
TRENDS IN TEACHING WEB-BASED DEVELOPMENT
A Survey of Pedagogy in Web Development Courses

Ralph F. Grove
Department of Computer Science, James Madison University, Harrisonburg, VA, 22807, USA

Keywords: Web Development, Pedagogy, Computer Science Education.

Abstract: Many universities now offer a computer science course covering the development of information systems
for the World Wide Web. Over the last ten years much has been written about experiences gained in
developing and teaching such a course. This paper summarizes these experiences, including curriculum,
common problems, and lessons learned. It also provides a suggested model curriculum and argues for more
emphasis on fundamental concepts in addition to the standard core set of Web development technologies.

1 INTRODUCTION

Since its invention 15 years ago, the World Wide
Web has become an important medium for
commerce, entertainment, education, and
communication, and the Web now affects virtually
every part of our lives in some way. To computer
scientists, the Web is an exciting phenomenon
because of the revolution in software technology and
computer applications that it has spawned. In the
past decade, many computer science educators have
come to regard the Web as a unique environment
with respect to teaching software development, and
courses focusing on developing applications for the
Web have appeared at many universities. The
experiences of those educators include several
common problems related to teaching this course
and some common solutions as well.

This paper presents a retrospective on 10 years of
teaching Web development in colleges and
universities, primarily in computer science
programs. It summarizes curriculum design,
experiences, problems, and concerns described in
ten papers published primarily in CS education
conferences and journals from 1998 to 2004. In
chronological order, the papers describe these
courses. Each course is one semester in length unless
otherwise noted.

• Web Development Technologies (Lim 1998)
• Internet Administration (3 weeks, 24 total

contact hours) (Walker and Browne 1999)

• Webware: Computational Technbology for
Network Information Systems (Finkel and
Cruz 1999)

• Internet Application Design: Theory and
Practice (Klassner 2000)

• Client/Server Programming (Stiller and
LeBlanc 2001)

• Client/Server Programming for Internet
Applications (Chung and McLane 2002)

• Web-Based Application Design (Treu 2002)
• Web-Based Development (Yang and Grove

2002)
• Web Programming 1 and 2 (a sequence of two

semester-long courses) (Phillips, Tan, Phillips
and Andre 2003)

• Internet Application Development (Yue and
Ding 2004)

This paper also presents a model curriculum for a
one semester course in Web application
development. The proposed curriculum is based
upon the experiences described in the above papers
and the Computing Curricula 2001 guidelines
(Computing Curricula 2001).

To assess the prevalance of Web-based
development courses, an informal survey of
universities with computer science or engineering
departments was conducted. The computer
science/engineering program course listings for 100
highly respected American and European schools
with computer science/engineering programs were
reviewed for courses that described primarily topics
related to Web or Internet programming. Of those
schools, 25% offered one or more such courses. Of

361F. Grove R. (2007).
TRENDS IN TEACHING WEB-BASED DEVELOPMENT - A Survey of Pedagogy in Web Development Courses.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Society, e-Business and e-Government /
e-Learning, pages 361-365
DOI: 10.5220/0001262103610365
Copyright c© SciTePress

the remaining 75%, it’s possible that Web
programming is integrated into other courses or that
the course listsings were not complete, so 25%
should be considered a lower limit on the percentage
of schools offering a Web development course.

2 CURRICULUM ISSUES

The courses described in the papers were
undergraduate courses of standard one quarter (10
weeks) or one semester (15 weeks) length, with one
exception, which was a short course offered on
weekends (Walker and Browne 1999). All of the
courses assumed introductory-level programming
experience, though the actual diversity of experience
in classes was often found to be problematic
(discussed in Section 3). Other prerequisites
described in the papers included:

• Software Engineering (2 papers)
• Operating Systems (2 papers)

Not all of the papers described course prerequisites,
however.

Topics covered in the courses tended to
emphasize a core set of development technologies,
including client and server programming languages
(more than one of each in some cases), database
programming, and server configuration. This set
provided background for project development,
which was an essential curriculum component,
though the specific contents of the set varied, e.g.
Java vs. Perl. Beyond this essential programming
knowledge other topics covered in these courses
included network protocols, Web application
architecture, security, encryption, media and
compression, an overview of other (than the core
set) technologies, ethics, and history. None of these
were universal, however.

The choice of which core set of development
tools to use was driven by a number of factors,
including pedagogy, program curriculum (primarily
introductory programming language), laboratory
facilities, budget, and instructor preference. The
most popular set of tools was Apache/Tomcat,
Java/J2EE and MySQL on a Linux host. This choice
was driven primarily by cost and availability, since
all of these components are open-source and can run
on low-end computers. Using open-source software
also eliminated any licensing problems for students
who wanted to build the same environment on
personal computers. The fact that most students
learn C++ or Java as their introductory programming
language was also mentioned as a factor in choosing
Java. CGI/Perl was also used frequently as a server-

side programming language, in addition to Java in
some cases. Windows and the ASP programming
environment were used in one case and were
mentioned as part of an earlier prototype for the
course in two other cases. PHP was used in one case
as the server-side programming language.

The courses used a variety of standard
assessment methods. All of the courses included a
project development assignment in addition to
standard activities and assessment such as
homework and exams. Projects required design and
development of a Web application with active server
components. Most of the projects were team-based
though individual projects were assigned as well, or
exclusively in some courses. Some of the projects
also required installation and configuration of an
operating system and/or Web server. Most projects
were student-conceived though in a few courses
actual Web sites were developed for local clients.
Many of the courses also included a student
presentation assignment requiring students to
research and present information on a particular
Web technology. This assignment has the added
benefit of exposing the entire class to a wide variety
of technologies beyond those in the core set.

Laboratory needs were unusual in that students
required an inordinate level of access to a server in
order to complete class projects. One solution was to
dedicate to the class a lab room with enough
computers to provide two computers (client and
server) to each student team. These systems were
isolated from the Internet in order to forestall
security problems. In other courses each student was
provided with an individual server connected to the
Internet. Another solution was to provide a common
server platform connected to the Internet for the
entire class, with a unique instance of Apache for
each student, bound to a unique port number. Some
authors felt it was important for students to go
through the process of building the entire server,
including installation of the operating system, in
order to appreciate the task of system administration,
while in other courses students installed only
application components.

3 COMMON PROBLEMS AND
CONCERNS

The number and diversity of protocols and
programming languages required for Web
development presented a problem. Students typically
learned several Internet and Web protocols (e.g.,
TCP/IP, HTTP. SSL/TLS) as well as markup

WEBIST 2007 - International Conference on Web Information Systems and Technologies

362

languages (HTML, XML), a scripting language
(e.g., Javascript, ECMAScript), one or two server
programming languages (e.g., Perl, Java, JSP, C#),
and a database manipulation language (SQL).
Students were also required to learn to configure and
control operating system and server components
(e.g., Linux, Apache, Tomcat, ASP/.Net). Mastery
of all of these is an unreasonable objective but some
practical level of understanding of each is necessary
for completing a Web development project.

Many of the authors reported difficulty in
keeping the course current with respect to the
development tools. Given that the course touches on
a Web client, client scripting language, operating
system, Web server, server programming language,
and database, there are at least six software products
to keep up with. This course is typically taught once
per year, which is the same approximate frequency
for major upgrades to all six products, and so the
instructor must complete a significant research and
revision project every time the course is taught. If
additional tools and languages beyond a core set are
taught the problem becomes more severe. The
problem can be addressed in part by simplifying the
set of topics. For example, Tomcat can serve as both
a Web server and servlet container; the languages
taught can be reduced to Javascript, Java or Perl, and
SQL.

Several authors reported having a problem with
the diversity of student backgrounds with respect to
programming experience and knowledge of Web
technologies. For example, a course might include
lower level students who have completed only
introductory programming courses as well as
experienced upper level students and possibly part-
time students with professional experience.
Teaching HTML, for example, is at the same time
necessary for the lower level students and boring for
the others. One solution is to provide tutorials and/or
labs covering introductory material and require
inexperienced students to learn them independently.
This seems to work well for topics such as HTML or
basic Linux commands, which are not very complex
and not totally foreign. Another practical solution is
to group students into teams such that experience is
complementary and allow students to get help from
team-mates as needed.

Management of the laboratory development
environment took an excessive amount of time for
some instructors, as much as 50 hours for one
instance of the course. This problem is likely
attributable to immaturity of the software
components being used and inexperience with using
the software to support this course. As the software

improves and experience is gained maintenance
should be less of a burden.

Most of the authors reported being unable to find
a suitable textbook for the course. The available
books failed to provide adequate and complete
coverage of the course material individually. In
some cases, more than one book was assigned. This
may be a reflection of the fact that this course is
implemented in very different ways by different
instructors, making it difficult for authors to produce
a generally useful text. It is also likely that textbook
production has required some time to catch up with
curriculum development, and that there are now
more good textbook candidates available than when
these papers were written. For example
Programming the World Wide Web (Sebesta 2005)
and Java Web Development Illuminated (Qian,
Allen, Gan and Brown 2007) are relatively new
books targeting this topic.

4 MODEL CURRICULUM

The primary impetus for increased interest in
teaching Web-based development has been the
continuing growth in economic and social
significance of the Web. The Web has become a
significant medium in commerce, communication,
education, etc., and has spawned entirely new
business and information sharing models, such as
Google and Wikipedia.

This growth has been reflected in Computing
Curriculum 2001, which is a widely accepted
standard model for computer science education that
was developed jointly by the IEEE Computer
Society and ACM. The CC2001 report recognizes
the significance of Web-based systems to the
computing curriculum in Chapter 3, “Changes in the
Computer Science Discipline”.

Today, networking and the web have become the
underpinning for much of our economy. They
have become critical foundations of computer
science, and it is impossible to imagine that
undergraduate programs would not devote
significantly more time to this topic.

Fifteen hours of the CC2001 core curriculum are

related to Net-Centric Computing, including three
hours focused directly on Web-based systems (NC4.
The web as an example of client-server computing).
Web-based systems also appear as an elective topic
within the Net-Centric Computing group (NC5.
Building web applications). In the five years since

TRENDS IN TEACHING WEB-BASED DEVELOPMENT - A Survey of Pedagogy in Web Development Courses

363

CC2001 was published the significance of the Web
as a development environment has grown, giving
this topic increased significance in the computing
curriculum.

Several common principles are suggested by the
experience of teaching Web-based development.

• Technology is secondary to concepts. Whether
students learn to program server-side
components in CGI/Perl, J2EE, .Net, Ruby,
etc., is relatively unimportant. A student who
thoroughly understands the structure and
operation of an application built with any of
these frameworks can adapt that experience to
the others as needed.

• Practical experience is necessary. Teaching
Web development abstractly is not likely to
produce essential learning. Students must be
actively involved in the development of a
realistic application in order to thoroughly
understand how Web systems function.

• Architecture is fundamental. Learning to use
various programming languages does not
constitute an understanding of Web
applications. Proper architectural design is
essential to successful development of an
application with real scope. Both networking
architectures (client-server models) and
software architecture such as the Model-View-
Controller pattern for server-side systems are
essential to a thorough understanding of Web
systems.

• Security is essential. Web systems do not
operate in a vacuum. An awareness of
common threats for Web applications and
their countermeasures is essential for
developers.

The model curriculum for a Web-Based
Development course suggested here (Table 1) is
derived from the collective experience described
above as well as first-hand experiences of the author
in teaching this course. This curriculum is designed
for a standard semester-long upper-level course in a
computer science curriculum. The only absolute
prerequisite for the course is programming
experience, either in Java or in another Web-
compatible language. Software Engineering,
Database Systems, and Operating Systems are
possible prerequisites, but aren’t essential.
Orthogonal topics such as Software Engineering and
UML are not included but may be integrated across
the listed topics.

This model curriculum focuses on the
development of application functionality (primarily
server-side) and does not include topics related to

user interface design. The basics of programming a
simple but functional user interface (XHTML
Forms, Javascript, Ajax) are included, but
presentation technologies (e.g., CSS, Flash) and the
entire topic of interface design and testing are not.
These topics are extensive and complex enough to
require separate courses, even separate majors! In
fact, the design of interfaces for Web applications is
generally handled by professionals other than those
who develop the server-side software, so this
approach is consistent with industry practice. It is
reasonable, however, to explain to students how to
map the flow of an application interface, using a
UML state chart, for example.

Table 1: Model Curriculum Components.

Topic Weeks
Internet & Web Protocols 1
Web architecture

• 2,3,N-tier client/server
systems

1

Web server operation and
configuration

• {Apache, IIS, Tomcat}

1

Client-side Programming
• XHTML Forms, Javascript,

Ajax

2

Server-side Programming
• {CGI/Perl, J2EE, .NET}

2

Database access
• {MySQL, JDBC, ODBC}

1

Web Application Design
• Model-view-controller

pattern

1

Security & Encryption
• Threat model for Web app’s
• SSL, HTTPS

1

Efficiency & Reliability 1
Media & Compression 1
Internationalization 1
The topic list presented in Table 1 is meant to be

roughly sequential. The first few weeks are given to
discussion of how the Web works in general,
including its basic protocols (IP, HTTP, XML),
architecture, and operation. The “server operation
and configuration” section should include the
operation of servers in general (request handling,
multithreading, etc.) as well as the configuration of
the specific server that students will use in their
projects. The next six weeks present specific

WEBIST 2007 - International Conference on Web Information Systems and Technologies

364

programming technologies for client, server, and
data management layers of Web applications. The
specific set of tools to be covered should depend
upon the background of the students, experience of
the instructor, and available laboratory facilities for
students. The specific set that is covered is
unimportant as long as it is consistent and adequate.
The study of Web application design should help
students to place into context the set of development
technologies that they learned previously. The
Model-View-Controller design is especially
appropriate since it is an excellent model for
structuring a Web application. It also provides a
basis for discussion of Web applications from a
software engineering perspective. Alternative
designs or frameworks may be presented as well.
The study of security and encryption should include
a comprehensive threat model that gives students an
understanding of various ways in which a Web
application can be penetrated and the
countermeasures that can be incorporated during
design and development. Basic security tools such as
SSL should also be presented and required in student
projects. The final three topics are highly important
to successful Web applications but may be omitted
from student projects in order to manage their scope.
Students might practice what is learned in these
weeks with lab exercises instead.

5 SUMMARY

Several courses in Web-based development have
been described in papers published over the last
eight years. Instructors have described these courses
as successful and feel encouraged to continue
offering them despite difficulties involved. The
descriptions share several themes, including:

• the difficulty of keeping up with changing
technologies

• the complexity of managing laboratory
facilities

• the difficulty of dealing with diverse
student backgrounds and experience levels

• the lack of an appropriate textbook
Most of these problems will persist as courses in

Web-based development continue to evolve. Though
development technologies will become more stable
and reliable (reducing lab administration headaches),
they will also become more complex as their
capabilities and features are extended. The
availability of textbooks for this course is
improving, however. Several newer books offer
instructors good textbook options.

The courses surveyed here included a variety of
practical experiences for learning and assessment,
the most common of which was a team project
requiring development of a working application.
Leveraging diverse student experience by requiring
them to complete a presentation on leading Web
technologies was another common practice.

Newer architectural developments such as the
Service Oriented Architecture and mobile computing
will challenge instructors to present a complete
picture of Web development in a single semester.
One of the papers surveyed describes a two-semester
sequence for students wishing to study Web
development, which might become the norm as Web
technologies continue to grow in complexity and
diversity.

REFERENCES
Computing Curricula 2001. (2001). Joint Task Force,

IEEE Computer Society and ACM.
Chung, W. S., & McLane, D. (2002). Developing and

enhancing a client/server programming for internet
applications course. Journal of Computing Sciences in
Colleges, 18(2), 79-91.

Finkel, D., & Cruz, I. F. (1999). Webware: A course about
the web. ACM SIGCSE Bulletin, 31(3).

Klassner, F. (2000). Can web development courses avoid
obsolescence? ACM SIGCSE Bulletin, 32(3).

Lim, B. B. L. (1998). Teaching web development
technologies in CS/IS curricula. Technical Symposium
on Computer Science Education Archive, 107 - 111.

Qian, K., Allen, R., Gan, M. & Brown, R. (2007). Java
Web Development Illuminated. Jones and Bartlett.

Phillips, J., Tan, J., Phillips, M., & Andre, N. (2003).
Design of a two-course sequence in web programming
and E-commerce. Journal of Computing Sciences in
Colleges, 19(2).

Sebesta, R.W. (2006). Programming the World Wide Web.
3rd Edition, Addison-Wesley.

Stiller, E., & LeBlanc, C. (2001). Teaching Client/Server
programming in the context of computing curricula
2001. Journal of Computing in Small Colleges, 16(4),
79-91.

Treu, K. (2002). To teach the unteachable class: An
experimental course in web-based application design.
Proceedings of ACM SIGCSE 2002, 201-205.

Walker, E. L., & Browne, L. (1999). Teaching web
development with limited resources. ACM SIGCSE
Bulletin, 31(1), 22-26.

Yang, T. A., & Grove, R. F. (2002). A web-based
application development course for the computing
curricula 2001/NC3 track, Procedings of WWW 2002.

Yue, K., & Ding, W. (2004). Design and evolution of an
undergraduate course on web application
development. ACM SIGCSE Bulletin, 36(3), 22-26.

TRENDS IN TEACHING WEB-BASED DEVELOPMENT - A Survey of Pedagogy in Web Development Courses

365

