
DEVELOPING NEW SERVICES FOR THE AUTOMOTIVE
INDUSTRY USING MATRIX

Silvia Alén
CTAG: Technological Automotive Centre in Galicia

Pol. Industrial A Granxa, Calle A, Parcela 249-250, 36400, Porriño (Pontevedra), Spain

Daniel Glez-Peña, Florentino Fdez-Riverola
Escuela Superior de Ingeniería Informática

Edificio Politécnico, Campus Universitario As Lagoas s/n, 32004, Ourense, Spain

Keywords: MAS architecture, Car2Car, Car2Infrastructure, OSGi, JADE.

Abstract: This progress report explores how multi-agent systems can be applied to the automotive industry in order to
create an intercommunication platform. Our proposal called MATRIX (Multiagent Architecture for TRaffic
Information eXchange) provides the basis for information exchange between cars (Car2Car) and between
cars and infrastructural elements (Car2Infrastructure). In this work we also discuss how the most prominent
technologies in both areas (JADE and OSGi) can be integrated in order to achieve new functionalities and
security improvements in present cars.

1 INTRODUCTION

Since its appearance at the end of the 19th century,
the car has become a basic article in everyone’s life.
In early 2005 there were 26.5 million of cars in
Spain (DGT, 2006). The same year, almost 2 million
of cars were registered (ANFAC, 2006). However,
the automotive industry has multiple challenges
where the security arouses everyone’s interest.

Every year 120,000 deaths by accident take place
in Europe. Those accidents suppose for the states
members a joint cost of 160,000 million euros,
which ascends to 2% of the Europe GIP (Gross
Industrial Product).

These worrisome numbers forced the creation of
a working group within the European Commission
called e-Safety (e-Safety, 2006). e-Safety group was
born with the purpose of proposing a strategy to
promote the investigation, development,
implantation and use of security intelligent systems
based on ICT (Information and Communications
Technologies) destined to increase the road security
in Europe.

The work group e-Safety published its final
report at the end of the year 2002, concluding that
the application of the ICT to offer security systems
for intelligent vehicles is a great instrument for the
resolution of security problems on the road
transport. The use of the ICT to provide new and
intelligent solutions includes the participation and
the interaction of the driver, with the vehicle and the
road surroundings.

In this integrated and global approach of the
automotive industry security, the embedded
independent surveillance systems are complemented
by cooperative technologies. Those technologies are
intended to use vehicle to vehicle (Car2Car) or
vehicle to infrastructure (Car2Infrastructure)
communication strategies with the purpose of
obtaining data belonging to the road surroundings in
order to detect possible dangers and optimize the
effectiveness of the onboard security systems (CE,
2003).

The design of new forms of communication
between cars is one of the telematic services to
increase cars security and protection. One of the
most important supporter for the creation of a

204
Alén S., Glez-Peña D. and Fdez-Riverola F. (2007).
DEVELOPING NEW SERVICES FOR THE AUTOMOTIVE INDUSTRY USING MATRIX.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 204-209
DOI: 10.5220/0001274702040209
Copyright c© SciTePress

standard communication protocol at European level
is the Car2Car Communication Consortium
(Car2Car, 2006). Car2Car is a non-profit
organisation created by European vehicle
manufacturers, which is now open for suppliers,
research organisations and other partners. The
Consortium is dedicated to the objective of
increasing road traffic safety and efficiency by
means of inter-vehicle communications. The main
goal of Car2Car is to create and establish an open
standard European industry for Car2Car
communication systems based on wireless LAN
components, able to guarantee European-wide inter-
vehicle operability.

Taking into account the increasing tendency
towards communication between cars in the
automotive industry, we present the MATRIX
architecture focused not only in increasing the
security, but also in supplying information for
developing infotainment systems. MATRIX
(Multiagent Architecture for TRaffic Information
eXchange) defines a multiagent system which
improves inter-vehicular and vehicle-infrastructure
communications by an effective and efficient use of
standard technologies.

Potential applications of the MATRIX
architecture cover all telematic services defined by
the working group e-Safety, including: (i) security
and protection (e-call and the pursuit of vehicles),
(ii) telematic services like remote diagnosis and
proactive maintenance, (iii) positioning systems and
itinerary like dynamic navigation, management of
the POIs (points of interest) or road and traffic
information and (iv) fleet management and
infotainment services (entertainment, access to
Internet, information services, e-mail, etc.).

The rest of the paper is organized as follows:
Section 2 summarizes the technological context
related with this work. Section 3 presents the main
issues about the proposed architecture. Finally,
Section 4 gives out the concluding remarks.

2 TECHNOLOGICAL CONTEXT

In the last years, software development has become
more important in the automotive industry. A car
contains an average of 35 million lines of source
code and, for example, the Linux OS has about 6
million. This fact demonstrates the importance and
the complexity of software development within the
automotive industry, without considering the factor
that supposes the risk for human lives.

Like in other areas where software is developed,
but particularly in the automotive industry, the use
of standards is always worthwhile because it
supposes a reduction in the development time and
guarantees security, reliability and reusability of the
applications with the consequent costs reduction.

Nowadays, there are several standards in the
automotive industry: AUTOSAR (Automotive Open
System Architecture) (AUTOSAR, 2006) and
MISRA-C (Motor Industry Software Reliability
Association) (MISRA, 2006) whose purpose is
giving attendance to the automotive industry in the
implementation of safety software systems, or OSGi
(Open Services Gateway Initiative) (OSGi, 2006)
providing software modules management
middleware for interconnected environments. In the
following we present those standards in detail.

2.1 OSGi

OSGi is a technology developed by the OSGi
Alliance, who involves companies such Sun
Microsystems, IBM, BMW, Oracle, Nokia, Toshiba
and Telefónica I+D. The main purpose of OSGi is
the development of an open specification to provide
services for interconnected environments (Chen and
Gong, 2001) like houses and cars. The OSGi
Alliance facilitates specifications, support for
implementations vendors, test suites and
compatibility certifications. OSGi has recently
released the version 4.

OSGi has been chosen as our base platform in
MATRIX because it is one of the mightiest
technologies in the sector. For example, Nokia and
Motorola are developing a standard based on OSGi
for the next generation of smart phones; AMI-C
(Automotive Multimedia Interface Collaboration)
has included OSGi as an intrinsic part of its
specifications, and BMW, among others, has
incorporated OSGi as a standard part of its high-end
platform.

This platform is not only supported by
commercial companies, but also by the open-source
community, with projects like Apache Felix
(Apache, 2006), Eclipse Equinox (Eclipse, 2006)
and Knopflerfish (Knopflerfish, 2006).

2.2 AUTOSAR

AUTOSAR is an international consortium created in
July 2003 to provide a framework for automotive
software, functional interfaces, management and a
integration methodology, that is to say, to supply an
open industrial standard to develop components for
present cars.

DEVELOPING NEW SERVICES FOR THE AUTOMOTIVE INDUSTRY USING MATRIX

205

Permanent members of this consortium are
automotive companies like BMW, DaimlerChrysler,
Ford, General Motors, PSA Peugeot Citroën, Toyota
and Volkswagen, as well as companies leaders in the
manufacture of components for automotive like
Bosch, Continental and Siemens VDO. In this
context, the main areas within the vehicle are the
electrical system, the systems of conduction, the
chassis, the functions of comfort, security systems,
multimedia/telematic systems and the
human/machine interface.

AUTOSAR is trying to establish a standard
specification to develop vehicle components, which
is due to be completed by August 2006. This process
deals with the interdependencies that can appear in a
distributed environment, including the underlying
system’s standard functions and the definition of the
module integration of different manufacturers with
its interfaces. The specification will also include the
maintenance of electronic components and the
software upgrades during the whole production
cycle.

3 MATRIX ARCHITECTURE

The main idea behind our proposed multiagent
design is conceptually simple: each mobile entity or
infrastructure should have a representation in our
MATRIX system in the form of an intelligent agent
able to establish relationships with other mobile or
static devices.

Our final purpose is that real devices will take
advantage of the communication capabilities of the
multiagent paradigm. Different examples which
serve as real applications of our architecture are the
following: (i) a car could publish its GPS position so
it can be further located by other agents, (ii) a car
could send messages to other cars (Car2Car) or
could detect the closest infrastructural elements like
powerboats or lodging (Car2Infrastructure) and (iii)
a car could interchange information between many
other applications in a local or remote way to solve a
particular problem.

Figure 1 shows an overview of the MATRIX
architecture. The top level shows a logic view of the

Figure 1: MATRIX multiagent architecture.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

206

system where real elements live and interchange
information in the model, whereas the bottom level
includes the related technologies that support the
system.

The implementation of the architecture on the
mobile device side (left part of Figure 1) is based on
OSGi, whereas its representation in MATRIX (right
part of Figure 1) is based on JADE agents (JADE,
2006). Concretely, the components built in this
architecture are:

 Communicator bundle: establishes the
association with its agent in MATRIX to send
and receive events. This connection will be
established through Internet.

 Event provider bundle: devices could have
installed one or several bundles of this type.
Each bundle will be programmed to generate a
concrete event to be finally sent to the agent
through the Communicator Bundle. It is
possible that the implementation of a bundle
of this type requires the use of AUTOSAR in
order to access low level information related
to car’s internal state (i.e.: airbag activation
detection, oil levels, fuel, etc.).

 Agent: represents a device inside MATRIX
system and manages events and messages sent
by the device and by other agents. The
decisions taken by the agent are established by
a rule engine.

 Rule engine: eases the implementation of the
agent’s behaviour, which can also be easily
modified in order to adapt MATRIX to a
concrete problem.

3.1 Implementing Knowledge in Agents

MATRIX is not an end product, but rather represents
an architecture that requires an adaptation to each
concrete problem on which it will be applied. For
that reason, the modification of the decisions taken
by the agents in response to the arrival of different
messages/events should be easily modified, reusing
its code as much as possible.

To achieve this feature, the use of rule engines is
considered essential, because they allow
representing the logic of the agent reasoning process
in separated rule files. The key benefit is the
minimization of the adaptation cost being necessary
for each particular implementation. There are
multiple rule engines available like JRules, Drools,
CLIPS, SMOOTH, JESS, etc. For our proposed
architecture we chose JESS (Friedman, 2003)
because the agent platform used in this work, JADE,
was integrated natively with this rule engine through
the JESSBehaviour.

Here is an example of a JESS rule file that could
define the behaviour of an agent representing a
vehicle that receives an event when the airbag is
activated. After the event notification, a Mayday
message is sent to all agents of type ambulance
registered in the DF (Directory Facilitator) and at a
near GPS position.

(defrule airbag-message

 (MatrixEvent (type airbag))
 =>
 ;SearchDF asserts in the memory all the

MatrixAgent of a given type
 ;In this case, we will search emergency

agents
 (SearchDF (type emergency))
)

MatrixAgent
<<Agent>>

EventReaderBehaviour

CommunicatorBundle

EventProviderBundle

+readEvents()

readers

AirbagEventProvider SearchHotelEventProvider

CommunicationsHelper

+sendEvent(event: Event)
+readEvents(): List<Event>

<<event>>

<<event>>

JessBehaviour

+JessBehaviour(ruleFile: File)

Jess Engine

<<use>>

Memory
<<Jess Memory>>

<<assertion>>

asserts the incoming
events in the jess memory

Figure 2: Class diagram of the core MATRIX architecture.

DEVELOPING NEW SERVICES FOR THE AUTOMOTIVE INDUSTRY USING MATRIX

207

(defrule call-emergency
 ?m <- (MyAgent (name ?n) (GPSposition

?p))
 ?a <- (MatrixAgent((GPSposition ?q)

(< (distance ?p ?q) 100)))
 =>
 (send (ACLMessage (communicative-act

PROPOSE) (sender ?n) (receiver ?a) (content
"Mayday!")))

 (retract ?a)
)
Please note that in the above piece of code there

are predefined functions related to the JADE
framework, such as SearchDF, which can be useful
for the implementation of new rules during the
adaptation of the MATRIX platform to a concrete
problem.

3.2 Software Design

Figure 2 shows the class diagram used to define the
MATRIX basic design. Our proposal incorporates
the following classes:

 CommunicatorBundle: establishes the
communication through sockets TCP/IP using
package javax.microedition.io, which is part
of OSGi standard. This bundle detects the
existence of another bundles of type
EventProviderBundle and listens to events that
they could generate. In addition, the
CommunicatorBundle receives events from its
agent in MATRIX coming from other devices.

 EventProviderBundle: this abstract class
represents a bundle that generates events. A
specific implementation might be a bundle
which controls the airbag state and generates
an event if the

 airbag was activated (class
AirbagEventProvider), or a class that interacts
with the user to get the accommodation details
before generating the corresponding event
(class SearchHotelEventProvider).

 MatrixAgent: super class of all agents
represented in MATRIX. Implements a JADE
agent.

 EventReaderBehaviour: represents a cyclical
behaviour that reads events sent by the device,
modifying the rule engine’s memory.

 JESSBehaviour: this is a class representing
the behaviour that demonstrates the
integration between JADE and JESS. It is a
cyclical behaviour instantiated with a JESS
rule file and wrapping the rule engine.

3.3 Example of Use Cases

In this subsection we include two examples of
MATRIX's adaptation in order to obtain a given
functionality. For each case, we detail which OSGi
bundles should be developed and which rules would
lead the behaviour of the agents in MATRIX. For
this purpose the rules have been coded in pseudo-
code, not in JESS, to make the reading more easy.

The first example describes a hypothetical
communication that could take place between a
stopped vehicle and a non-mobile device. The car
driver is looking for a hotel with a price not
exceeding some threshold and situated near his GPS
position. Table 1 shows the software elements
needed in our system, its location and a brief
description of its mission.

The second example describes a vehicle–vehicle

communication where one of the cars has suffered
an emergency situation and warns the nearest
available ambulance. As in case of the previous
scenario, Table 2 shows the software elements
needed in MATIX, its real location and a brief
description of how the component must operate
inside the system.

Table 1: Software elements to implement in order to adapt MATRIX to the problem of looking for accommodation.

Element needed Location Description
Event Provider Bundle 1 Hotel Collects information coming from the hotel manager (available

prices) and generates an event to be sent to the agent through the
Communicator Bundle. The agent also knows the hotel GPS
position.

Event Provider Bundle 2 Vehicle Collects user information about the desired hotel distance and the
price limits.

Rules Vehicle agent If event type is “look for accommodation” then it searches for
nearest agents of type hotel sending them a requesting price
message (CFP).

Rules Hotel agent If type of message is “look for accommodation” then it sends
prices to the solicitor agent.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

208

4 CONCLUSIONS

Nowadays, car industry spends a lot of effort to
develop new software systems, as well as new
standard and development models. According to
Stavros Stefanis - director of IBM's Embedded
Systems Lifecycle Management - in 2010 the 90%
of vehicle innovations will be related with software.
According to this idea, the development of (i) new
communication systems between vehicles or
vehicles and infrastructures and (ii) the development
of new telematic services will be necessary in the
near future.

The main contribution of the present work is the
improvement in the administration of all the
information that current cars are generating within a
centralized system, which manages and stores this
information. The purpose of the system is not only
to improve the communication between vehicles or
vehicle-infrastructure, but also to provide services to
other applications that need it.

The future work is focused in the development of
new services in the context of the CTAG
(Technological Automotive Centre in Galicia) active
projects. Examples of these applications are: remote
diagnosis, remote software updates, modification of
engine settings, navigation, theft tracking, automatic
log book, car pooling and traffic information. In all
of this application areas, MATRIX will play a
crucial role using all the information generated from
this centralized system.

ACKNOWLEDGEMENTS

We are deeply indebted to the personnel at the
Technological Automotive Centre in Galicia
(CTAG), who made this research work possible by
providing useful information of state-of-the-art
technologies and allowing us access to all kind of
facilities.

REFERENCES

ANFAC, 2006. Vehicle registration Statistics. Retrieved
November 2, 2006 from http://anfac.com/global.htm.

Apache Software Foundation, 2006. Apache Felix.
Retrieved November 7, 2006 from
http://cwiki.apache.org/FELIX/index.html.

AUTOSAR, 2006. Automotive Open System Architecture.
Retrieved September 20, 2006 from
http://www.autosar.org.

Car2Car, 2006. Car 2 Car Communication Consortium.
Retrieved November 1, 2006 from http://www.car-to-
car.org.

CE, 2003. Paper to the European Council and Parliament
about information and communication technologies
bringing the car security and services. Brusels,
15.9.2003. COM(2003) 542 final (SEC(2003) 963).

Chen, K., Gong, L., 2001. Programming Open Service
Gateways with Java Embedded Server Technology.
Addison-Wesley Professional.

DGT, 2006. Spanish Traffic Department. Retrieved
October 10, 2006 from http://www.dgt.es.

Equinox, 2006. Eclipse Equinox. Retrieved November 2,
2006 from http://www.eclipse.org/equinox.

e-Safety, 2006. Europe's Information Society. Retrieved
November 9, 2006 from

Friedman-Hill, E., 2003. JESS in Action. Manning.
http://ec.europa.eu/information_society/activities/esafety/i

ndex_en.htm
JADE, 2006. Java Agent DEvelopment framework.

Retrieved September 15, 2006 from
http://jade.tilab.com/.

Knopflerfish, 2006. Knopflerfish – Open Source OSGi.
Retrieved October 10, 2006 from
http://www.knopflerfish.org.

MISRA, 2006. The Motor Industry Software Reliability
Association. Retrieved 11 September, 2006 from
http://www.misra.org.uk.

OSGi, 2006. Open Services Gateway initiative. Retrieved
October 28, 2006 from http://www.osgi.org/.

Table 2: Software elements to implement in order to adapt MATRIX to the functionality of looking for ambulances after an
emergency takes place.

Element needed Location Description
Event Provider Bundle 1 Vehicle,

Ambulance
Generates an event with the GPS position to be sent periodically to the
agent through the Communicator Bundle.

Event Provider Bundle 2 Vehicle Throws an event if an emergency situation occurred (i.e.: airbag is
activated).

Rules Vehicle agent If event type is emergency then it searches for nearest agents of type
ambulance sending them a help message

Rules Ambulance agent If message type is “help request” then sends an event to a mobile
device with the required information.

DEVELOPING NEW SERVICES FOR THE AUTOMOTIVE INDUSTRY USING MATRIX

209

