
An Approach for Applications Suitability
on Pervasive Environments⋆

Andres Flores1 and Macario Polo2

1 GIISCo Research Group
Departamento de Ciencias de la Computación, Universidad Nacional del Comahue,

Buenos Aires 1400, 8300, Neuquen, Argentina

2 Alarcos Research Group
Escuela Superior de Inforḿatica, Universidad de Castilla-La Mancha,

Paseo de la Universidad 4, 13071, Ciudad Real, Spain

Abstract. This work is related to the area of Component-based Software Devel-
opment, particularly to largely distributed systems as Pervasive Computing Envi-
ronments. We are focused on the automation of a Component Integration Process
as a support for run-time adjustments of applications when the environment in-
volves highly dynamic changes of requirements. Such integration implies to eval-
uate whether components may or may not satisfy a given model. The Assessment
procedure is based on syntactic and semantic aspects, where the latter involves
assertions, and usage protocols. We have implemented on the .Net technology
the current state of our approach to gain understanding about the complexity and
effectiveness of our approach.

1 Introduction

Pervasive Computing Environments (PvCEnv’s) should support the ’continuity’ of users’
daily tasks across dynamic changes of operative contexts. However functionality is usu-
ally shaped as a set of aggregated components which are distributed among different
computing devices. On changes of availability of a given device the involved component
behaviour still needs to be accessible in the appropriate form according to the updated
technical situation. This generally makes users to be involved on a dependency with the
underlying environment and increases the complexity of its internal mechanisms [1].

Applications composed of dynamically replaceable components imply the need of
an appropriate Integration Process according to Component-based Software Develop-
ment (CBSD) [2, 3]. For this an Application Model may provide the specification of a
required functionality in the form of the aggregation of Component Models A Compo-
nent Model provides a definition to instantiate a component and its composition aspects
through standard interactions and unambiguous interfaces [4, 5]. In order to assure the
adequacy of a given component with respect to an Application Model there is a need

⋆ This work is supported by the projects: CyTED-CompetiSoft, UNCo-MPDSbC (04-E059) and
UCLM-MAS (TIC 2003-02737-C02-02)

Flores A. and Polo M. (2006).
An Approach for Applications Suitability on Pervasive Environments.
In Proceedings of the 3rd International Workshop on Ubiquitous Computing, pages 71-78
DOI: 10.5220/0002504000710078
Copyright c© SciTePress

to evaluate its Component Model. Hence we present an Assessment procedure which
can be applied both on a development stage and also at run-time. We compare func-
tional aspects from components against the specification provided by the Application
Model, which is component-oriented. Besides analysing component services at a syn-
tactic level, its behaviour is also inspected thus embracing semantic aspects. The latter is
done by abstracting out the black box functionality hidden on components in the form of
assertions, and also exposing its likely interactions by means of theusage protocol[6]
– also called choreography [7].

We illustrate with a simple example both the way a functionality is composed from
distributed disparate components and how the Assessment procedure helps to assure the
suitability of a certain involved component. We have implemented on the .Net technol-
ogy the current state of our approach. The use of certain built-in mechanisms of .Net
allow us to retrieve component interfaces and also to incorporate information for eval-
uation. Though being simple, this prototype give us a rewarding data on possibilities
to make concrete our proposals. All the applied techniques are selected according to
our goal of achieving consistent mechanisms to assure a faircomponent integration. As
we proceed with our work, reliability is mainly considered,since we focus the whole
integration process for those challenging systems as PvCEnv’s.

This paper continues by presenting the proposal for an integration process on Sec-
tion 2. Section 3 illustrates the approach with a simple casestudy. Section 4 presents
the .Net prototype. Conclusions and future work are presented afterwards.

2 Component Assessment for Application Integration

In previous works [8, 9] we have described a preliminary model for the assessment pro-
cedure. In this paper we extend the model by adding more aspects concerning semantic
information in the form of the abstract behaviour for a component as well as the proto-
col of use. We assume that a component under evaluation should satisfy a certain degree
of compatibility with respect to a given requirement specification. Such specification is
assumed as being part of an Application Model which containsthe components and
describing the required functionality in a component-oriented form by including the
following aspects:

1. Expected Interface. Signatures of expected services.
2. Abstract Behaviour. Assertions for the component and its services.
3. Usage Protocol. The expected order of use for its services.

Based on this we make the following consideration upon similarity between com-
ponents. A componentB offers similar functionalities to the expected ones (A) when
the three following conditions are properly satisfied:
Condition 1.ComponentB offers, at least, the same or equivalent services as those offered by A.

Interface(A) ⊆ Interface(B)

Condition 2.Abstract behaviour of componentB is similar or equivalent to componentA.3.

Behaviour(A) ≈ Behaviour(B)

3 We use≈ to denotes “equivalence”, which depends on the element to be compared and the
applied technique

72

Condition 3.The protocol of use for services on both components is equivalent.

UsageProtocol(A) ≈ UsageProtocol(B)

Condition 1 is true when there exists equivalence on corresponding services from
both interfaces. This is fulfilled when the five next conditions are satisfied:

Condition 1.1.The amount of services onB is at least the same as inA.
Condition 1.2.The return type of a pair of servicessa of A andsb of B is equivalent4.
Condition 1.3.The number of parameters on servicessa of A andsb of B is the same.
Condition 1.4.Parameter types on a pair of servicessa of A andsb of B are equivalent.

Condition 1.5.Parameters inside the list of parameters on a pair of servicessa of A andsb of B
are in the same order.

Condition 2 is true when there exists equivalence on the pre-and post-conditions
for corresponding services from both components. Assertions are boolean functions
composed of expressions connected by operators∧ and∨ [10]. A servicesa of A is
equivalent to a servicesb of a componentBwhen the three next conditions are satisfied:

Condition 2.1.Data types included on expressions of assertions ofsa andsb are similar.
Condition 2.2.Pre-condition ofsb is at most as restricted as pre-condition ofsa:
Pre-cond. ofsb may have less expressions than insa. At least one expression onsb’s pre-cond.
must be equivalent to a corresponding one onsa. pre(sb) ≤ pre(sa)

Condition 2.3.Post-condition ofsb is at least as restricted as post-condition ofsa:
Post-cond. ofsb may include more expressions than insa. All expressions onsa’s post-cond.
must be equivalent to the corresponding ones onsb. post(sb) ≥ post(sa)

Condition 3 is true when the usage protocol on both components express a similar
order for services. We describe usage protocols by means of regular expressions where
the operators are concatenation (•), alternative (+) and iteration (∗) – the order is ac-
tually described by the concatenation operation. The similarity, then, is based on the
following conditions:

Condition 3.1.An expression (+) onBmust be at least as smaller as the corresponding expression
(+) for A – e.g.(a+b+c) from B and(a’+b’) from A.
Do not affect equivalence if an extra service fromB is described inside an expression (+).
Condition 3.2.For all subexpressions into an expression (•) onA there are equivalent counterparts
in the same order into the corresponding expression (•) for B – e.g.(a•(b+c)) from B and
(a’•b’) from A.

Condition 3.3.For all subexpressions composed of just one service into a expression (•) on B,
there are equivalent counterparts in the same order into the corresponding expression (•) for A –
e.g.(a•b•c) from B and(a’•c’) from A are not equivalent.

In order to understand the way these conditions are used to distinguish compatibili-
tiy we present in the next section a simple example where the assessment procedure is
applied.

4 For built-in types, types onsb must have at least as much precision as types onsa have – e.g.
compare double w.r.t. integer.

73

3 Case Study

Suppose we represent a PvCEnv for a Museum, where there couldbe for example a Tour
Guide application to propose different paths according to the user’s dynamic choices.
When the user enters the museum may carry a computing device (aPDA or a smart
phone) and through an automatic detection the device is identified and connected to the
environment. Upon each visited art piece (e.g. painting or sculpture) descriptions and
information of particular interest to the user is displayedon the PDA or spoken through
the phone. Figure 1 shows a likely scenario of the presented case study.

Fig. 1. Likely scenario of a PvCEnv for a Museum.

A related application could allow creating albums with images of the art pieces vis-
ited by the user. The Album Organizer application – maybe downloaded into a user’s
notebook recognized by the environment – may allow creatinga sort of document with
images and some notes written by the user. Notes could be stored on separated text files
and bind to the document by means of hypertext links. Thus every time the user needs
to write or edit a note, a proper editor is provided. The user may also be allowed to
print a selection of pages of the document, or even send the created album by e-mail to
easy carrying those files. We focus on this last application and we analyse its potential
required components. There could be anAlbum Organizer component to represent
the main logic of the application, which could have an ad-hocsophisticated album vi-
sual editor or a web-style editor in which is additionally required a generic web browser
– the visual editor also depends on the actual used device. For making notes, different
components could be used as a simple sort ofNotePad, WordPad, etc – accord-
ing to the underlying software platform. To send e-mails applications likeOutlook,
Eudora, etc, could be used, and to provide a printer service different kind of printers
and ad-hoc wireless sensors should be available. Other component is concerned with
the data base for images and descriptions of art pieces. Figure 2 shows a diagram with
the likely comprised components and devices for the Album Organizer application.

Suppose a user needs to write a note by using a notebook which runs a Linux plat-
form. One available text editor isKEdit. The environment then evaluates this com-
ponent so to ensure it is appropriate to fulfill the task. Following can be seen the
interfaces of both theKEdit component and the required component model named

74

Album
Organizer

Word

Pad Outlook

Evolution

Mozilla

Netscape

Internet

Explorer

KEdit

Note

Pad Eudora

Art_Data
Art_Image

Fig. 2. Components for the Album Organizer application.

TextEditor. The Assessment Procedure which may provide a degree of compatibil-
ity must verify that Condition 1, 2 and 3 are satisfied – as we pointed out on Section 2.
We begin analysing Condition 1.
component TextEditor {
void new(string fileName);
void open(string fileName);
void save(string fileName);
void print(string fileName); }

component KEdit {
void new(string fName);
void open(string fName);
void save(string fName);
void print(string fName); }

3.1 Interface Equivalence

For Condition 1 to be true we verify the five sub-conditions which are related to syntac-
tic aspects. As can be seen bothKEdit andTextEditor include the same amount
of services (Cond.1.1), with the same return type (Cond.1.2), the same amount of pa-
rameters (Cond.1.3), the same types (Cond.1.4) and in the same order (Cond.1.5). This
implies that Condition 1 is satisfied, though it does not givea meaningful evaluation
result yet. Every pair of services from both components givean equivalent result. We
do not rely on the name of services which could give a difference here. Whether we
want to be sure about the utility of theKEdit component, a more accurate procedure
is still needed. Thus we continue exploring for Condition 2.

3.2 Behaviour Equivalence

Condition 2 is related to the pre and post-conditions from corresponding services. For
brevity reasons we describe this procedure only for theprint service from both com-
ponents. Assertions are specified by using OCL as follows.
TextEditor

print
pre: fileName <> BLANK and

not printer.queue.Full()
post: printer.print(fileName)

KEdit

print
pre: not printer.queue.Full()

and BLANK <> fName

post: printer.print(fName)

Condition 2.1 is analysed first inspecting data types besides those from the parame-
ter list which have already analysed on Conditions 1.2 and 1.4. In the assertions above
can be seen that for theprint service Condition 2.1 is satisfied. For Conditions 2.2 and
2.3 we derive from assertions Abstract Syntax Trees (ASTs) which we have extended

75

with the addition of specific features. On each node in the tree we also save a ‘type’
that is used to operate with its sub-trees:Interchangeable Operator(IO) type for values
like or, and, =, <> etc, meaning that beinga andb two sub-trees,(a and b) is the
same that(b and a); Non-Interchangeable Operator(NIO) type for values like>,
<, etc;Unary Operator(UO) type for values likenot, etc – a tree with just one child;
Text(TXT) type for values being numbers or variable names. Expressions with boolean
operatorsand andor are transformed into a normalized and extended form. For exam-
ple,(a and (b or c)) is equivalent to((a and b) or (a and c)) but not
immediately comparable. Then, the first one is normalized without loosing its seman-
tic. In case of>= and<=, they are expanded into two subtrees connected by anor

operator – e.g.(a>=b) becomes((a>b)or(a=b)). Figure 3 shows the ASTs for
pre-conditions ofprint from both components, from which we start the evaluation
procedure.For this, the root node of both trees are compared and, if theyare equal, the
respective left and right subtrees are recursively compared. In our example, both trees
present IO root nodes. Thus, we can compare the left sub-treeof one pre-condition with
the right sub-tree of the other, and vice versa. This allows to detect the equivalence on
both trees. Values on leave TXT nodes are equivalent with respect to their data types
(Cond.2.1). Since one tree may have more sub-trees than the other, the extra sub-trees
expose that a pre-condition is bigger than the other – as it isdescribed by Condition
2.2. This is not the case for trees on Figure 3, and all the sub-trees are equivalent mak-
ing pre-conditions being equivalent as well. Similar procedures are followed up for
each candidate pair of services in relation to Conditions 2.2 and 2.3. This makes clear
the real correspondence on the services fromKEdit with respect to the expected ones
TextEdit.

TextEditor KEditand

not<>

BLANKfileName printer.queue.Full() fNameBLANK

and

not <>

printer.queue.Full()

Fig. 3. ASTs forprint’s assertions.

3.3 Usage Protocol Equivalence

The next step is to check equivalence on the regular expressions describing the protocol
of use for a component. The usage protocols forTextEditor (1), andKEdit com-
ponent (2) are given below. Usage protocols comparison is also made deriving ASTs
as can be seen on Figure 4. The set of operators to set the node types differs based on
regular expressions. Concatenation (•) is a NIO type. Alternative (+) is an IO type.
Iteration (∗) is a UO type. TXT nodes correspond to services in the leaves of the tree,
and the equivalence is based on Condition 1 and 2. Thus, as thenodes labelled with•
and+ correspond to IO operators, the trees can be found equivalent. Therefore, as both
Condition 1 and 2 are fulfilled, we can infer thatFinancialAccount offers similar
functionalities to those ofBankingAccount.

(1) (new+open)• (save+print)* (2) (open+new)• (print+save)*

76

•

new

+ ∗

open

TextEditor KEdit •

open

+ ∗

new+

save print

+

print save

Fig. 4. ASTs for Usage Protocols.

4 Preliminary Implementation

We have developed a first prototype to check the feasibility of our proposal. The pro-
totype is based on Microsoft .NET technology and it includessimple but effective im-
plementations of different elements and algorithms described in the previous section.
In order to representing Assertions and Usage Protocol .NETallows to add information
to components using theAttributemechanism. This help to annotate classes, methods,
parameters, etc. To describe assertions, we have created a class calledContraintthat
specializesSystem.Attribute. This class includes the ambit where the attribute is valid –
Methodsin this case. Each constraint will contain a String representing the text of the
pre or postcondition. For regular expressions representing the usage protocol the ambit
is Class. In order to facilitate evaluation both, the assertions andthe usage protocol, are
described in a prefix form as can be seen above. In order to inspect the set of members of
any element, .NET includes theReflectionmechanism. This can be used to retrieve the
set of methods from components to be evaluated. Reflection can be of substantial help
in cases where components do reside on well-known and already evaluated repositories.

5 Related Work

Research very close to our intent of composing applicationsis presented in [5], though
here we suppose components residing on distributed disparate devices. From this we
continue studying technical situations which could make the environment to apply an
adjustment over a running application. Particularly the socalled quality of service im-
plies an important consideration for this approach. The work in [11] presents a solution
for composing applications. A general framework for components integration is pre-
sented and evaluated the involved challenges on its application for PvCEnv’s. Other
work which gives a contribution to our work is presented in [7] by providing a consis-
tent format for specifications of components by means of XML.The approach covers
all of the aspects from components: functional, non-functional and commercial. We
are evaluating the use of such XML schemas and probably extending those related to
non-functional aspects. Some recognized projects on PvCEnv’s are Aura and Gaia. The
former presented in [12] addresses a large range of PvC topics by focusing of system
aspects. Applications are treated as user tasks which are a collection of abstract services
and are monitored to optimize their resources. The latter presented in [13] extends the
traditional services of an operating system by consideringa PvCEnv. Both services
and devices are treated as resources that must be managed andallocated to requesting
clients.

77

6 Conclusions

We intend to address the automation of an Integration Process from software compo-
nents in order to properly update applications into a PvCEnv. In previous works [8, 9],
we have presented a scheme to address our intent. In this paper we have explained how
components could be replaced when the technical conditionschange. This is done ac-
cording to the Application Model and the connection of Components and Models. We
have also described an Assessment procedure to evaluate components both at develop-
ment stage and at run-time. Such evaluation is based on specifications of the compo-
nents functionality, which is provided by their Component Models. Compatibility of a
component with respect to an expected Component Model is analysed at syntactic and
semantic levels. Semantic aspects are described by means ofassertions and usage proto-
cols, which are then analysed by deriving extended ASTs – storing both expressions and
control data that help in the evaluation process. We have implemented the current stage
of our approach on Microsoft .Net in order to gain experienceto understand possibili-
ties to recognize not only efficiency but mainly effectiveness on supporting reliability.
Selection of appropriate methods, techniques and languages must be accurately accom-
plished upon the concern of a reliable mechanism. This is theemphasis of our next
development in this area.

References

1. Judd, G., Steenkiste, P.: Providing Contextual Information to Pervasive Computing Applica-
tions. In: IEEE PERCOM’03, Dallas, USA (2003) 133–142

2. Brown, A., Wallnau, K.: Engineering of Component-Based Systems. In: 2nd ICECCS’96,
Montreal, Canada, IEEE Computer Society Press (1996) 414–422

3. Flores, A., Augusto, J.C., Polo, M., Varea, M.: Towards Context-aware Testing for Semantic
Interoperability on PvC Environments. In: 17th IEEE SMC’04, The Hague, Netherlands
(2004) 1136–1141

4. Heineman, G., Council, W.: Component-Based Software Engineering - Putting the Pieces
Together. Addison-Wesley (2001)

5. et.al., B.W.: An Acive-Architecture Approach to COTS Integration.IEEE Software (2005)
20–27

6. Brada, P.: Towards Automated Component Compatibility Assessment.In: 6th Workshop on
Component-oriented Programming (ECOOP’01), Budapest, Hungary(2001)

7. Iribarne, L., Troya, J., Vallecillo, A.: A Trading Service for COTSComponents. The Com-
puter Journal47 (2003)

8. Polo, M., Flores, A.: Towards Run-time Component Integration on Ubiquitous Systems. In:
3rd MSVVEIS’05, held during ICEIS’05, Miami, Florida, USA (2005) 9–18

9. Flores, A., Polo, M.: Dynamic Component Assessment on PvC Enviroments. In: 10th IEEE
ISCC’05, Cartagena, Spain, IEEE Computer Society (2005)

10. D’Souza, D., Wilis, A.: Objetcts, Components, and Frameworks withUML: The Catalysis
Approach. Addison-Wesley (1998)

11. et.al., T.G.: Pervasive challenges for software components. Technical Report TUV-1841-
2003-05, Technical University of Vienna, Vienna, Austria (2003)

12. Page, P.A.H.: Distraction-free Ubiquitous Computing. http://www-2.cs.cmu.edu/ aura/
(2006)

13. Page, G.P.H.: Active Spaces for Ubiquitous Computing. http://gaia.cs.uiuc.edu/ (2006)

78

