
TASK MODELS FOR PROACTIVE WEB APPLICATIONS

Melanie Hartmann, Daniel Schreiber
Telecooperation Group, TU Darmstadt, Hochschulstr. 10, Darmstadt, Germany

Matthias Kaiser
SAP Research Center Palo Alto, 3475 Deer Creek Road, Palo Alto, CA 94304, U.S.A.

Keywords: Intelligent User Interface, Task Modeling Language, Interface Agents, Human-Computer Interaction.

Abstract: In this paper, we propose a task modeling language for augmenting web applications with a proactive user in-
terface (PUI). PUIs cooperate with the user to accomplish his tasks and facilitate the usage of web applications.
They provide user-sensitive support mechanisms and adapt the interface to the user’s needs and preferences.
Further, they can suggest which data to enter by inferring it from the context or previous interactions. For these
purposes, the required knowledge about the application is stored in a task model. We propose a task modeling
language that allows to easily enriching the automatically created initial task model with additional semantics.
We define requirements for such a language and show that none of the existing languages fulfils all of them.
As UML statecharts meet the most requirements, we use them as basis for our task modeling language. We
show the applicability of this language and the capabilities of PUIs by enhancing an existing web application
with a PUI.

1 INTRODUCTION

Web applications gain more and more functionality,
bit by bit reaching the complexity of traditional desk-
top applications. In addition, many desktop applica-
tions are complemented or replaced by their web ver-
sions. The increasing complexity of options mostly
leads to a decreasing usability of the interface. How-
ever, an intuitive and easy-to-use interface is of great
importance especially for web applications, because
the multitude of existing applications and their sim-
ple accessibility enable the user to switch easily to
another application. This can be achieved by adapt-
ing the interface to the user’s needs, by explaining
him how to use the application or by assisting the user
with his tasks by performing actions on his behalf or
by suggesting content for input fields. Proactive user
interfaces (PUI) aim at combining all these features in
an augmentation of traditional user interfaces. PUIs
are a special type of intelligent user interfaces or in-
terface agents that cooperate with the user to accom-
plish his task, and function as the user’s personal as-
sistant. We state that the main features of a PUI are
Support Mechanisms (provide online help that adapts

Figure 1: Screenshot of a PUI that assists the user in book-
ing a train ticket.

to the user and his current working context), Inter-
face Adaptation (adapt the provided options and con-
tent to the user’s needs and preferences), Content Pre-
diction (suggest data to be entered that is inferred
from previous interactions and context information)
and Task Automation (recognize usage patterns to au-
tomate repetitive tasks).

Support Mechanisms: An inherent problem in
user interface (UI) design is that it is hardly ever pos-
sible to build a UI that fits the needs of all users and
provides everybody with the appropriate amount of
functionality. Thus, the application has to i) adapt to

150
Hartmann M., Schreiber D. and Kaiser M. (2007).
TASK MODELS FOR PROACTIVE WEB APPLICATIONS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Web Interfaces and Applications, pages 150-155
DOI: 10.5220/0001267201500155
Copyright c© SciTePress



each possible user (seeInterface Adaptation) or ii) of-
fer easy access to the whole functionality. The latter
strategy mostly forces the user to find needed func-
tionality using trial and error. This can decrease user-
satisfaction, especially if the number of provided op-
tions gets too large. The traditional method to cope
with this problem is to fall back on classical sup-
port mechanisms like manuals or training courses.
The most significant drawback of all these mecha-
nisms is that they only provide offline help, i.e., the
user is forced to interrupt his work to use them. Al-
though rational behavior would be to read the man-
ual up front as this saves time in total, there are psy-
chological factors preventing users from doing this
(Carroll and Rosson, 1987). Microsoft’s Office As-
sistant presents a more advanced support mechanism
(Horvitz, E. et al., 1998), as it provides online help ac-
cording to the user’s current task. However, the Office
Assistant does not adapt to the user’s needs and pref-
erences. Our research prototype proactively displays
online support information adapted to the user’s needs
and preferences in an unobtrusive manner as shown in
figure 1.

Interface Adaptation: As stated before, the other
way of overcoming the problem of providing the user
with easy access to the required functionality is to
adapt the provided content and options to the user. A
novice user should only be confronted with a basic set
of operations to reduce his cognitive load, whereas an
expert also needs quick access to more advanced op-
erations depending on his needs. These conflicting
demands make it difficult to design a generic inter-
face that fits the needs of all users and thus stress the
need for a user-adaptive interface.

Content Prediction and Task Automation:
A PUI also helps the user performing his task by
suggesting how to fill fields and by automating
repetitive tasks. Therefore, we need a way to predict
the content for input fields based on knowledge
inferred from context information or from previous
user interactions. This content prediction mechanism
recognizes repetitive workflows and enables its
automation by providing a generalization of these
workflows.

An important issue for PUIs is that the user should
never feel losing control of the system nor should the
PUI hamper the normal usage of the application. For
these reasons, we use different levels of proactive be-
havior that can be determined by the user. For ex-
ample, the user can specify to what degree the PUI
acts autonomously (just provide suggestions or per-
form actions autonomously on behalf of the user) or
how much support he wants.

The PUI consists of three key components: the
Process Guidancethat assists the user in performing
a task (e.g., by providing him with step-by-step in-
structions, by adapting the interface to his needs, by
using context and previous behavior to make sugges-
tions, or by automating repetitive tasks), theGener-
ation of Justifications that helps the user understand
the system’s suggestions and thus induces trust in it
and theGeneration of Explanations that explains
terms used within an application or why certain ac-
tions are necessary.

All these components need additional knowledge
about the web application to be able to provide as-
sistance that is not only based on observed behavior.
This knowledge is stored in task models. Ideally, this
task model is provided with the web application, oth-
erwise the PUI builds up the task model for the ap-
plication itself, and allows the user to augment it with
additional information.

PUIs can be built into web applications from
scratch or can be used as an overlay to existing web
applications. The advantage of an overlay architec-
ture is that it relieves programmers of web applica-
tions from integrating these features into every single
application. Additionally, it easily allows enhancing
legacy web applications and sharing knowledge be-
tween applications.

The remainder of this paper is organized as fol-
lows, in section 2 we give an overview of other in-
telligent user interfaces and how they gain knowledge
for providing support. In section 3.1, we list require-
ments for a task modeling language for PUIs. We dis-
cuss advantages and drawbacks of existing task mod-
eling languages. Next, we present our task modeling
language resulting from this discussion that is most
suitable for developing proactive web applications. In
section 5, we show the applicability of our task mod-
eling language for building PUIs by applying it to a
web application. We conclude with a summary and
directions for future work.

2 RELATED WORK

There exist two main approaches to intelligent user
interfaces: Learning interface agents (LIAs) that have
no prior knowledge of the task, and agents that are
based on a prebuilt model of the task. Maes, one of
the most prominent advocates for LIAs, investigates
agents that learn by observing a user working with an
application in (Maes, 1994). She states that agents
which result from such a learning process are better
accepted than pre-programmed expert systems, be-
cause they are personalized to the user. The agents’

TASK MODELS FOR PROACTIVE WEB APPLICATIONS

151



decisions and advices can be explained to the user
in an understandable manner, e.g., name the previous
observed actions of the user that now lead to the sug-
gestion.

In contrast, the importance of a prebuilt task
model is stressed by the Collagen project (Rich and
Sidner, 1998). Its goal is to build an architecture for
creating collaborating agents, that work together with
the user like human experts would. A task model is
used as the primary knowledge source for creating
the UI of the application as well as the corresponding
agent (Eisenstein and Rich, 2002). In Collagen, a hi-
erarchical task decomposition model similar to CTT
(Paterǹo et al., 1997) is used. As the agent has to
be created together with the application, the approach
lacks flexibility. Moreover, learning patterns that in-
volve multiple applications is difficult with such an
approach.

Closely related to our work on task models for
web applications is the AGUSINA (Amandi and Ar-
mentano, 2004) project that also bases on a prebuilt
task model. Amandi and Armentano develop an ar-
chitecture for separating the agent from the applica-
tion it works on. This is done by using a modified
CTT model as application description. Their agents
can offer advice or take actions on behalf of the user.
The programmer has to specify when to perform these
actions by providing a mapping from encountered sit-
uations to the action to take. How and if the created
agents learn to enhance themselves is not described in
the paper.

In our opinion, the best support can be achieved by
combining LIAs with task model driven approaches.
LIAs need no modeling of the application in advance,
and thus can be easily applied to various applications.
However, even Maes concedes in (Maes, 1994) that
some minimal background knowledge has to be given
to the interface agent. We conclude, that we should al-
low the developer of the application and also the end-
user with minimal technical knowledge to enrich our
PUI with as much knowledge as he is able and willing
to provide. To encode this knowledge, we need a task
model, which has to meet several requirements that
are discussed in the next section.

3 ANALYSIS OF EXISTING TASK
MODELING LANGUAGES

The task model of an application is composed of the
interaction elements of the application. In the case of
web applications these are the different form elements
and links. It has to be easy to understand and update
and has to support constructs for additional semantic

information (like dependencies between elements) in
a machine readable way. Thus, we define the follow-
ing requirements for a task modeling language suit-
able for PUIs:

• R1: Understandability. The resulting task mod-
els have to be comprehensible for the application
designer and for the end-user with minimal IT ex-
perience. The easier it is to add additional seman-
tics, the easier it is to improve usability beyond
the state reachable with pure machine learning.

• R2: Incremental modeling. PUIs may not de-
pend on up front semantic modeling, because not
every goal or usage is known during design-time
and therefore can not be modeled. Thus, the task
modeling language has to support adding seman-
tics later.

• R3: Conditions. Conditions refer to any require-
ments the application imposes on the entered data.
This information is used to help the user achieve
his goal by telling him which data he still has to
provide and which actions he has to perform. For
example, a customer relationship management ap-
plication may require that a principal contact for a
customer is defined before an email can be sent to
this customer. The PUI uses this knowledge to au-
tomatically guide the user to the contact creation
mask accompanied by an explanation, in case the
user tries to send an email to a customer without
principal contact.

• R4: Dependency relations. The interaction or
the data entered into an application can depend on
previously entered data, external sources (context
information) or on other user interface elements,
e.g., a certain choice may depend on the current
location. This restricts the amount of data that has
to be considered for predicting data and recogniz-
ing usage patterns.

• R5: Mapping to UI . The elements of the task
model have to be connected to the elements of the
UI. This enables the PUI to map user’s actions in
the normal UI to the task model. This mapping
must be easy to generate to gain wide adoption.

• R6: Mapping to ontology. Finally, the elements
of the task model should be mapped to an ontol-
ogy to allow the creation of user understandable
explanations like in (Wilcock and Jokinen, 2003).
This mapping can also be used to gain additional
information, like inferring conditions (R3) (e.g.,
required fields for a valid postal address) or de-
pendencies between elements (R4).

WEBIST 2007 - International Conference on Web Information Systems and Technologies

152



Figure 2: Components of our task modeling language.

3.1 Existing Task Modeling Languages

In this section, we analyze how existing task model-
ing languages perform with regards to these require-
ments. We briefly discuss GOMS, STRIPS and CTT.
Further, we inspect UML as one of the most widely
used modeling languages. Although UML does not
have an explicit task model diagram, several diagram
types of UML can be used for task modeling. Here
we consider activity diagrams and statecharts.

GOMS GOMS (John and Kieras, 1996) represents
procedural knowledge required to operate a system
by stating its atomic operations like mouse move-
ments or time the user needs to come to a decision.
The model is used for studying and comparing perfor-
mance of existing user interfaces. They model much
more than just the interaction with the interface, there-
fore, the elements are too fine grained for applying it
to PUIs.

STRIPS Logical formalisms like STRIPS (Fikes
and Nilsson, 1971) have the advantage of having well
understood semantics. They are often applied for ex-
pressing planning problems. The major drawback is,
that they are hard to visualize and understand for a hu-
man. Another problem is to consider external sources,
because their values do not change deterministically.
Thus, it is no appropriate representation for PUIs.

CTT The Concurrent Task Tree (CTT) formalism
(Paterǹo et al., 1997) allows to structure work hierar-
chically using task / subtask relations. Sibling tasks
of the same level can be connected using various tem-
poral relationship operators. To avoid ambiguities in

the temporal constraints, it may be necessary to intro-
duce artificial super tasks which are of no value for the
user. These make the model harder to understand for
the user violating requirement (R1). Further, it is dif-
ficult to model conditions (R3) and non-temporal rela-
tions between tasks, especially dependence on exter-
nal sources (R4). Incremental modeling (R2) is also
hard with such an approach, as often semantics can-
not be added by an edit at one place, and new tasks
have to be introduced.

UML 2.0 Activity Diagrams The semantics of
UML activity diagrams are based on Petri nets and
thus are well defined. Activity diagrams support con-
ditions and dependencies (R3 and R4) in form of Ob-
ject Constraint Language expressions. However, they
do not offer a mapping to UI elements (R5) or to an
ontology (R6). Incremental modeling is possible with
activity diagrams (R2), as activities are non-atomic
and can be refined. In form based web applications,
usually many activities can be carried out in an arbi-
trary order (e.g., filling out an address form starting
with first or last name or shipping address). In order
to model this, every activity would have to be linked
to every other activity resulting in a model that lacks
easy understandability (R1).

UML 2.0 Statecharts Statecharts do not suffer
from this problem, as web pages can be represented
as states and the available actions on this page
as transitions. Statecharts allow the modeling of
conditions by guard expressions on transitions
(R3, R4). Incremental modeling is possible (R2),
e.g., the guard expressions of transitions can be
transformed into states and transitions themselves.
One drawback of statecharts is that it is not possible
to refer to user input from previous interactions.
Further, as activities are just modeled by transi-
tions without attributes, it is particularly difficult
to map UI or ontology elements to activities (R5, R6).

Although workaround solutions to meet the re-
quirements exist for most modeling languages, e.g.,
by modeling every additional piece of information as
extra attribute, these should be avoided, as they intro-
duce unnecessary complexity into the resulting mod-
els which decreases understandability and thereby vi-
olates (R1). Hierarchical task decomposition is not
essential for the user’s cognitive model of a web ap-
plication, because web pages are seldom organized hi-
erarchically and we just need one level of granularity.
To build task models suitable for PUIs for web ap-
plications we propose a new task modeling language,
without focus on hierarchical task decomposition. As

TASK MODELS FOR PROACTIVE WEB APPLICATIONS

153



Figure 3: Graphical representation of the task model with
underlying web page.

UML statecharts miss only few requirements and are
the most intuitive, we chose to build upon them and
augment them with activities with richer semantics
(e.g., mapping to UI elements or an ontology) as de-
scribed in the next section.

4 TASK MODELING LANGUAGE
FOR PROACTIVE UIS

We chose a task modeling language with a graphical
representation, because it is easier to understand (R1).
Task models can be represented as directed graphs
where the nodes representstatesand activities, us-
ing a mixture of statecharts and activity diagrams (see
figure 3). We distinguish between states and activi-
ties, because this maps naturally to the user’s view of
a web application where states represent web pages,
and activities the different interactors on the page.

An overview of the node types and attributes of
our task model can be found in figure 2. We illus-
trate the elements of our task modeling language with
a simple example: A login page containing an input
field for the username, a drop down menu for select-
ing the project to work on and a “Login”-button for
submitting the data (see figure 3).

We distinguish three different types of states, the
start and end state, representing the start and end of
a task without referring to a specific web page, and
the task states that refer to a web page. Further, we
model three types of interactors:FillOut (input field
for arbitrary text),Choose(clickable UI element) and
Select(select from a set of predefined items). In our
example, we would model the input field for the user-
name as FillOut interactor, the drop down menu as
Select interactor and the “Login”-button as Choose
interactor.

The state nodes are linked viatransitions to ac-
tivities corresponding to the input elements on the site
represented by the state. The activity nodes again are
linked to the state the user reaches when performing

the activity. In the majority of cases, this is the same
state as before and the transition from the activity to
the state can be omitted in the graphical representa-
tion.

Each activity node is coupled to a UI element
via its linkToUI attribute stating the corresponding
XPath expression (R5).Dependency relationsare
also modeled as attributes of the activity nodes (R4).
In general, the input of activity nodes can depend
on other activity nodes, other UI elements and exter-
nal information gathered from context sensors. Thus,
we also need a way to represent additional UI ele-
ments and context data with our task modeling lan-
guage. For that purpose we introduce wrapping nodes
UIContent and Context for information that is not
directly related to the workflow process. The UICon-
tent nodes are also linked to the interface by XPath ex-
pressions. The Context nodes hold a reference to the
corresponding sensor. In our example, we model two
dependencies: the selection of the project is related to
the entered username, and the username corresponds
to the windows login name that can be retrieved from
a context sensor modeled as Context node.

Further, all activity nodes can be linked to an el-
ement in a commonontology which can be used to
generate explanations for these elements (R6). If
no ontology is used, thedescription attribute should
contain a short explanation of the element. Additional
factors that help guide the user through the workflow
of a task areconditions that state what has to be done
to be able to perform an activity (in our example the
login-button may only be pressed when a username
was entered and a project was chosen) (R3). Condi-
tions are modeled as attributes of the corresponding
transitions.

All of the above mentioned attributes are optional,
but the more additional information is present the bet-
ter assistance can be provided (R2). The whole task
model for a web application can be partly automati-
cally created by the PUI by analyzing the interactors
on a webpage (Paganelli and Paternò, 2003) or by ob-
serving the user’s interaction with it.

5 APPLICATION OF OUR TASK
MODELING LANGUAGE

In order to test our task modeling language, we built a
task model and a PUI for an existing web application.
We modeled one of the most frequently used function-
alities of the Deutsche Bahn website (German Rail-
ways, http://www.bahn.de): the booking process for
train tickets.

An example of the resulting website augmented

WEBIST 2007 - International Conference on Web Information Systems and Technologies

154



with a PUI is depicted in figure 1. The left frame con-
tains the normal website, and the right frame the PUI
displaying suggestions and explanations. In the ex-
ample, the PUI has identified the FillOut activity for
the destination as next step. The PUI guides the user
by highlighting the corresponding input field of the
web application and by suggesting the user what to
do next in the PUI frame.

Further, the PUI suggests values to fill in the form
element (for FillOut and Select activities). These val-
ues are derived from previous interactions or from
context sensors specified in the task model. In our ex-
ample, the PUI suggests four values to be entered as
destinations. The first two of them are derived from
the user’s calendar and the remaining two from pre-
vious entered data. The source of the data is shown
as tooltip of the suggestions. Moreover, the user can
ask for more detailed justifications, including where
the data was derived from and why a suggestion was
made. Our example shows that PUIs go beyond sim-
ple form filling, e.g., by taking into account context
data. Our modeling language allows to define a sen-
sor which delivers the value and link it to the corre-
sponding FillOut Activity via the “dependencies” at-
tribute like in our case the calendar sensor. The user
still has the possibility to enter any other destination
on the website or take a different action. The new data
would then be observed by the PUI, and incorporated
into future advices. Thus, the PUI does not hamper
the normal interaction with the application.

In generating task models for the booking appli-
cation, our initial assumption that three activity types
(FillOut, Choose and Select) are sufficient for model-
ing interactions could be confirmed. We could also
show that it is possible to generate the initial task
model automatically with a tool we built for that pur-
pose. Further, it proved to be easy to enhance existing
task models with additional semantics, like links to
context data, as the corresponding parts of the task
model could be easily found with help of the graphi-
cal representation.

6 CONCLUSION

In this paper, we presented a step towards improving
the usability of web applications with PUIs by creat-
ing one important building block: the task modeling
language. We defined requirements for such a task
modeling language, and showed that none of the ex-
isting approaches meets all our requirements. Thus,
we defined a new language building upon statecharts
fulfilling all requirements. We demonstrated the ap-
plicability of our task modeling language with a pro-

totype that augments an existing web application with
a PUI.

Building on this task modeling language, we strive
to further enhance the support given by the PUI by in-
corporating knowledge about high level goals of the
user. These can be used to deductively generate step-
by-step instructions. The support for context data
that can be shared by several applications will be im-
proved, as this will be a major step in connecting ap-
plications with the needs of the user.

ACKNOWLEDGEMENTS

We would like to thank SAP Research Darmstadt for
supporting our research in the AUGUR project.

REFERENCES

Amandi, A. and Armentano, M. (2004). Connecting web
applications with interface agents.International Jour-
nal of Web Engineering and Technology, 1(4).

Carroll, J. M. and Rosson, M. B. (1987). Paradox of the ac-
tive user. InInterfacing Thought: Cognitive Aspects of
Human-Computer Interaction, chapter 5. MIT Press,
Cambridge, MA, USA.

Eisenstein, J. and Rich, C. (2002). Agents and GUIs from
task models. InIUI 2002. ACM Press.

Fikes, R. and Nilsson, N. J. (1971). STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. InIJCAI 1971.

Horvitz, E. et al. (1998). The Lumiere Project: Bayesian
User Modeling for Inferring the Goals and Needs of
Software Users. InUAI 1998. Morgan Kaufmann.

John, B. E. and Kieras, D. E. (1996). The GOMS family
of user interface analysis techniques: comparison and
contrast.ACM Trans. Comput.-Hum. Interact., 3(4).

Maes, P. (1994). Agents that reduce work and information
overload.Communications of the ACM, 37(7).

Paganelli, L. and Paternò, F. (2003). A Tool for Creating
Design Models from Web Site Code.International
Journal of Software Engineering and Knowledge En-
gineering, 13(2).

Paterǹo, F., Mancini, C., and Meniconi, S. (1997). Engi-
neering Task Models. InICECCS 1997. IEEE Com-
puter Society.

Rich, C. and Sidner, C. L. (1998). COLLAGEN: A collab-
oration manager for software interface agents.User
Modeling and User-Adapted Interaction, 8(3-4).

Wilcock, G. and Jokinen, K. (2003). Generating Responses
and Explanations from RDF/XML and DAML+OIL.
In IJCAI Workshop on Practical Dialogue Systems.

TASK MODELS FOR PROACTIVE WEB APPLICATIONS

155


