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Abstract. We are motivated to complement our methodology by integrating 
collaboration diagrams to facilitate the specification of capsules in UML-RT 
design models. An improved systematic transformation method to derive a cor-
rect and complete formal system specification of real-time systems is estab-
lished. This article aims at integrating temporal requirements in the design 
stage of the life cycle of a real-time system, so that scheduling and dependabil-
ity analysis can be performed at this stage. The application of CSP+T process 
algebra to carry out a systematic transformation from a UML-RT model of a 
well known manufacturing-industry paradigmatic case, the “Production-Cell”, 
is also presented. 

1 Introduction 

UML (Unified Modelling Language) [1], has become one of the most widely used 
standards for modelling and designing the industrial software systems, essentially, 
because it is a semi-formal notation relatively easy to use and well supported by tools. 
An extension to UML, named UML-RT [2], has been defined on the basis of ROOM 
language [3], an architectural definition language specifically developed for model-
ling complex real-time software systems. However, the lack of formal semantics for 
UML-RT makes it very difficult to assure the correctness of a hard real-time and 
critical system under development  

Formal methods [4] have demonstrated to be effectively applicable in the industrial 
development of real-time systems, and they are advocated as a means of providing a 
higher level of confidence in the correct functioning of software. Nevertheless, they 
have not the same acceptance in the industry as semi-formal ones, such as the case of 
UML. The problem is that formal methods are hard to master and too expensive to be 
used extensively during the entire software development process [5].  

On the other hand, it is well known that the combination of UML modelling nota-
tion with formal specification languages may take advantage of their benefits and 
overcome its deficiencies if the integration scheme between formal constructs and 

Benghazi Akhlaki K., I. Capel Tuñon M., A. Holgado Terriza J. and E. Mendoza Morales L. (2006).
Formal Specification of Real-Time Systems by Transformation of UML-RT Design Models.
In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 16-25
DOI: 10.5220/0002503200160025
Copyright c© SciTePress



UML analysis entities is well performed.  
In a previous work [6], we have presented a software specification method that 

combines UML-RT and the CSP+T formal specification language. The method is 
based on an initial UML-RT model of the system under development, which uses 
extended UML State and class diagrams to model the behaviour, timing and architec-
tural aspects of the system. Then, the UML model is mapped into CSP syntactical 
terms by applying a set of transformation rules, which permits to derive a formal 
system specification of a target system. 

Typically, the complete specification of the structure of a complex real-time sys-
tem is obtained through a combination of class and collaboration diagrams [7]. For 
this reason, we are now motivated to complement our previously proposed procedure 
with collaboration diagrams, to obtain a more complete and modifiable system speci-
fication of real-time systems. Similar approaches have been proposed in other arti-
cles, for instance, [8] maps UML-RT capsules to the formal language Circus [9]. Our 
approach differs from the aforementioned in that it integrates the specification of 
timing properties, and gives a complete view of the system behaviour. It can therefore 
be said that the specification of RTS from a global view (i.e., including behavioural, 
static and timing aspects) becomes feasible in a flexible and easy way. As to show its 
applicability, we have used the method to carry out the specification, including real-
time constraints, of two basic components of the “Production Cell”, which is a well 
known manufacturing-industry paradigmatic case. The rest of this paper is structured 
as follows: section 2 provides an overview of the UML-RT, section 3 describes the 
CSP+T Language and section 4 explains the system specification method proposed 
here. In Section 5, we present the specification of central elements of the Production 
Cell components (the robot and the Press). Finally, some conclusions are drawn and 
the references are listed. 

2 UML-RT 

UML-RT extends the basic UML analysis entities with constructs to facilitate the 
design of complex embedded real-time software systems. The origin of the UML-RT 
modelling notation is the real-time specific modelling language ROOM, which has 
been modified to follow the UML standardized framework. The language focuses 
primarily on the specification of the architecture of software systems, i.e., their major 
components, the externally visible properties of these, and the communication be-
tween them. The importance of the software architecture definition in the develop-
ment cycle is argued by considering that decisions made during the architectural de-
sign will have a very important impact on the later system design, being also this 
phase that can profit the most from a good modelling language. 

UML-RT adds four new building blocks to the standard UML (see Fig. 1): 
Capsules. A capsule is a stereotype of a UML class entity with some specific fea-

tures. Capsules are constructs for isolating functionality with a very clearly defined 
interface. Each capsule operates according to a state diagram, which responds to 
events and generates actions through its ports. 

- Ports. A port represents an interaction point between a capsule and its environ-
ment. They convey signals between the environment and the capsule. The port nota-
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tion is shown as a small hollow square symbol. If the port symbol is placed overlap-
ping the boundary of the rectangle symbol, it denotes a public visibility. If the port is 
shown inside the rectangle symbol, then the port is hidden and its visibility is private. 
When viewed from within the capsule: two types of ports are defined: relay and end 
ports. A relay port transmits signals between a capsule and its subcapsules. An end 
port is a component that represents the transmission of signals between the capsule 
and its Statechart. 

- Protocols. A protocol captures a set of valid communications (signal exchanges) 
between two or more capsules.  
    - Connectors. A connector is an abstraction of a message-passing channel that 
connects two or more ports. Each connector is typed by a protocol that defines the 
possible interactions that can take place across that connector.  

+ /  P1
 : Pcole1

+ /  P1
 : Pcole1

+ /  P2
 : Pcole1

+ /  P2
 : Pcole1

+ /  P3
 : External

+ /  P3
 : External

#  /  p4
 : Pcole2

#  /  p4
 : Pcole2

+ /  p5
 : Pcole2

+ /  p5
 : Pcole2

 
Fig. 1. Port notation - collaboration diagram.  

3 CSP+T 

CSP+T [10] extends the well-known CSP [11] [12] (Communicating Sequential Proc-
esses), formal specification language with timing primitives. CSP is an event based 
notation primarily aimed at describing the sequencing of events within process behav-
iour and the synchronisation (or communication) between processes. CSP+T, which 
is a new real-time specification language, extends CSP, by introducing a new set of 
constructs, to allow the description of complex event timings from within a single 
sequential process, thereby providing a valuable insight into the behavioural specifi-
cation of real-time systems. 

The syntax of CSP+T, which is a superset of the CSP one, has been adapted to our 
method. The differences between the two formal specification languages are de-
scribed as follows: 

- Every process P defines its own set of communication symbols, termed the com-
munication alphabet α(P). These communications represent the events that process P 
receives from its environment (constituted of all the other processes in the system) or 
that occur internally, such as the event τ which is not externally visible. External 
events can be understood as the pure synchronization between an asynchronous proc-
ess and its environment. Any type of event causes a state change of the process in 
which it is observed. 

- The communication interface Comm_act(P) of a given process P contains all the 
CSP-like communications, i.e. the synchronous, one-to-one, communications between 
parallel processes, in which process P can engage and it also includes the alphabet 
α(P), representing signals and events occurring in P. Therefore, the communications 
of process P are given by the set Comm_act(P)= (Interface(P)∪ α(P)). 
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- A new operator, ∗ (star), is introduced in the programming notation to denote 
process instantiation. An instance of a process term must be created before it can 
execute. This event is unique in the system since it represents the origin of a global 
time at which processes can start their execution. As an example, let us consider a 
process P that initially can only engage in the event a. In CSP, this process would be 
denoted as: P = a →STOP, but it must be instantiated before being executed in 
CSP+T. Given P', the timed version of P, which is instantiated at time 1, where s is a 
time stamp associated to the abstract communication a, the specification of P' be-
comes, 

P'= 1.∗ → s.a → STOP where s ∈[1, ∞[ 
It should be noted that event a occurs only once in the interval. 

− A new event operator >< is introduced to be used jointly with a “marker vari-
able” to record the time instant at which the event occurs. ev>< v means that the time 
at which ev is observed during a process execution is in the marker variable v. The 
value of time stamps is taken from the set of positive real numbers, so that successive 
events form a non-decreasing monotonic sequence. As several successive events can 
instantiate the same variable at different times, if we specify the process P as follows: 

P= 1.∗ → a >< var → STOP 
- For each process execution, the marker variable var will record the correspond-

ing time value at which event a occurred, and it will always satisfy var > 1. 
The scope of marker variables is strictly limited to one sequential process. They 

cannot be referenced or accessed in any other way within a concurrent composition of 
processes. 

- Each marker event is usually associated with a time interval, which is called its 
“event-enabling” interval and represents the period of time over which the event is 
continuously available to the process and its environment. During this interval, the 
event can be detected, then provoking an instantaneous change of state either in the 
process or in the environment. The initial times for intervals are relative to a preced-
ing event or to a marker variable, which is instantiated during current process execu-
tion. A process is considered to be the STOP process if it cannot engage in the marker 
event or in an alternative event during the enabling interval. Let us suppose, for in-
stance, that there is a process P, a process which can only engage in event a, which 
can only occur between 1 and 2 units of time from the process instantiation time (the 
preceding event), recording in the marker variable v the time at which the event a 
occurred. The specification of this process is therefore: 

P= 0.∗ → [1, 2].a >< v → STOP 
After the process execution, the value of the marker variable satisfies the inequal-

ity 1 ≤ v ≤ 2. The enabling interval can be defined in a more compact way by using 
the function I, I (T,v), where v is the marker variable that records the time instant at 
which the preceding event occurred, and T defines the duration of the time interval 
starting at the time instant stored in v. An example is: 

P = 1.∗ → a >< v → I(3,v).c → d → STOP , 
in which the event c can occur at least three time units after the process P engages in 
the event a. 

If the marker variable does not appear in the signature of function I, the enabling 
interval is relative to the previous marker variable in the scope of the process, other-
wise the enabling interval for that process is considered the default interval [0, ∞]. 
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The times for events are absolute and the times for intervals are relative to the preced-
ing time stored in marker variable. 

- The semantics of the parallel composition of two processes with enabling inter-
vals which must be synchronized depends on whether the values of these intervals are 
identical, partially overlapping or disjoint. In the first case, the processes synchronize 
on the common initial events, as established in CSP communication semantics, i.e., 
given P= E1.Q and R= E2.S, then  

P||Q ≠ STOP iff α(Q)∩ α(S)≠Ø ∧ E1∩E2≠Ø 
In the case of disjoint enabling intervals (E1∩ E2 = Ø), the parallel composition of 
processes behaves as the STOP process. 

4 Formal Specification and Transformation Methodology from 
UML-RT 

To manage the complexity of real-time systems, a bottom-up, compositional strategy 
is proposed here. The methodological procedure consists of first dividing the target 
system into a set of subsystems and then considering the architecture of the entire 
system model as a net of capsules connected by ports that intercommunicate accord-
ing to a previously defined protocol. For instance, the system Sys in Fig. 2.a has been 
divided into two subsystems (Capsules). 

- The entire system architecture is modelled using a Class Diagram, which repre-
sents each system components by a UML capsules, and their interactions are defined 
by a set of operations (signals) encapsulated in protocols.  In Fig. 2a the signals e1, e2 
of the protocol PROT-AB are the events exchanged between the capsules Caps A and 
Caps B. 

- Subsystems internal structure is described by a Collaboration Diagram, which 
identifies the components of the lower level subsystems and how they are connected. 
In Fig. 2b Caps A is composed of the subcapsules X and Y that are connected 
through the ports Px and Py. Caps A and caps B communicate through the ports Pa 
and Pb which convey "Prot_AB" signals between these capsules. 

- Subsystems behaviour and timing requirements are modelled using the extended 
State Diagram (UML-SD), established in a previous work [6], which extends the 
standard UML-SD with new constructs inspired on CSP+T syntax to capture timing 
properties. The extension consists of an annotation for describing timing events, ena-
bling intervals assigned to events to restrict their time execution, and a new type of 
transition labelled with a special event, called timeout. Timeout triggers a state 
change to a Skip state. In Fig. 2c, we mark the occurrence of the events e1 by the 
annotation te1= gettime (), and we restrict the execution of the event e2 to an interval I 
by the annotation I.e2. 

To overcome the lack of  formal semantics of UML and to ease the usually diffi-
cult applications of formal methods, we  systematically derive the formal specifica-
tion in terms of CSP+T from the UML-RT models, by applying a set of rules already 
established in previous works [6] [13]. 
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Fig. 2. Real-Time system Model 

The complete system specification is obtained by the composition of a set of proc-
esses that specify subcapsules by using CSP operators, such as the parallel composi-
tion one. By the example shown in Fig.2, we can describe the compositional con-
struction of a system specification. We first specify the entire architecture by map-
ping the class diagram (Fig. 2.a) into CSP process terms as discussed in [6]: 

 
Sys = (CapsA||CapsB)\{ev1, ev2, ev3}. 
 
Then, we specify the internal structure of each capsule on the class diagram by 

mapping the collaboration diagram into CSP processes, according to a procedure 
established in [13]. The transformation of CapsA in a collaboration diagram (Fig. 2.b) 
yields the next CSP syntactical terms: 

 
X = X [Px → C1], Y = Y[Py → C1,P’y → C2]        
CapsA = (X || Y) \ C1 

The specification technique is compositional.  The specification of the dynamic 
behaviour of a capsule can therefore be obtained by composing the individual sub-
capsule behaviour specifications. From the transformation of the SD that represents 
the behaviour of capsule X and capsule Y (Fig. 2.c), we obtain: 
X= Start → S1 
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S1= ev1><tev1 → S2 
S2= I(T, te1).ev2 → S3 
S3= ev3 → S1. 

 
Y= Start → Sy1 
Sy1= evy → Sy2 
St2= ey → ST1. 

The behaviour of CaspA is obtained by parallel composition of X and Y processes.    

5 The Production Cell Case Study 

The case study [14] presents a realistic industry-oriented problem, where safety re-
quirements play a significant role and can be met by the application of formal meth-
ods. The design activity of the Production Cell (PC) system is of manageable com-
plexity; thus, it allows us to experiment with several alternative designs before mak-
ing the decision to take a particular one. Fig. 3a shows a top view of the plant that 
holds the PC. 

   
 3a. Top View of the plant 3b. Robot and Press 

Fig. 3. Production Cell. 

The model includes several machines that must be coordinated in order to forge 
metal blanks. The machines process metal blanks at the greatest possible speed, and 
at the same time, they must avoid dropping blanks to the floor or colliding to each 
other. There is a conveyor belt that feeds blanks into a rotary table. The table rotates 
and lifts the blanks so they can be picked up by the first robot arm. The robot has two 
arms, one for feeding the press with blanks and the other for removing forged blanks 
from the press. The robot is very efficient and it can simultaneously use an arm to 
place a forged blank into the deposit belt and the other arm to convey a new blank to 
the press. 

We decide to model the central elements of the system: the press and the robot. 
The robot task consists in taking metal blanks from the elevating rotary table to the 
press and transporting forged plates from the press to the deposit belt. The task of the 
press is to forge metal blanks. The above two components work simultaneously: the 
mobile part of the press is initially in the middle position until the robot places a 
blank into the press. After being loaded, the press starts moving upwards and presses 
the blank until it becomes forged. It starts moving downwards to the unloading posi-
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tion and finally the robot picks up the forged piece and the cycle starts again. Figure 
3b graphically represents these steps.  

To specify the system composed of the Robot and the Press components, we fol-
low the methodology described in the previous section. First, we decompose the sys-
tem into two principal components: Press and Robot, which can be separately mod-
elled as capsules in UML-RT notation.  

 The architecture of the system composed of the robot and the press is specified by 
mapping the class diagram into CSP processes. 

Table. 1. Model of the Robot and the Press interaction. 

UML-RT Model Derived Specification on CSP+T terms 

Robot

+ /  Pr : Prot_RP

<<Capsule>>
Press

+ /  Pp : Prot_RP~

<<Capsule>>Prot_RP

forge ()

PrsRdload ()
PrsRdunload ()

<<Protocol>>

+ /  Pr+ /  Pr + /  Pp~+ /  Pp~

Robot_Press

+ /  Prp : Prot_RP

<<Capsule>>

 /  robotR1 /  robotR1

 /  pressR1 /  pressR1

+ /  Prp+ /  Prp

 

 
 
Robot-Press = (Robot || Press) \ 
{forge, prsRdload, prsRdunload} 

We model the behaviour and the internal structure of each capsule by using the ex-
tended UML state diagrams and collaboration diagrams, respectively. The application 
of the set of rules proposed by the methodology allows us to derive system specifica-
tions in CSP+T terms, as it is shown in Tables 2 and 3. 

Table. 2. Model and the derived specification of the behaviour and the internal structure of 
Robot. 

UML-RT Model Derived Specification on CSP+T terms 

 /  Arm1

 /  RC /  Arm2

+ /  Pr
 : Prot_RP

+ /  P1
 : C1

+ /  P11
 : C1~

+ /  P1r
 : Cr

+ /  P12
 : C2

+ /  P2
 : C2

C1

+ /  Pr
 : Prot_RP

 /  Arm1

+ /  P1
 : C1

 /  RC

+ /  P11
 : C1~

+ /  P1r
 : Cr

+ /  P12
 : C2

 /  Arm2

+ /  P2
 : C2

C1

C2C2 CrCr

 

 
RC= RC [P12→ C2, P11 → C1, P1r → Cr] 
Arm1= Arm1 [P1 → C1] 
Arm2= = Arm2 [P2→ C2] 
Robot = (RC || Arm1 || Arm2)\ C1,C2. 
 

Stopped Extending

Retracting

Initial

Retrac t Retrac ted

Extended

Extend

Initial

Retrac t Retrac ted

Extended

Extend

 

Arm1= start → A1_stopped 
A1_stopped= retract1 → Retracting1| ex-
tend1 → extending1 
Retracting1= retracted1 → A1_stopped 
Extending1= Extended1 → A1_Stopped 

Waiting_for_Press_Unloading Waiting_for_Arm2_to_Extend

Waiting_for_Arm2_to_retract

t1

Initial

t2

t1

t1

t1t1

t1

Initial

t2

PRUnload^a2.Extend

a2extended^a2.Stop^a2.Load^retract

I.a2retracted^a2.Stop̂ Press.unloaded

tpu=gettime()

tex=gettime()

tload=gettime()
t-now>tpos2+T2

tretun=gettime()t1

t1

 

RC = Start → WFT 
WPU= ((I(TPR,tpos2).PrUnload >< tpr → 
A2.extend) → WA221) | I(TTR,tpos1) → time-
out  
WA2E2=I(TEX,ttr).A1Extended><tex → A1.stop → 
A1.load >< tload → WA1R1 
WA1R1= I(Tret,tload).A1retracted><tret → 
A1.stop → Table.Unload → Turn(left) → CWW 
... 
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Timing requirements are also taken into account to avoid a collision between two 
components. For instance, the press may only move when no robot arm is positioned 
inside it. So, we mark in the Robot SD the time when the arm1 is retracted ( back to 
its rotating position ) by the annotation tret= gettine(), and we  restrict in  the SD of 
the press, the occurrence of the event move_up  within an interval depending of tret by 
the annotation: I(T, tret).   

Table. 3. Model and the derived specification of the behaviour and the internal structure of 
Press. 

UML-RT Model Derived Specification on CSP+T terms 

 /  Plant /  PC

+ /  Pp
 : Prot_RP~

+ /  Ppr
 : Cpp~

+ /  Ppc
 : Prot_RP~

+ /  P1p
 : Cpp

+ /  Pp
 : Prot_RP~

 /  Plant

+ /  Ppr
 : Cpp~

 /  PC

+ /  Ppc
 : Prot_RP~

+ /  P1p
 : Cpp

CpCp CppCpp

 

PLANT = Plant[Ppr → Cpp] 
PC= PC[Ppc → Cpp, P1p → Cp ]  
 
Press = (PLANT || PC) \ Cpp 

Loading Pressing

Unloading

Initial

Moves_up

Moves_up Moves_down

Initial

Moves_up

Moves_up Moves_down

I(now+T1.load).

Press_top^I(now+T1.load).

 

 
PC = Start → Loading 
Loading= forge → timeout → Pressing 
Pressing= presstop → moves(down) → 
Unloading 
Unloading= unloaded → timeout → 
moves(up) 

At_Middle

Stop

Going_Up

UpGoing_Down

Initial

Moves_Stop
Moves_Up

Press_Top

Moves_Down

Press_Bottom

Press_middle

Initial

Moves_Stop
Moves_Up

Press_Top

Moves_Down

Press_Bottom

Press_middle

tup=gettime()

I.Press_Middle[Go_Middle]

 

PLANT= Start → Atmiddle 
Atmiddle= moves (Stop) → Stopped 
Stopped= moves(up)>< tup → Going_up 
Going_up= I(Tmid, tup)&gomiddle → at-
middle | press(top) → up. 
 
Up = moves(down) → Going_down 
Going_down= press(bottom) → Stopped 

6 Conclusions 

In this work, we have complemented our methodological approach discussed in a 
previous paper [6], with the integration of a collaboration diagram in order to capture 
the internal structures of system components and their connections. These new con-
tribution strengthens our method, since we can systematically obtain a detailed sys-
tem specification from an initial UML model of high level of abstraction. We have 
profited of the UML Object Oriented Paradigm to obtain a compositional technique 
based on specifying each system capsules individually and subsequently composing 
them by using CSP+T operators. Timing properties specification has been included in 
the proposal, so that are taken into account to assure that real-time system properties 
are fulfilled. 
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