
USING DATA TOGETHER WITH METADATA TO IMPROVE
XML INFORMATION ACCESS

Alda Lopes Gançarski
GET/INT, CNRS Samovar

9 rue Charles Fourier, 91011 Évry, France

Pedro Rangel Henriques
University of Minho

Department of Informatics, 4710 Braga, Portugal

Keywords: XML, XQuery, ontology, Dublin Core, metadata, SPARQL.

Abstract: In this paper, we address the use of data together with metadata to improve information access to XML
document collections. We first emphasize the possibility to associate meta-information to parts of XML
documents, and not only entire documents. This is accordingly to the fact that XML elements are considered
as retrieval units. We, then, propose to explicitly search the desired information using a query language that
is composed of XML search and metadata search. We focus our ideas in two types of metadata: Dublin Core
and ontologies.

1 INTRODUCTION

XML information access is done using structured
query languages such as XPath (Berglund et al.,
2005) and XQuery (Boag et al., 2006), the standard
proposed by the W3C. These query languages are
being extended with the possibility of associating a
score to an expression that verifies if some phrase
exists in the content of some element, as in
traditional information retrieval. This functionality is
included in the Full-Text language also proposed by
the W3C (Amer-Yahia et al., 2006).

To improve data processing, document
collections and Web resources are associated with
semantic descriptions, or metadata. In order to be
able to exchange the semantics of information, one
first needs to agree on how to explicitly model it.
This can be done using a standard set of
characteristics, like title or author, or using a more
sophisticated description in the form of ontologies.
In the first case, a standard set of such characteristics
was developed in the Dublin Core Metadata
Initiative (Dublin Core Metadata Initiative, 2006).
This set is composed, among other concepts, of

Creator, Date, Format, Language, Publisher, Title,
Subject and Keywords, Abstract.

Concerning the second case, an ontology is a
formal explicit specification of a shared
conceptualization. Using an ontology, any kind of
description can be made about a resource.
Ontologies can be used to annotate data with labels
indicating their meaning, thereby making their
semantics explicit and machine-accessible. To
formally define ontologies, W3C has proposed the
Resource Description Language (RDF) (Manola
and Miller, 2004), which allows the representation
of metadata about Web resources.

Metadata search can be done using a simple
natural language expression (Finin et al., 2005),
using a navigational structure (Fluit et al., 2005) or
using a dedicated query language (Corby et al.,
2004) like SPARQL (Prud’hommeaux and Seaborn,
2006), the W3C recommendation for the standard
query language for RDF. In general, works are
devoted to search information directly in documents
or indirectly in ontology’s concepts to get associated
resources, not using data and metadata together in
the search process. In this article we exploit the use

328
Lopes Gançarski A. and Rangel Henriques P. (2007).
USING DATA TOGETHER WITH METADATA TO IMPROVE XML INFORMATION ACCESS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 328-332
DOI: 10.5220/0001262003280332
Copyright c© SciTePress

of XML documents together with the respective
metadata to access information. We believe that
both may be interesting to the user and can help him
to find interesting information.

Metadata descriptions may be done at elements
level, giving semantic information for elements
retrieval. This is discussed in Section 2. Section 3
explains our proposal for the search based on both
data and metadata showing some examples. The
article finishes with a brief conclusion, indicating
some future work.

2 ELEMENTS METADATA

In accordance with XQuery, XML elements are
retrieval units and, thus, it is interesting to allow for
metadata descriptions associated to elements, instead
of only having document metadata.

To exemplify elements metadata, suppose a book
where chapters, not only are written by different
authors, but also cover many sub-subjects of the
book’s main subject. So, different meta-information
can be associated to each chapter. Also, a useful
metadata concept can be the date of the last update
of an element.

If RDF is used to specify Dublin Core (DC)
metadata and ontologies, elements can be referenced
using URI references. A URI reference (or URIref)
is a URI together with an optional fragment
identifier at the end. For example, the URI reference

http://www.example.org/article.xml#section2

corresponds to the second section element in the
article.xml document.

3 XML COMPOSED SEARCH

To perform information search based on both data
and metadata, some extensions to XQuery must be
done. The next sections explain such extensions
when there is DC metadata and when metadata is in
the form of ontologies, respectively.

3.1 Using Dublin Core Metadata

If metadata follows the DC proposal, metadata can
be expressed in different ways.

When documents are in HTML format, DC
metadata can be embedded in the document using

the special Meta tag. An example of a Meta tag is in
the following document:

<Html>
 <Head>
 <Title>XML standard</Title>
 <Meta Name=”DC.Creator”
 Content=”Paul”>
 </Head>
 <Body>
 <H1>XML Applications</H1>
 <P>XML stands for eXtensible …</P>
 </Body>
 </Html>

In this example, metadata indicates that the creator
of the page is “Paul”. This is indicated in attributes
Name and Content of the Meta tag, respectively.
Restrictions on metadata are done accessing Meta
tags’ attributes. Thus, no extensions to XQuery are
needed, as indicated in Figure 1.

Figure 1: Using XQuery to query HTML documents
including the DC <Meta> tag.

For example, to get HTML documents created by
Pearl, the XQuery query is:

for $a in doc(“http://...”)
 /Html[.//Meta/@Name=”DC.Creator” and
 .//Meta@Content=“Pearl”]
return $a

When DC metadata is expressed in RDF, we
propose an extension to XQuery in order to allow for
the inclusion of metadata restrictions in structural
restrictions. These restrictions are expressed using
the so called metadata: functions.

As depicted in Figure 2, having a processor for
XQuery extended with the metadata: functions, the
user can make queries over XML collections
associated to DC metadata expressed in RDF.

query

result

XQuery
Processor

HTML +
 <Meta>

USING DATA TOGETHER WITH METADATA TO IMPROVE XML INFORMATION ACCESS

329

. 3

Figure 2: Using XQuery extended with metadata:
functions to query XML documents associated to DC
metadata expressed in RDF.

For example, suppose the following XML
document:

<Book>
 <Title>XML Guide</Title>
 <Chapter>
 <Title>SGML</Title>
 <Section>…</Section>
 </Chapter>
 <Chapter>
 <Title>HTML </Title>
 <Section>…</Section>
 </Chapter>
 …
</Book>

Suppose this document has the following DC
metadata expressed in the form of RDF triples (for
simplicity, we ignore prefixes that correspond to
URIs):

Book.xml#Chapter1 Creator “Kevin”.
Book.xml#Chapter2 Creator “Loik”.

To get chapters written by Kevin, a simple XQuery
query could be:

for $c in doc(“http://...”)
 /book/chapter[metadata:Creator(.)=“Kevin”]
return $c

In this query, a filter is imposed to chapters. In this
filter, function metadata:Creator() returns the value
of the Creator concept in the metadata description of
a chapter. The chapter is passed to the function using
the “.” symbol, which expresses the current element
being evaluated. Note that metadata: prefix indicates
that Creator is a function about metadata.

Suppose now that there is information about the
subjects treated in the chapters:

Book.xml#Chapter1 Subject “SGML”.

Book.xml#Chapter2 Subject “HTML”.

If the user wants chapters about SGML, he can make
the following XQuery query:

1 for $c in doc(“http://...”) /book/chapter
2 score $s as
3 $c ftcontains “SGML” OR
4 metadata:Subject($c) ftcontains “SGML”
5 order by $s
6 return $c

In this query, the for clause stores in variable $c all
the book chapters (line 1). Then, the score clause
associates to each chapter a score stored in variable
$s (line 2). The score represents how much the
chapter is about the desired subject “SGML”. In
XQuery, the ftcontains expression verifies if some
phrase exists in an element. If it is included in a
score clause, it verifies how much the element is
about the subject expressed in the phrase, i.e., the
score of the element with respect to the subject. In
the example query, the computation of the score
takes into account both the content of the chapter
(line 3) and the Subject concept of its metadata
description (line 4). This can help making better
score computations. Finally, the result of this query
is the list of chapters (line 6) ordered by their score
(line 5). In general, for each DC concept, a function
is used to access to the respective metadata value.
XQuery includes function calls. Functions can be
XQuery pre-defined ones or user defined functions,
such metadata ones.

Each DC concept is associated to a mapping, or
table, from elements (or nodes) to metadata values.
This table is created when DC metadata is
associated to elements. Suppose the mapping of
concept X is:

MapX : node() × xs:string

The XQuery node test node() matches any node. A
value is generaly represented by a string which is
denoted here by xs:string. The metadata function
metadata:X can, then, be defined by:

declare function metadata:X ($a as node())
 as xs:string
{
return MapX[$a]
}

query

result

 XQuery +
 metadata:
 functions
 Processor

 XML
 +
 DC RDF

WEBIST 2007 - International Conference on Web Information Systems and Technologies

330

Here, $a is the variable that stores the node. The
result of the function is the value corresponding to
the node in the MapX table.

3.2 Using Ontologies

When a XML document is associated to semantic
descriptions in the form of ontologies expressed in
RDF, we propose to integrate SPARQL queries in
XQuery queries. This can be done by adding a new
clause metadata to the for clause of both languages.
As depicted in Figure 3, the user can make queries
over XML collections associated to RDF metadata
using a processor for XQuery extended with the
metadata clause for SPARQL queries.

Figure 3: Using XQuery extended with metadata clause to
query XML documents associated to RDF metadata.

Suppose the following ontology including references
to elements of an XML document.

Book.xml about Animals.
Book.xml#Chapter1 about Fishes.
Book.xml#Chapter2 about Birds.
Book.xml#Chapter3 about Mammals.
Book.xml#Section1 about Men.
Fishes is Animals.
Birds is Animals.
Mammals is Animals.
Men is Mammals.
Men eats Birds.
men eats Fishes.

If the user wants sections about animals that are
eaten by men, he can specify the following XQuery
query:

1 for $s in
2 doc(“http://.../Book.xml”) /book//section
3 metadata $s in
4 SELECT ?s WHERE (?o eats Fiches)
5 (?o eats Birds)
6 (?s about ?o)
7 return $s

In this query, the for clause associates to variable
$s the set of sections of the document (line 1 and 2).
The metadata clause (line 3) includes a SPARQL
query (line 4 to 6). This SPARQL query selects all
the elements (stored in variable ?s) that are about
some subject (stored in variable ?o) which eats
fishes or birds. The resulting set of elements of the
internal SPARQL query (in variable ?s) is
intersected with the set of elements of the XQuery
external query (in variable $s) to get the desired
sections of the book.

To show another example, suppose the following
products catalogue:

<products>
<product><name>Water Corola</name>
 <price>15<price>
 </product >
 <product>… </product> …
</products>

Suppose also that this document is associated to the
following RDF description:

Catalog.xml#product1 lastUpdate “10/1/2005”.
Catalog.xml#product2 lastUpdate “10/2/1990”.

To get products which last update is before 1990, the
query is:

1 for $p in doc(“http://.../catalog.xml”) //product
2 metadata $p in
3 SELECT ?p
4 WHERE (?p lastUpdate ?u)
5 AND ?u < “1/1/1990”
6 return $p

In this query, variable $p stores the product elements
of the document (line 1). The SPARQL query (lines
3 and 4) stores in variable ?p elements which last
update, stored in variable ?u, is before 1990. The
content of variable $p in the external XQuery query
is intersected with the content of the ?p variable in
internal SPARQL query, yielding the set of desired
products.

SPARQL queries are included in the XQuery
grammar extending the production that derives the
FLWOR expressions with the metadata clause. The
current production is:

[33] FLWORExpr ::= (ForClause |
 LetClause)+ WhereClause?
 OrderByClause?
 “return" ExprSingle

 XML
+
 RDF

query

result

XQuery +
metadata
clause
Processor

USING DATA TOGETHER WITH METADATA TO IMPROVE XML INFORMATION ACCESS

331

. 5

Extending it with metadata restrictions yields:

[33] FLWORExpr ::= (ForClause |
 LetClause)+ MetadataClause?
 WhereClause? OrderByClause?
 "return" ExprSingle

Symbol MetadataClause derives the metadata
clause by the following productions:

MetadataClause ::= “metadata”
 “$” VarName (“,” “$” VarName)*
 “in” SPARQLQuery

The symbol VarName belongs to the XQuery
grammar and derives a variable name. In its turn,
symbol SPARQLQuery derives a SPARQL query
using the grammar defined in (Prud’hommeaux and
Seaborn, 2006).

4 CONCLUSION

In this paper, we informally propose to integrate data
and metadata search in the same query language. We
believe this can help users to get useful information.
As future work, we intend to formalize the proposed
XPath and XQuery extensions, like the metadata
clause. This formalization will take into account
many aspects concerning metadata. For example,
intra- and inter-document links must be considered.

Once the extension is formalized, we intend to
create a prototype processing environment for the
extended XQuery. We can use existing XQuery and
SPARQL query processors integrated with editing
and results visualization. We intend, then, to test the
prototype and the usefulness of the approach using
existing document collections and respective
metadata.

REFERENCES

Amer-Yahia, S., Botev, C., buxton, S., Case, P., Doerre, J.,
Holstege, M., McBeath, D., Rys, M.,
Shanmusgasundaram, J., 2006. XQuery 1.0 and XPath
2.0 Full-Text W3C Working Draft Draft 1 May 2006,
http://www.w3.org/TR/xquery-full-text/.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,
Kay, M., Robie, J., Siméon, J., 2006. XML Path
Language (XPath) 2.0 W3C Proposed
Recommendation 21 November 2006,
http://www.w3c.org/TR/2006/PR-xpath20-20061121.

Boag, S., Chamberlin, D., Fernandez, M., Florescu, D.,
Robie, J., Siméon, J., 2006. XQuery 1.0: An XML

Query Language W3C Proposed Recommendation 21
November 2006, http://www.w3c.org/TR/2006/PR-
xquery-20061121/.

Corby, O., Dieng-Kuntz, R. and Faron-Zucker, C., 2004.
Querying the Semantic Web with Corese Search
Engine, 3rd Prestigious Applications Intelligent
Systems Conference (PAIS), Valencia, Spain, 2004.

Dublin Core Metadata Initiative, 2006. URL:
http://dublincore.org/ (last updated: 18 December
2006).

Finin, T., Ding, L., Pan, R., Joshi, A., Kolari, P., Java, A.
and Peng. Y., 2005. Swoogle: Searching for
knowledge on the Semantic Web, National
Conference on Artificial Intelligence (AAAI) 2005,
Intelligent Systems demo, Pittsburgh, Pennsylvania,
USA, July 2005.

Fluit, C., Sabou, M. and Harmelen, F., 2005. Ontology-
based information visualization: towards semantic web
applications. In Visualising the semantic web (2nd
edition), Valdimir Geroimenks Editor, Springer
Verlag, 2005.

Manola, F. and Miller, E., 2004. RDF Primer W3C
Recommendation 10 February 2004. URL:
http://www.w3.org/TR/rdf-primer/.

Prud’hommeaux, E. and Seaborn, A., 2006. SPARQL
Query Language for RDF W3C Working Draft, 4
October 2006. URL: http://www.w3.org/TR/rdf-
sparql-query/.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

332

