
APPLYING GAMES-BASED LEARNING TO TEACH
SOFTWARE ENGINEERING CONCEPTS

Thomas M. Connolly, Mark Stansfield and Tom Hainey
School of Computing, University of Paisley, High St, Paisley, PA1 2BE, Scotland

Keywords: Games-based learning, software engineering, pedagogical praxis.

Abstract: For some time now, computer games have played an important role in both children and adults’ leisure
activities. While there has been much written on the negative aspects of computer games, it has also been
recognised that they have potential advantages and benefits. There is no doubt that computer games can be
highly engaging and incorporate features that are extremely compelling. It is these highly engaging features
of computer games that have attracted the interests of educationalists. The use of games-based learning has
been growing for some years now, however, within software engineering there is still a dearth of empirical
evidence to support this approach. In this paper, we examine the literature on the use of computer games to
teach software engineering concepts and describe a computer game we have been developing to teach these
concepts.

1 INTRODUCTION

It is generally accepted that computer games are an
extremely motivating and engaging medium and
represent a new form of popular culture. There is
also a growing recognition of the potential benefits
that can be gained in using computer games within
teaching and learning, although there are still many
critics of this approach. We have been attempting to
use a games-based learning approach to support the
teaching of requirements collection and analysis
within a software engineering course in Higher
Education for some years now (Connolly et al.,
2004). Recently we have teamed up with a Scottish
games-based learning company to develop an
expanded version of the game for both the academic
and training communities. In this paper, we examine
the literature on the use of games-based learning
within software engineering and also examine some
of the issues underlying the teaching of the abstract
and complex domain of requirements collection and
analysis and, more generally, software engineering.
We then discuss the high-level requirements for our
game and provide an overview of the game play and
an outline subsystem design.

2 PREVIOUS RESEARCH

Software engineering has been described as a
“wicked problem”, characterized by incomplete,
contradictory and changing requirements, and
solutions that are often difficult to recognize as such
because of complex interdependencies (DeGrace &
Hulet Stahl, 1998). According to Armarego (2002),
there is an educational dilemma in teaching such
problems in software engineering because:

• complexity is added rather than reduced with
increased understanding of the problem;

• metacognitive strategies are fundamental to the
process;

• a rich background of knowledge and intuition
are needed for effective problem-solving;

• a breadth of experience is necessary so that
similarities and differences with past strategies
are used to deal with new situations.

Oh and Van der Hoek (2001) identify a number of
other issues that complicate the teaching of the
software process:

• Software development is non-linear: activities,
tasks and phases are repeated and multiple
events happen at the same time. Managing two
similar projects in the same way may not
produce the same outcome due to the presence

289M. Connolly T., Stansfield M. and Hainey T. (2007).
APPLYING GAMES-BASED LEARNING TO TEACH SOFTWARE ENGINEERING CONCEPTS.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Society, e-Business and e-Government /
e-Learning, pages 289-295
DOI: 10.5220/0001272702890295
Copyright c© SciTePress

of several (possibly unexpected) factors (e.g.,
technical advances, client behaviours or
expectations).

• Software development involves several
intermediate steps and continuous choices
between multiple, viable alternatives: even with
careful planning, not all events that can occur
can be anticipated at the start of a project.
Difficult decisions must be made, tradeoffs
considered and conflicts handled.

• Software development may exhibit dramatic
effects with non-obvious causes: while software
development has several cause-and-effect
relationships (e.g., it is more cost-effective to
identify flaws in the earlier phases of
development than to identify them in the later
phases), there are other situations that may arise
in which the cause is not so apparent. For
example, Brook’s Law states that adding people
to a project that is already late typically makes
that project later.

• Software engineering involves multiple
stakeholders: clients and non-development
personnel in an organization all make decisions
that impact development.

• Software engineering often has multiple,
conflicting goals: software development
includes tradeoffs between such things as
quality versus cost, timeliness versus
thoroughness, or reliability versus performance.

Two further issues arise with teaching software
development that we are interested in taking into
consideration in any learning environment we
develop are:

• Communication: software engineers must be
able to communicate, both verbally and in
writing, with staff internal to the project (project
manager, team leaders, analysts, designers,
developers, testers, quality assurance) as well as
with external stakeholders.

• Pedagogical praxis: Shaffer (2004a) proposes a
theory of ‘pedagogical praxis’, which links
learning and doing within an extended
framework of communities of practice (Lave,
1991; Lave & Wenger, 1991). Pedagogical
praxis is based on the concept that different
professions (for example, lawyers, doctors,
software engineers) have different
epistemologies (epistemic frames) – different
ways of knowing, of deciding what is worth
knowing and of adding to the collective body of
knowledge and understanding. For a particular
community, the epistemic frames define

“knowing where to begin looking and asking
questions, knowing what constitutes appropriate
evidence to consider or information to assess,
knowing how to go about gathering that
evidence, and knowing when to draw a
conclusion and/or move on to a different issue”
(Shaffer, 2004b, pp. 4). Implementation of
pedagogical praxis requires a faithful recreation
of the professional community, one that is
“thickly authentic”; that is, one where (a)
learning is personally meaningful for the
learner, (b) learning relates to the real-world
outside the classroom, (c) learning provides an
opportunity to think in the modes of a particular
profession and (d) learning where the means of
assessment reflect the learning process (Shaffer
and Resnick, 1999). Connolly and Begg (2006)
have suggested that the term thickly authentic
be extended to incorporate: (e) learning using
the tools and practices of the modern-day
professional.

According to Schön (1983, 1987) the following are
some of the key problems in teaching an abstract
subject of this nature:

• It is learnable but not didactically or
discursively teachable: it can be learned only in
and through practical operations.

• It is a holistic skill and parts cannot be learned
in isolation but by experiencing it in action.

• It depends upon the ability to recognize
desirable and undesirable qualities of the
discovered world. However, this recognition is
not something that can be described to learners,
instead it must be learned by doing.

• It is a creative process in which a designer
comes to see and do things in new ways.
Therefore, no prior description of it can take the
place of learning by doing.

Students often have considerable difficulty
comprehending implementation-independent issues
and analyzing problems where there is no single,
simple, well-known, or correct solution (Connolly
and Begg, 2006). They have difficulty handling
ambiguity and vagueness and they can also display
an inability to translate tutorial examples to other
domains with analogous scenarios, betraying a lack
of transferable analytical and problem-solving skills
(Connolly & Stansfield, in press). Kriz (2003)
highlights the point that the majority of students are
not competent enough to put their knowledge into
practice and they are unable to cope successfully
with the everyday tasks associated with the practice
of their chosen field. These problems can lead to

WEBIST 2007 - International Conference on Web Information Systems and Technologies

290

confusion, a lack of self-confidence and a lack of
motivation to continue.

Many of the above characteristics make teaching
requirements collection and analysis and, more
generally, the software development process,
problematic using didactic approaches to teaching
and learning and the practical experience provided
falls far short of what a student can expect “in the
real world”. Instead, these issues suggest that
students can only learn about software engineering
by doing software engineering and rely less on overt
lecturing and traditional teaching. This approach
requires a shift in the roles of both students and
teachers, with the student becoming an apprentice,
exploring and learning about the problem in the
presence of peers (who may know more or less
about the topic at hand) and the teacher moving from
being the “knowledgeable other” towards becoming
a facilitator, who manages the context and setting,
and assists students in developing an understanding
of the material at hand (Koehler & Mishra, 2005).

We advocate an alternative teaching paradigm
for software engineering based on constructivism.
Cognitive constructivism views learning as an active
process in which learners construct new ideas or
concepts based upon their current/past knowledge.
The learner selects and transforms information,
constructs hypotheses and makes decisions, relying
on a cognitive structure to do so (Piaget, 1968).
Social constructivism, seen as a variant of cognitive
constructivism, emphasizes that human intelligence

originates in our culture. Individual cognitive gain
occurs first in interaction with other people and in
the next phase within the individual (Forman &
McPhail, 1993). These two models are not mutually
exclusive but merely focus upon different aspects of
the learning process. In fact, Illeris (2003) believes
that all learning includes three dimensions, namely,
the cognitive dimension of knowledge and skills, the
emotional dimension of feelings and motivation, and
the social dimension of communication and
cooperation – “all of which are embedded in a
societally situated context”.

Figure 1 provides a representation of the
environment we will use as the basis for the
development of the games-based learning
application and the problems to be addressed.

3 THE SDSIM GAME

The development of the SDSim game is being
underpinned by Participatory Design principles with
users and other stakeholders playing a prominent
role in all the stages relating to design, development
and evaluation. The benefits of Participative Design
are that it can provide better project control, better
communication, more satisfied users and
participants, lessens the need for costly corrective
action post implementation and can provide more
innovative and creative solutions than might have

Knowledge &

 Understanding

Software Engineering

Skills

Ill-defined Changing Requirements

Multi-disciplinary
Complex

Ambiguous Eclectic

Experience
required

Knowledge & intuition
required

People-oriented

Problems

Holistic

Creative

Non-linear

Multiple conflicting
goals Multiple stakeholders

Choice and tradeoff
required

Environment

constructivist
learning by doing practically-oriented

support social structures
(communication)

support development
of metacognition

pedagogical praxis
(ie “thickly authentic”)

support reflection

Figure 1: Environment for teaching software engineering (and problems that need to be addressed).

APPLYING GAMES-BASED LEARNING TO TEACH SOFTWARE ENGINEERING CONCEPTS

291

otherwise been possible (Kensing and Blomberg,
1998; Cherry and Macredie, 1999). To support the
design, development and evaluation of the game, it
was decided to establish a steering committee
comprising senior representatives from industry and
commerce, a number of academic representatives,
the project managers and the developers of the
game. By drawing upon the expertise and views of
senior managers from industry and commerce it is
hoped that the game will have a greater degree of
relevance and significance to a wider audience other
than students in higher education. In addition, it is
hoped the SDSim game will utilise and develop a
wider range of skills and knowledge that might be
transferable across a wider section of industry and
commerce. We now discuss the high-level objectives
of the game, the game play and then provide an
outline design of the game itself.

3.1 High-Level Objectives

The games-based learning environment should
provide a rich learning experience through the
creation of a range of project scenarios that will:

• Promote an engineering ethos that emphasizes
fitness for purpose as the guiding principle in
the design, development and assessment of
information systems and their components.

• Enable the learner to take a disciplined
approach to requirements collection and
analysis, and to the high level specification,
design and implementation of information
systems and their components.

• Enable the learner to handle complexity,
vagueness and ambiguity during the project.

• Enable the learner to develop a range of project
management skills.

• Assist the learner to develop analytical and
problem-solving skills and transferable skills.

• Assist the learner to develop the skills required
for both autonomous practice and team-
working.

• Assist the learner to develop reflection and
metacognitive strategies.

In discussion with the advisory group, the following
requirements were identified:

• The game will be targeted at both university
students in a computing-related subject and also
the professional training market.

• The game must support a number of players
carrying out different roles (for example,
analyst, developer, project manager) as well as a

facilitator. Communication between players
should be supported.

• The facilitator will be able to see what the
players are doing, will be able to intervene in
the game (for example, to modify the frequency
of new projects, to modify the number of people
assigned to a project) and will be able to call
team meetings to discuss issues that have arisen
in the team’s play.

• Ideally, in a team-based activity when a player
is not available the game (AI) should play that
role.

• The game must be scenario-based to allow the
players access to a range of project scenarios to
provide practical experience.

• The game must have a reasonably authentic
underlying business model to model clients,
projects, staff, suppliers and competitors. The
model should take cognisance of a range of
project variables such as project budget, time,
staff, staff specialisations, staff costs, resource
costs. These variables would be scenario-
specific.

• The game should run in an online environment.
• Game play should be recorded wherever

possible to support debriefing, post-game
analysis and evaluation.

3.2 Game Play

The basic idea of the game is for the team
(comprising one or more players) to manage and
deliver a number of software development projects.
Each player has a specific role, such as project
manager, systems analyst, systems designer or team
leader. A bank of scenarios have been created based
on case studies the authors have been using for many
years in teaching and learning; for example, the
DreamHome Estate Agency (Connolly & Begg,
2005), the StayHome Online DVD Rentals company
and the Perfect Pets Veterinary Clinic (Connolly &
Begg, 2002), the Blackwood Library and the Fair
Winds Marina (Connolly et. al., 2004). Each
scenario has an underlying business model; for
example, there will be a budget for the delivery of
the project, a set timescale for the delivery of the
project and a set of resources (for example, staff
with specified technical specilisations) that can be
used on the project. Additional resources can be
brought in for a project although this will have a cost
and timescale (delay) associated with it. The project
manager has overall responsibility for the delivery of
each project on budget and on time and is given a
short brief for each project. Communication is one
of the key aspects of the game and the project

WEBIST 2007 - International Conference on Web Information Systems and Technologies

292

manager must communicate relevant details of the
project to the other players. This will be done using
a message metaphor – any player can communicate
with any other player(s) by sending a message.
Players have a message board that indicates whether
there are any unread messages.

The player(s) assigned to the system analyst role
has to identify the requirements for the project. To
do this, the player must move through the game and
‘talk’ to the non-player characters (NPCs) in the
game, as illustrated in Figure 2. In addition, there are
objects in the game that can also convey relevant
information when found (for example, a filing
cabinet may convey requirements). For the prototype
game we are using written transcripts in place of
NPC speech. We hope shortly to use lip synching

within the game to have the NPCs ‘talk’ to the
system analyst. Each NPC’s ‘speech’ will contain
some general background details and a number of
requirements (the analyst has to distinguish the
requirements from the general details). Visiting the
same NPC may generate the same speech or a new
speech. Each speech will generate a transcript that
the analyst can visit at any point in the game. The
transcript is presented as a numbered list of
requirements. During the play, the analyst can use
the transcripts to produce an initial ‘wishlist’ of
requirements, which can be refined until such time
as the analyst believes all requirements have been
identified, at which point the analyst can send the
completed requirements to the project manager. The
project manager now has two choices: send the

Figure 2: Screen during requirements collection.

Figure 3: Internal subsystems of the SDSim game.

Game Server

Scenario
Builder

Scenario

Game AIVisualization

User

Comms
subsystem

Business
Model

Postgame
Analysis

SDSim
Developers

Players

Facilitator

APPLYING GAMES-BASED LEARNING TO TEACH SOFTWARE ENGINEERING CONCEPTS

293

requirements to the designer to produce an outline
high-level design or consider the requirements to be
incorrect and ask the analyst to rework the
requirements (asking for rework will have a ‘cost’
associated with it).

During this period, the designer will be provided
with some background information relevant to the
design phase (for example, high-level components
that the company might have developed previously,
technical experience of the staff, technical resources
the designer has access to and software and
hardware that can be bought externally). Upon
receiving the requirements, the designer must
produce a high-level design that addresses the
clients’ requirements and must identify what will be
developed ‘in-house’ and what software/hardware
will be bought in. In addition, the designer must
provide some estimate of cost and timescale to
implement the system. Again, the design will go
back to the project manager to accept or reject (in
which case the design must be reworked by the
designer at ‘cost’).

The implementation phase is handled by the
team leader who is given a brief by the project
manager (high level design, available budget,
available staff). The team leader is responsible for
the delivery of the implementation phase. However,
during this period the team leader may have to
handle a number of planned events (such as staff
holidays) and unexpected events (such as staff
becoming ill, leave, and some activities taking
longer than planned). Some events the team leader
may be able to handle autonomously within the
remit provided; however, with others the team leader
may need to consult the project manager to seek a
solution.
The facilitator will have access to the game play and
will be able to intervene during the play. One
intervention is to call a (physical or virtual) team
meeting because of problems identified with the
running of the project. There are a number of other
interventions, such as changing the requirements
during the design or implementation phase, reducing
the number of staff available for the project, making
staff go off sick, making staff leave the company.

3.3 Game Design

The game is based on the traditional multi-
client/single-server architecture. The subsystem
design is shown in Figure 3:

• The Scenario Builder is an offline utility to
allow us to create and update the game
scenarios. These scenarios are stored in the
server-side database.

• The Postgame Analysis is a second offline
utility to allow us to provide data to the
facilitator on how the team has performed. The
utility will also provide us with data to evaluate
the impact of the game and to eventually
produce longitudinal analyses.

• The Game Server consists of four main
subsystems:

 The Comms subsystem, which allows
players to communicate with each other.

 The Visualisation/User Interface, which
handles what the players see on the screen
and what they can do.

 The Business Model, which implements
both the general business rules and the
business rules specific to each scenario.
This will be loosely based on the SESAM
model (Mandl-Striegnitz, 2001).

 The Game AI (Artificial Intelligence),
which implements ‘missing players’. At the
time of writing, this subsystem has not been
fully designed.

The input to date from the advisory group has been
extremely useful and has helped shape the design of
the game. We are currently implementing a
prototype of the game and an early version of the
fully system is due for completion in early 2007.

4 CONCLUSIONS

In this paper we have examined previous approaches
to the application of games-based learning to
software engineering and have found a significant
dearth of empirical research to support this
approach. Software engineering has been described
as a “wicked problem”, characterized by incomplete,
contradictory and changing requirements and
solutions that are often difficult to recognize as such
because of complex interdependencies. Other issues
that complicate the teaching of software engineering
are that software development is non-linear, it
involves several intermediate steps and choices
between multiple, viable alternatives, it may exhibit
dramatic effects with non-obvious causes and it
involves multiple stakeholders. Finally, we have
described the design of a new games-based learning
application aimed at the teaching of requirements
collection and analysis, design and project
management aimed at both the academic and
training markets. We consider evaluation to be key
to the entire development process and have adopted
a Participatory Design approach from the outset. In
the design of the game we have included a Postgame

WEBIST 2007 - International Conference on Web Information Systems and Technologies

294

Analysis utility to support the collection of empirical
evidence on the use of this game.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Scottish
Executive for their support of this work and TPLD
for their collaboration.

REFERENCES

Armarego, J. 2002. Advanced Software Design: A Case in
Problem-Based Learning. Proceedings of the 15th
Conference on Software Engineering Education and
Training, 25–27 February 2002, Covington, Kentucky,
USA, pp. 44–54.

Cherry, C. and Macredie, R.D. 1999. The importance of
context within information system design: an
assessment of participative design, Requirements
Engineering, 4: 103-114.

Connolly, T.M. & Begg, C.E 2006. A constructivist-based
approach to teaching database analysis and design.
Journal of Information Systems Education, 17(1): 43-
54.

Connolly, T.M. & Begg, C.E 2005. Database Systems: A
practical approach to design, implementation, and
management, 4th edition. Addison Wesley Longman:
England.

Connolly, T.M. & Begg, C.E 2002. Database Solutions: A
step-by-step approach to building databases, 2nd
edition. Addison Wesley Longman: England.

Connolly, T.M., McLellan, E., Stansfield, M.H., Ramsay
J. & Sutherland J. 2004. Applying Computer Games
Concepts to Teaching Database Analysis and Design.
International Conference on Computer Games, AI,
Design and Education, Reading, UK, November 2004.

Connolly, T.M. & Stansfield, M.H. in press. From
eLearning to games-based eLearning: using interactive
technologies in teaching an IS course. International
Journal of Information Technology and Management.

DeGrace, P. & Hulet Stahl, L. 1998. Wicked Problems,
Righteous Solutions: A Catalog of Modern
Engineering Paradigms, Prentice Hall.

Forman, E. & McPhail, J. 1993. Vygotskian perspectives
on children’s collaborative problem-solving activities.
(In Forman, E.A., Minick, N. & C. Addison Stone
(eds), Contexts for learning. Sociocultural dynamics in
children’s development, Oxford University Press,
Oxford).

Illeris, K. 2003. Towards a contemporary and
comprehensive theory of learning. International
Journal of Lifelong Learning, 22(4): 396-406.

Kensing, F. & Blomberg, J. 1998. Participatory design:
issues and concerns. Computer Supported Cooperative
Work, 7: 167-185.

Koehler, M.J. & Mishra, P. 2005. Teachers Learning
Technology by Design. Journal of Computing in
Teacher Education, 21(3), Spring 2005.

Kriz, W.C. 2003. Creating effective learning environments
and learning organizations through gaming simulation
design. Simulation and Gaming, 34(4): 495–511.

Lave, J. 1991. Situating learning in communities of
practice. Washington, DC: American Psychological
Association.

Lave, J. & Wenger, E. 1991. Situated learning: Legitimate
peripheral participation, Cambridge University Press,
Cambridge, England.

Oh, E. & Van der Hoek, A. 2001. Adapting Game
Technology to Support Individual and Organizational
Learning. Proceedings of the 13th International
Conference on Software Engineering and Knowledge
Engineering, Buenos Aires, Argentina, June 2001.

Piaget, J. 1968. Six Psychological Studies. Vintage Books,
New York.

Schön, D.A. 1983. The Reflective Practitioner: How
Professionals Think in Action. Basic Books, New
York.

Schön, D.A. 1987. Educating the Reflective Practitioner:
Towards a New Design for Teaching in the
Professions. Jossey-Bass Inc., San Fransisco.

Shaffer, D.W. 2004a. Pedagogical Praxis: The Professions
as Models for Postindustrial Education. The Teachers
College Record, 106(7): 1401–1421.

Shaffer, D.W. 2004b. Epistemic frames and islands of
expertise: Learning from infusion experiences. In
Proceedings International Conference of the Learning
Sciences, Santa Monica, CA. Retrieved 28 July 2005,
from http://www.education.wisc.edu/edpsych/facstaff/
dws/papers/epistemicframesicls04.pdf.

Shaffer, D.W. & Resnick, M. 1999. Thick authenticity:
New media and authentic learning. Journal of
Interactive Learning Research, 10(2): 195–215.

APPLYING GAMES-BASED LEARNING TO TEACH SOFTWARE ENGINEERING CONCEPTS

295

