
DYNAMIC SERVICE COMPOSITION FOR VIRTUAL UPNP
DEVICE CREATION IN HOME NETWORK ENVIRONMENT

Sheng-Tzong Cheng, Chun-Yen Wang, Mingzoo Wu,Wan-Ting Ho
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan

Chia-Mei Chen
Department of Information Management, National Sun Yat-Sen University, Tainan, Taiwan

Keywords: UPnP, data type ontology, service composition, virtual application probing, virtual device creation.

Abstract: Exploiting UPnP techniques, home users can easily control intelligent devices through control points.
However, UPnP devices lack a composition mechanism to complete a novel application or value-added
service. This paper proposes a dynamic service composition system which coordinates the primitive UPnP
services at home to create a virtual device. We define data type ontology for UPnP devices to describe their
service interfaces. The interface matching mechanism is employed to construct a service graph that
describes which services can be composed together. Finally, the proposed system travels on the service
graph, and probes a suitable execution path to generate a new device.

1 INTRODUCTION

With the proliferation of home networked devices,
all sorts of devices could be discovered and
controlled by UPnP architecture. The goal of UPnP
architecture is to define the communication
protocols between control point (CP) and devices.
UPnP uses common protocols which are
independent of the underlying physical media and
transports, and ensure every device vendors could
follow. Many industry companies and research
initiatives such as UPnP, OSGi, DLNA, and HAVi
have tried to understand the communication protocol
between CP and devices. However, up to now, they
are very little to get in touch with composing the
primitive services to create value-added services.

Each UPnP service description lists the service
type, name, URLs for a service description, control,
and eventing. The description is recorded in XML-
based syntax. UPnP is an open networking
architecture that uses Web technologies to enable
seamless proximity networking in addition to control
and data transfer among networked devices. UPnP is
a Web-based communication protocols between CP
and devices.

As Web services become more and more
prevalent, many Web service composition (SC)
technologies are proposed and developed.
BPEL4WS (Curbera, 2001) supports process-oriented
SC, which represents a specific process composition
flow. CoSMoS (Fujii, 2004) can integrate the services
to construct a semantic graph. Given a user request,
CoSMoS checks the semantics and generate an
execution path. In eFlow (Casati, 2000), a composite
service is designed by a template which defines an
order of execution of the services. User can choose
an application template from the repository or by
creating a template by himself. The request
application is composed through selecting the
services specified in the template and combining
them according to the structure described in the
template.

In this paper, we aim at designing and
implementing a dynamic SC (DSC) system and
create a virtual device in home network environment.
We propose data type ontology to define interfaces
for services. And we show how to use semantic
descriptions to aid in the DSC system. Also, we
present a method called Virtual Application Probing
(VAP) which allows home virtual applications can
be dynamically and semantically composed from the
individual services of home networked devices. We

349
Cheng S., Wang C., Wu M., Ho W. and Chen C. (2007).
DYNAMIC SERVICE COMPOSITION FOR VIRTUAL UPNP DEVICE CREATION IN HOME NETWORK ENVIRONMENT.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 349-352
DOI: 10.5220/0001269603490352
Copyright c© SciTePress

design and implement the DSC system using
existing technologies such as UPnP, ontology, and
XML.

Figure 1: The concept of dynamic service composition.

This paper is organized as follows. Sec. 2
describes the DSC system. Sec. 3 describes the
implementation techniques. Sec. 4 presents the
demonstration of the proposed system. Conclusion
remarks are drawn in Sec. 5.

2 SYSTEM ARCHITECTURE

Fig. 1 illustrates the concept of DSC. There are
many independent devices, such as Microphone,
Speaker, Media player, TV, Xbox, Camcorder, etc.
Through DSC system, these useful services could
cooperate with each other to create a virtual device
or a novel application.

2.1 Data Type Ontology Classification

We extend the service description and add semantics
information to define a service interface. The I/O
variables are classified according to their data type
and further classified according to semantics.

UPnP CP retrieves device and service
information with semantics to provide accessible
services. If the data type ontology share and publish
the same underlying ontology of the used terms, then
CP can extract and aggregate the data type and
semantic information to do service matching. The
benefit of using data type ontology is that it is easy
for developers to design service interfaces and is
easy for users to understand. After defining the data
type ontology, we use the data type and semantic
information to describe the service interface. With
interface matching method, we could know whether
the service’s output can be fed into the next service’s
input. Fig. 2 shows the ontology diagram of the
variables for communication interface of home
networked devices.

2.2 Service Interface Matching

Figure 2: Data type ontology for home-domain devices.

A service interface specifies methods that can be
performed on the service. Service’s interfaces are
public for an external use. A service can hold two
sorts of interfaces: input and output interfaces.
Traditionally, UPnP service description only has
data type and I/O information to describe a service
interface, but it is not enough to perform DSC.

With the support of data type ontology,
semantics of a service can be freely defined, thus
providing high extensibility. We use data type and
semantic information to describe service interfaces.
With interface matching method, we could know
whether the service’s output can be fed into the next
service’s input.

2.3 Service Graph Construction

Service graph (SG) is an intuitive way to represent
composition concepts. Two types of nodes are
defined in SG: DataSemanticNode (DSN) and
ServiceInfoNode (SIN). The links between these
nodes represents their associations. The SG clearly
represents the composition information. The benefit
of using SG for DSC is its understandability for
users. Also, the SG is easy to maintain and handle
for generator and designer.
 DSN: Each DSN represents a pair of data type

and semantic defined by the data type ontology to
represents the service’s interface. We denote (Data
Type, Semantic) as a DSN.
 SIN: We take down the device and service

information in the SIN, which has two kinds of
information, the device name and the service name.
We denote SIN as (Device name, Service name).

WEBIST 2007 - International Conference on Web Information Systems and Technologies

350

Figure 3: Directed service graph.

To construct a directed SG, we create links
between the DSNs and SINs. When a device is
discovered by CP, our system checks the service
interface's data type and semantics of the added
device. If the DSN's data type and semantics are the
same with the service input interface's data type and
semantics, then a link is directed from DSN to SIN.
Otherwise, if the DSN's data type and semantic are
the same with the service output interface's data type
and semantics, then a link is directed from SIN to
DSN. Each time when a device is discovered by CP,
our system would make links between DSN and SIN
automatically. Fig. 3 represents the directed SG.

2.4 Execution Path Exploration

We use Virtual Application Probing (VAP) to find a
composite service path in the directed SG. To
implement this scheme, we place each visited node
into a linked list and record its preceding node with
index information. Then we use VAP to find a
shortest execution path (EP) in SG. Step 0: Check
virtual device description. CP reads the virtual
device's description to know the virtual service's
input and output interfaces' data types and semantics.
Step 1: Put the DSN which represents the virtual
service's input interface into linked list. Step 2: Put
SINs whose input interface is the DSN from step 1
into linked list. Record their indexes as the number
of the preceding nodes in the linked list. Step 3: Put
the DSN which represents the output interface of the
SIN from step 2 into list. And record the index as the
number of the predecessor nodes in the linked list.
Step 4: If we find DSN of the virtual service's
output interface, stop searching and export the EP
according to their indexes. Otherwise, repeat Step 2
and 3 until there are no nodes left in linked list.

2.5 Virtual Service Provision

Once all EPs of virtual device are explored, the
virtual device with the EPs will be created and CP
would invoke the services which was required in the
EP sequentially. Here we describe two types of
flows: control flow and data flow. Control flow is
used to trigger the required service in EP. If we
invoke the virtual service, the CP would invoke the
primitive services automatically with the control
flow. And data is exchanged between services
without going through the CP.

3 SYSTEM IMPLEMENTATION

Our device model is refined from CyberLink for
Java (CyberLink 2004), which is a development
package for UPnP developers. We append some
classes and methods to implement our DSC system.
 ControlPoint Class: Method DeviceAdded()

checks whether a service can be composed with
other service by interface matching. If the added
service’s interface exactly matches another service’s
interface then we connect the two service nodes in
SG. If a device is leaving the UPnP network, method
DeviceRemoved() removes the links between the
service nodes.
 SemanticType Class: This class is used to

describe the data structures of SG. DSN represent
the interfaces of a service. And SIN records the
service information including device name and
service name. With the aid of semantics, we use
“interface matching” approach to find out what
service’s output can be fed to the next service’s
input. Then we use VAP to find a virtual service in
the directed SG.
 LinkedList Class: The LinkedList class is used

to find EP of virtual device. We implement a linked
list to record the SG nodes in EP. Extra index
information is used to record the preceding node’s
number in the linked list.
 VirtualDevice Class: In the beginning of VAP

process, CP will check the virtual device’s
descriptions. If the virtual service can be composed
from the primitive services, we create an instance of
virtual device with the EP and user can invoke the
virtual device from CP. Unlike the real device, the
virtual service/device is not implemented beforehand.
The virtual device can receive a composite EP found
by VAP. The virtual service is a composite service
composed from the primitive services. Once the
virtual service is invoked, CP would sequentially
invoke the primitive services involved in EP.

DYNAMIC SERVICE COMPOSITION FOR VIRTUAL UPnP DEVICE CREATION IN HOME NETWORK
ENVIRONMENT

351

Figure 4: Creation of virtual Karaoke.

4 DEMO SCENARIO

We implement a virtual Karaoke which is composed
of TV, Player, Speaker and Microphone. In our
system, VAP creates a virtual Karaoke from these
four devices. Fig. 4 shows the creation of virtual
Karaoke from the four devices using interface
matching.

4.1 Semantic Service Description

We make description files of devices and services to
create device. A service must be able to represent
data type, I/O, and semantic information. We add
semantic tags in XML-based service description.
When a device is plugged into the network, the CP
retrieves the device and service descriptions from
the discovery message.

4.2 UPnP Devices Simulation

Using CyberLink for UPnP package (CyberLink
2004), we can implement devices and CP easily. The
Media player has two services: SetPower and
PlayFile. The input data type of PlayFile is
Bin.base64 and its semantic is File. The output data
type of PlayFile is Bin.base64 and its semantic is
Audio and Video.

4.3 Virtual Karaoke Creation

Once CP finds the TV, Player, Speaker and
Microphone devices, DSC system would create a
virtual Karaoke which is composed from the four
devices automatically. A composite path that found
by the VAP is: (Bin.base64, File) → (Player,
PlayFile) → (Bin.base64, Video) → (TV, Visual) →
(Device_Status, TV) and (Bin.base64, Voice) →
(Microphone, Mike) → (Bin.base64, Audio) →
(Speaker, PlaySound) → (Device_Status, Speaker).
Fig. 5 shows that users can view and invoke the
virtual Karaoke through CP, which can invoke the
required services on the EP.

Figure 5: Virtual Karaoke.

5 CONCLUSIONS

In this paper, we present using semantic descriptions
to aid DSC. We design the service interface with
data type and semantic information. Each interface
is specified by data type and semantic tags. With
interface matching method, we could know which
the service’s output can be fed into the next service’s
input. We also present SG and VAP to find
composite EPs of virtual device. SG is an intuitive
way to represent composition concepts in an
understandable way.

ACKNOWLEDGEMENTS

This work was supported in part by
TWISC@NCKU, ITRI, and National Science
Council under the Grants NSC 94-3114-P-006- 001-
Y, B95-063B, and NSC 95-2218-E-006-011.

REFERENCES

Curbera, F., etc. 2001. Business Process Execution
Language for Web Services.

Fujii, K., Suda, T., 2004. Dynamic Service Composition
Using Semantic Information, In International
Conference on Service Oriented Computing.

Casati, F., etc. 2000. Adaptive and dynamic service
composition in eFlow, In CAiSE.

CyberLink for Java 2004, http://www.cybergarage.org/.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

352

