An Approach for Applications Suitability
on Pervasive Environments*

Andres Flores and Macario Pol®

1 GlISCo Research Group
Departamento de Ciencias de la CompuiaclUniversidad Nacional del Comahue,
Buenos Aires 1400, 8300, Neuquen, Argentina

2 Alarcos Research Group
Escuela Superior de Infor@tica, Universidad de Castilla-La Mancha,
Paseo de la Universidad 4, 13071, Ciudad Real, Spain

Abstract. This work is related to the area of Component-based Software Devel-
opment, particularly to largely distributed systems as Pervasive Computing Envi-
ronments. We are focused on the automation of a Component Integration Process
as a support for run-time adjustments of applications when the environment in-
volves highly dynamic changes of requirements. Such integration implies to eval-
uate whether components may or may not satisfy a given model. The Assessment
procedure is based on syntactic and semantic aspects, where the latter involves
assertions, and usage protocols. We have implemented on the .Net technology
the current state of our approach to gain understanding about the complexity and
effectiveness of our approach.

1 Introduction

Pervasive Computing Environments (PvCEnNv's) should support the 'continuity’ of users’
daily tasks across dynamic changes of operative contexts. However functionality is usu-
ally shaped as a set of aggregated components which are distributed among different
computing devices. On changes of availability of a given device the involved component
behaviour still needs to be accessible in the appropriate form according to the updated
technical situation. This generally makes users to be involved on a dependency with the
underlying environment and increases the complexity of its internal mechanisms [1].
Applications composed of dynamically replaceable components imply the need of
an appropriate Integration Process according to Component-based Software Develop-
ment (CBSD) [2, 3]. For this an Application Model may provide the specification of a
required functionality in the form of the aggregation of Component Models A Compo-
nent Model provides a definition to instantiate a component and its composition aspects
through standard interactions and unambiguous interfaces [4, 5]. In order to assure the
adequacy of a given component with respect to an Application Model there is a need

* This work is supported by the projects: CyTED-CompetiSoft, UNCo-MPDSbC (04-E059) and
UCLM-MAS (TIC 2003-02737-C02-02)

Flores A. and Polo M. (2006).

An Approach for Applications Suitability on Pervasive Environments.

In Proceedings of the 3rd International Workshop on Ubiquitous Computing, pages 71-78
DOI: 10.5220/0002504000710078

Copyright © SciTePress

72

to evaluate its Component Model. Hence we present an Assesgrocedure which
can be applied both on a development stage and also at ren\ifa compare func-
tional aspects from components against the specificatioviged by the Application
Model, which is component-oriented. Besides analysingpmumment services at a syn-
tactic level, its behaviour is also inspected thus embps@mantic aspects. The latter is
done by abstracting out the black box functionality hiddemomponents in the form of
assertionsand also exposing its likely interactions by means ofubage protocol6]

— also called choreography [7].

We illustrate with a simple example both the way a functidpa composed from
distributed disparate components and how the Assessnagdgure helps to assure the
suitability of a certain involved component. We have impdsited on the .Net technol-
ogy the current state of our approach. The use of certaitribuihechanisms of .Net
allow us to retrieve component interfaces and also to irmate information for eval-
uation. Though being simple, this prototype give us a reimgrdata on possibilities
to make concrete our proposals. All the applied techniqueselected according to
our goal of achieving consistent mechanisms to assure edaiponent integration. As
we proceed with our work, reliability is mainly consideraihice we focus the whole
integration process for those challenging systems as PWEEN

This paper continues by presenting the proposal for anriatieg process on Sec-
tion 2. Section 3 illustrates the approach with a simple chisdy. Section 4 presents
the .Net prototype. Conclusions and future work are preseaftterwards.

2 Component Assessment for Application I ntegration

In previous works [8, 9] we have described a preliminary nifatghe assessment pro-
cedure. In this paper we extend the model by adding more &spaecerning semantic
information in the form of the abstract behaviour for a comgrat as well as the proto-
col of use. We assume that a component under evaluationdsbatigfy a certain degree
of compatibility with respect to a given requirement speaifion. Such specification is
assumed as being part of an Application Model which contiescomponents and
describing the required functionality in a component-otégl form by including the
following aspects:
1. Expected InterfaceSignatures of expected services.

2. Abstract BehaviourAssertions for the component and its services.
3. Usage ProtocalThe expected order of use for its services.

Based on this we make the following consideration upon sirit§yl between com-
ponents. A componer offers similar functionalities to the expected oné$ when
the three following conditions are properly satisfied:

Condition 1.ComponenB offers, at least, the same or equivalent services as those offgred b

Interface(A) C Interface(B)
Condition 2.Abstract behaviour of componeBtis similar or equivalent to componeAt.
Behavi our (A) ~ Behavi our (B)

3 We use~ to denotes “equivalence”, which depends on the element to be cothaadethe
applied technique

73

Condition 3.The protocol of use for services on both components is equivalent.

UsagePr ot ocol (A) =~ UsagePr ot ocol (B)

Condition 1 is true when there exists equivalence on coomdipg services from
both interfaces. This is fulfilled when the five next condisaare satisfied:

Condition 1.1.The amount of services dhis at least the same asAn

Condition 1.2.The return type of a pair of services of Aandsb of Bis equivalertt.
Condition 1.3.The number of parameters on servisasof A andsb of B is the same.
Condition 1.4 Parameter types on a pair of servieesof A andsb of B are equivalent.
Condition 1.5Parameters inside the list of parameters on a pair of sersges A andsb of B
are in the same order.

Condition 2 is true when there exists equivalence on the gmd-post-conditions
for corresponding services from both components. Assestare boolean functions
composed of expressions connected by operataaad Vv [10]. A servicesa of A is
equivalent to a serviceb of a componenB when the three next conditions are satisfied:

Condition 2.1.Data types included on expressions of assertiorssaadndsb are similar.
Condition 2.2 Pre-condition okb is at most as restricted as pre-conditiorsaf

Pre-cond. oEb may have less expressions tharsa At least one expression @b’s pre-cond.
must be equivalent to a corresponding onesan pre(sbh) < pre(sa)
Condition 2.3 Post-condition ob is at least as restricted as post-conditiors af

Post-cond. o6b may include more expressions tharsia. All expressions orsa’s post-cond.
must be equivalent to the corresponding oneslon post (sb) > post(sa)

Condition 3 is true when the usage protocol on both compasnexress a similar
order for services. We describe usage protocols by meamrgofar expressions where
the operators are concatenatief, @lternative {) and iteration £) — the order is ac-
tually described by the concatenation operation. The anity| then, is based on the
following conditions:

Condition 3.1An expression-£) onB must be at least as smaller as the corresponding expression
(+) for A—e.g.(a+b-+c) fromBand(a’ +b’) from A.

Do not affect equivalence if an extra service fr@1s described inside an expression)(

Condition 3.2For all subexpressions into an expressigyoh Athere are equivalent counterparts

in the same order into the corresponding express#rfar B — e.g.(ae(b+c)) from B and

(a’ ob’) from A.

Condition 3.3.For all subexpressions composed of just one service into a exprgs$ion B,

there are equivalent counterparts in the same order into the corgisgaxpressions() for A —
e.g.(aebec) fromBand(a’ ec’) from A are not equivalent.

In order to understand the way these conditions are usedtiogliish compatibili-
tiy we present in the next section a simple example whereghessment procedure is
applied.

4 For built-in types, types oab must have at least as much precision as typesaohave — e.g.
compare double w.r.t. integer.

74

3 Case Study

Suppose we represent a PvCEnv for a Museum, where therelmtddexample a Tour
Guide application to propose different paths accordindghéouser’'s dynamic choices.
When the user enters the museum may carry a computing deveBAesor a smart
phone) and through an automatic detection the device isifdhand connected to the
environment. Upon each visited art piece (e.g. paintingcalpture) descriptions and
information of particular interest to the user is displapadthe PDA or spoken through
the phone. Figure 1 shows a likely scenario of the preseratee study.

X
.,
,

Fig. 1. Likely scenario of a PvCEnv for a Museum.

A related application could allow creating albums with iraa@f the art pieces vis-
ited by the user. The Album Organizer application — mayberdoaded into a user’s
notebook recognized by the environment — may allow creaisgrt of document with
images and some notes written by the user. Notes could xlstorseparated text files
and bind to the document by means of hypertext links. Thusydirae the user needs
to write or edit a note, a proper editor is provided. The usay miso be allowed to
print a selection of pages of the document, or even send #atatt album by e-mail to
easy carrying those files. We focus on this last applicatiahvae analyse its potential
required components. There could befibbumOr gani zer component to represent
the main logic of the application, which could have an ad-bmghisticated album vi-
sual editor or a web-style editor in which is additionallgué&ed a generic web browser
— the visual editor also depends on the actual used devicen&king notes, different
components could be used as a simple somaf ePad, Wr dPad, etc — accord-
ing to the underlying software platform. To send e-mailsligptions likeCut | ook,
Eudor a, etc, could be used, and to provide a printer service diftekind of printers
and ad-hoc wireless sensors should be available. Otheramnpis concerned with
the data base for images and descriptions of art piecestd=®yshows a diagram with
the likely comprised components and devices for the Albuge@izer application.

Suppose a user needs to write a note by using a notebook whistarLinux plat-
form. One available text editor iSEdi t . The environment then evaluates this com-
ponent so to ensure it is appropriate to fulfill the task. &wihg can be seen the
interfaces of both th&Edi t component and the required component model named

75

Internet Mozilla
Explorer
%Netscape

| {3 e |
5
Art_Image Art_Data A|bum
—_— Organizer

Word Note
Pad Pad I ‘ I l Eudora Outlook
; N — ? Evolution

Fig. 2. Components for the Album Organizer application.

Text Edi t or . The Assessment Procedure which may provide a degree ofatiitp
ity must verify that Condition 1, 2 and 3 are satisfied — as wiatpd out on Section 2.
We begin analysing Condition 1.

conponent Text Editor { conmponent KEdit {
void new(string fil eNane); void new(string fNane);
voi d open(string fil eNane); voi d open(string fNane);
voi d save(string fil eNane); voi d save(string fNane);

void print(string fileNane); } void print(string fNane); }

3.1 Interface Equivalence

For Condition 1 to be true we verify the five sub-conditionschrare related to syntac-
tic aspects. As can be seen béidi t andText Edi t or include the same amount
of services (Cond.1.1), with the same return type (Conj.th2 same amount of pa-
rameters (Cond.1.3), the same types (Cond.1.4) and in the seder (Cond.1.5). This
implies that Condition 1 is satisfied, though it does not giveeaningful evaluation
result yet. Every pair of services from both components giveequivalent result. We
do not rely on the name of services which could give a diffeechere. Whether we
want to be sure about the utility of théedi t component, a more accurate procedure
is still needed. Thus we continue exploring for Condition 2.

3.2 Behaviour Equivalence

Condition 2 is related to the pre and post-conditions fromexponding services. For
brevity reasons we describe this procedure only foipthient service from both com-
ponents. Assertions are specified by using OCL as follows.

TextEditor KEdit
print print
pre: fileName <> BLANK and pre: not printer.queue. Full ()
not printer.queue. Full () - and BLANK <> f Nanme

post: printer.print(fileNanme) post: printer.print(fName)

Condition 2.1 is analysed first inspecting data types bestugse from the parame-
ter list which have already analysed on Conditions 1.2 addlt.the assertions above
can be seen that for ther i nt service Condition 2.1 is satisfied. For Conditions 2.2 and
2.3 we derive from assertions Abstract Syntax Trees (ASTs¢lwwe have extended

76

with the addition of specific features. On each node in the we also save a ‘type’
that is used to operate with its sub-trelegerchangeable OperatdtO) type for values
like or, and, =, <> etc, meaning that beingandb two sub-trees{a and b) isthe
same that b and a); Non-Interchangeable Operat¢NIO) type for values like>,

<, etc; Unary Operator(UO) type for values likexot, etc — a tree with just one child,;
Text(TXT) type for values being numbers or variable names. Esgions with boolean
operatorsind andor are transformed into a normalized and extended form. Fanexa
ple,(a and (b or c¢)) isequivalenttq (a and b) or (a and c)) but not
immediately comparable. Then, the first one is normalizetiaut loosing its seman-
tic. In case of>= and <=, they are expanded into two subtrees connected hyran
operator — e.g(a>=Db) becomeg (a>b) or(a=Db)) . Figure 3 shows the ASTs for
pre-conditions ofpri nt from both components, from which we start the evaluation
procedureFor this, the root node of both trees are compared and, if treyequal, the
respective left and right subtrees are recursively comghalre our example, both trees
present 10 root nodes. Thus, we can compare the left sulpti@ee pre-condition with
the right sub-tree of the other, and vice versa. This allawdetect the equivalence on
both trees. Values on leave TXT nodes are equivalent withego their data types
(Cond.2.1). Since one tree may have more sub-trees tharttitbe the extra sub-trees
expose that a pre-condition is bigger than the other — asdéssribed by Condition
2.2. This is not the case for trees on Figure 3, and all thetads are equivalent mak-
ing pre-conditions being equivalent as well. Similar pehoes are followed up for
each candidate pair of services in relation to Conditio®sa®d 2.3. This makes clear
the real correspondence on the services fikiEdi t with respect to the expected ones
Text Edi t.

TextEditor and KEdit and

/<>\ m|)t not /x
fleName BLANK printer.queue.Full() printer.queue.Full() BLANK fName

Fig.3. ASTs forpri nt 's assertions.

3.3 Usage Protocol Equivalence

The next step is to check equivalence on the regular expresdescribing the protocol
of use for a component. The usage protocolsTiext Edi t or (1), andKEdi t com-
ponent (2) are given below. Usage protocols comparisorsis mlade deriving ASTs
as can be seen on Figure 4. The set of operators to set theypmtediffers based on
regular expressions. Concatenatiof i a NIO type. Alternative) is an 10 type.
Iteration) is a UO type. TXT nodes correspond to services in the leaf/ésedree,
and the equivalence is based on Condition 1 and 2. Thus, awttes labelled witle
and-+ correspond to IO operators, the trees can be found equivdleerefore, as both
Condition 1 and 2 are fulfilled, we can infer tHéitnanci al Account offers similar
functionalities to those dBanki ngAccount .
(1) (news-open)e (saverprint)* (2) (opentnew)e (print+-save)*

77

TextEditor ° KEdit °
LN : N :
new/>pen X open new PN
save print print save

Fig.4. ASTs for Usage Protocols.

4 Preliminary Implementation

We have developed a first prototype to check the feasibifityup proposal. The pro-
totype is based on Microsoft .NET technology and it inclusiesple but effective im-
plementations of different elements and algorithms dbedrin the previous section.
In order to representing Assertions and Usage Protocol .AlBws to add information

to components using th&ttribute mechanism. This help to annotate classes, methods,
parameters, etc. To describe assertions, we have crealaedsacalledContraintthat
specializesSystem.AttributeT his class includes the ambit where the attribute is valid —
Methodsin this case. Each constraint will contain a String représgrthe text of the
pre or postcondition. For regular expressions represgtitie usage protocol the ambit
is Class In order to facilitate evaluation both, the assertionstaedisage protocol, are
described in a prefix form as can be seen above. In order te¢hpe set of members of
any element, .NET includes theflectiormechanism. This can be used to retrieve the
set of methods from components to be evaluated. Reflectivbeaf substantial help

in cases where components do reside on well-known and gleatuated repositories.

5 Reated Work

Research very close to our intent of composing applicati®psesented in [5], though
here we suppose components residing on distributed dispdesices. From this we
continue studying technical situations which could maledhvironment to apply an
adjustment over a running application. Particularly theaked quality of service im-
plies an important consideration for this approach. Thekimf11] presents a solution
for composing applications. A general framework for comgmas integration is pre-
sented and evaluated the involved challenges on its afiplickor PvCEnv’s. Other
work which gives a contribution to our work is presented ihljy providing a consis-
tent format for specifications of components by means of XNhe approach covers
all of the aspects from components: functional, non-fuuretl and commercial. We
are evaluating the use of such XML schemas and probably @ixignhose related to
non-functional aspects. Some recognized projects on P¥E€Bre Aura and Gaia. The
former presented in [12] addresses a large range of PvCsttyyidocusing of system
aspects. Applications are treated as user tasks which atkeaton of abstract services
and are monitored to optimize their resources. The latiesgoted in [13] extends the
traditional services of an operating system by considearfgvCEnv. Both services
and devices are treated as resources that must be managalibaated to requesting
clients.

78

6 Conclusions

We intend to address the automation of an Integration Psotem software compo-
nents in order to properly update applications into a PvCEngrevious works [8, 9],
we have presented a scheme to address our intent. In this\pap@ave explained how
components could be replaced when the technical conditbasge. This is done ac-
cording to the Application Model and the connection of Comprats and Models. We
have also described an Assessment procedure to evaluap@eents both at develop-
ment stage and at run-time. Such evaluation is based onfisptions of the compo-
nents functionality, which is provided by their Componentdéls. Compatibility of a
component with respect to an expected Component Model Igsethat syntactic and
semantic levels. Semantic aspects are described by meassasfions and usage proto-
cols, which are then analysed by deriving extended ASTsringtboth expressions and
control data that help in the evaluation process. We havéeimgnted the current stage
of our approach on Microsoft .Net in order to gain experietacanderstand possibili-
ties to recognize not only efficiency but mainly effectives®n supporting reliability.
Selection of appropriate methods, techniques and languagst be accurately accom-
plished upon the concern of a reliable mechanism. This isthphasis of our next
development in this area.

References

1. Judd, G., Steenkiste, P.: Providing Contextual Information to Beev&omputing Applica-
tions. In: IEEE PERCOM’03, Dallas, USA (2003) 133-142
2. Brown, A., Wallnau, K.: Engineering of Component-Based Systdms2"? ICECCS'96,
Montreal, Canada, IEEE Computer Society Press (1996) 414-422
3. Flores, A., Augusto, J.C., Polo, M., Varea, M.: Towards Carsevare Testing for Semantic
Interoperability on PvC Environments. In: f7IEEE SMC'04, The Hague, Netherlands
(2004) 1136-1141
4. Heineman, G., Council, W.: Component-Based Software Engirgeeffutting the Pieces
Together. Addison-Wesley (2001)
5. et.al., B.W.: An Acive-Architecture Approach to COTS IntegratitlBEE Software (2005)
20-27
6. Brada, P.: Towards Automated Component Compatibility Assessimest” Workshop on
Component-oriented Programming (ECOOP’01), Budapest, Hur{8a041)
7. Iribarne, L., Troya, J., Vallecillo, A.: A Trading Service for COT®mponents. The Com-
puter Journadl7 (2003)
8. Polo, M., Flores, A.: Towards Run-time Component Integration bigultous Systems. In:
3" MSVVEIS’05, held during ICEIS’05, Miami, Florida, USA (2005) 9-18
9. Flores, A., Polo, M.: Dynamic Component Assessment on Pv@&nents. In: 10" IEEE
ISCC’05, Cartagena, Spain, IEEE Computer Society (2005)
10. D'Souza, D., Wilis, A.: Objetcts, Components, and Frameworks Uitt.: The Catalysis
Approach. Addison-Wesley (1998)
11. et.al., T.G.: Pervasive challenges for software componergshnical Report TUV-1841-
2003-05, Technical University of Vienna, Vienna, Austria (2003)
12. Page, P.A.H.: Distraction-free Ubiquitous Computing. http://wwve-2rau.edu/ aura/
(2006)
13. Page, G.P.H.: Active Spaces for Ubiquitous Computing. http://gaiguc.edu/ (2006)

