose any user to do an offline brute force
attack and retrieve their password. In Kerberos V the preauthentication step prevents
this, and is therefore a slightly different attack vector on user authentication.

In another paper titled, Password Attack on Kerberos V and Windows 2000 [11] use
timestamps to attack the preauthentication information to obtain the password. How-
ever, the author does not attempt to measure or analyze the performance gains by uti-
lizing the timestamp information.

5 Conclusions and Future Enhancements

Through our research, we hope to have proved the feasibility of exploiting the weak-
ness of the preauthentication phase by a determined attacker. We observed a noticeable
saving in time when we realize the constant properties of the timestamp that allows
us to skip the last HMAC computation for every decryption sequence. We have two
main goals in the future. The first is to run this process against several popular crypto-
graphic libraries to validate the results and make sure the results are not an artifact in
the implementation of OpenSSL. Secondly, we are looking to further reduce the time
taken to obtain the password by making a time-space tradeoff and pre-computing the
first few operations in the decryption process. This attack is of concern because Ker-
beros is widely deployed in government institutions, many corporations and enterprises.
Also, Kerberos is employed by major operating systems; the users of such systems are
therefore dependent on it for authentication. Too many administrators put their trust
in systems that they perceive to be secure while being negligent in taking preventive

276



approaches within their policy. These administrators believe that a person who authen-
ticates with Kerberos is who they say they are. This is a very dangerous assumption in
environments where authentication is critical. If a malicious hacker is able to imperson-
ate a user, by employing the above mentioned method, he/she would threaten the notion
of privacy as we know it.

References

1. Steiner J., Neuman C., & Schiller, J. (1988) Kerberos: An Authentication
Service for Open Network Systems. Retrieved January 15, 2005, website:
ftp://ftp.pdc.kth.se/pub/krb/doc/krb evol.ps

2. Kohl, T., Neuman, BC., & Tso, T. (1994). The Evolution of the Kerberos Authentication Sys-
tem. IEEE Computer Society Press, ftp://athena-dist.mit.edu/pub/kerberos/doc/krb evol.PS

3. Wu, T. A Real-World Analysis of the Kerberos Password Security. Retrieved
December 3, 2005 from Stanford Univeristy Computer Science Web site:
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/papers/wu.pdf

4. Kohl, J. & Neuman C. (1993). The Kerberos Network Authentication Service (V5). Retrieved
December 7, 2005 from Digital Equipment Corporation, http://www.ietf.org/rfc/rfc1510.txt

5. Kasslin, K, & Tikkanen, A (2004). Attacks on Kerberos V. Retrieved December 5, 2005 from
http://users.tkk.fi/ autikkan/kerberos/

6. Swift, M. & Brezak, J. (2002, May). The Microsoft Windows 2000 RC4-HMAC Ker-
beros encryption type. Retrieved December 4, 2005 from http://ftp.ist.utl.pt/pub/drafts/draft-
brezak-win2k-krb-rc4-hmac-04.txt

7. Wikipedia (2006, March 21). VMware. Retrieved December 2, 2005 from , Virtualization
Software Web site: 9 http://en.wikipedia.org/wiki/VMware

8. Gutman, P. Dumpasn1. Retrieved November 11, 2005 from University of Auckland, Depart-
ment of Compouter Science Web site: http://www.cs.auckland.ac.nz/ pgut001

9. Bellovin, S. M., & Merrit, M. (1991). Limitation of the Kerberos Authentication
System. Retrieved December 12, 2005 from AT&T Bell Laboratories, Web site:
http://www.cs.columbia.edu/ smb/papers/kerblimit.usenix.pdf

10. Belloven, S. M., & Merritt, M. (1990). Limitations of the Kerberos authentication system.
ACM SIGCOMM Computer Communication Review, 20(5), 119-132.

11. Password Attack on Kerberos V and Windows 2000. Last updated: 9,
May 2003. Retrieved on February 8, 2006 from http://www.users.tkk.fi/ au-
tikkan/kerberos/docs/phase1/pdf/LATEST final report.pdf

277


