
XLIVE: INTEGRATING SOURCES WITH XQUERY
An Efficient XQuery Evaluation Prototype with TGV

Nicolas Travers
PRiSM Laboratory, University of Versailles, 45 av des Etats-Unis, Versailles, France

Tuyêt-Trâm Dang-Ngoc
ETIS Laboratory, University of Cergy-Pontoise, 2 rue A. Chauvin, Pontoise, France

Tianxiao Liu
ETIS Laboratory, University of Cergy-Pontoise, 2 rue A. Chauvin, Pontoise, France and XCalia SA, Paris, France

Keywords: XQuery evaluation, Extensible Optimization.

Abstract: This paper presents an efficient evaluation of XQuery in a heterogeneous distributed system.
XQuery(W3C, 2005) is a rich and so a complex language. Its syntax allows us to express a large scale of
queries over XML documents. We have extended (Chen et al., 2003) proposal to rewrite XQuery expressions
in ”canonical XQuery” in order to support the full XQuery specification.
The XQuery expressiveness makes difficulties to obtain an exclusive internal representation within a system.
Models based on Tree Patterns have been proposed, and we have extended the tree pattern model to a model
called TGV that (a) integrates the whole functionalities of XQuery (b) uses an intuitive representation that
provides a global visualization of the request in a mediation context and (c) provides a support for optimization
and for cost information.
Our paper is based on the XLive mediation system. XLive integrates sources in a uniform view. It is a running
research vehicle designed at PRiSM Laboratory for assessing the integration system at every stage of the
process starting from sources extraction to the user interface and is already used in several projects.

This paper presents XLive, an efficient XQuery
processing in a heterogeneous distributed system.

1 XLIVE ARCHITECTURE

The XLive prototype is designed to be a light media-
tion system with high modularity and extension capa-
bilities. It is a running research vehicle designed for
assessing the integration system at every stage of the
process starting from sources extraction to the user
interface, including query parsing and modeling, op-
timization and evaluation, and also benchmarking.

As most mediation systems (Wiederhold, 1992),
XLive is composed of three layers:Presentation, In-
tegrationandSources.

Figure 1 shows the integration system. On the
Source Layer, there are multiple heterogeneous data
sources (relational/object/XML data sources, web-
services, files, etc.) These sources are queryable by

XQuery XML

Wrapper

Source

Wrapper

Source

Wrapper

Source

XQuery Evaluator Information
Wrapper

Manager

Console Benchmark Web Services

XLive public API
Query
Language

Data
Results

Presentation

Source

Integration

Figure 1: XLive Architecture.

the XLive systemvia wrappers. The Wrapper is a
component for accessing a specificSourcefor query-
ing and retrieving result. As sources have specific ac-

378
Travers N., Dang-Ngoc T. and Liu T. (2007).
XLIVE: INTEGRATING SOURCES WITH XQUERY - An Efficient XQuery Evaluation Prototype with TGV.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 378-381
DOI: 10.5220/0001275203780381
Copyright c© SciTePress

cess methods, the role of the wrapper is to translate
the wrapper specificity to a common access method.

The Integration Layeris the heart of the media-
tion system as it process XQuery requests according
to sources and send by the result in XML form. The
Wrapper Information Manageris for integrating in-
formation about wrapped sources. It provides to the
mediator sources metadata, capabilities, and costs sta-
tistics on source data. TheXQuery Evaluatorparses
the XQuery query, make logical plans then physical
plans by using optimization rules, choose the best ex-
ecution plan, and then evaluates the execution plan
by querying relevant sources and merging results The
XLive system is provide a public API that process an
XQuery query and evaluates it on sources, and then
return the result as an XML document.

Some clients using the XLive API have been im-
plemented on thePresentation Layer: The Console
is a graphical interface for managing and querying
XLive. The Web serviceprovides services for man-
aging/querying XLive from the Web. And finally, the
Benchmarkis designed to test the XLive mediator and
other sources in order to make comparisons.

More details on the XLive architecture can be
found on (Dang-Ngoc and Gardarin, 2003; Dang-
Ngoc et al., 2005). The TGV model used for XQuery
evaluation has been described in (Travers and Dang-
Ngoc, 2006a; Travers et al., 2007). And a paper de-
scribing the TGV annotation method and extensible
optimization rules has been submitted to this confer-
ence in the paper session.

2 XQUERY EVALUATION

XQuery is a rich and complex language. Its power-
ful expression capabilities provide a large range of
queries over XML documents. However the richness
of the language makes the evaluation of XQueries in-
efficient in several cases.

Figure 2 describes the evaluation process: (1)
XQuery is canonized into a canonical form of XQuery
(2) then the canonized XQuery is modeled in the in-
ternal structure TGV which can (3) be restructured
into equivalent structures using equivalence rules. (4)
Then the TGV is annotated with information for eval-
uation such as the data sources location, cost models
information, sources functional capabilities, etc. The
optimal annotated TGV is then selected and (5) the
logical TGV is transformed into an execution plan us-
ing a physical algebra. We have chosen the XAlgebra
(Dang-Ngoc and Gardarin, 2003), an extension of the
relational algebra to XML. (6) Finally, the execution
plan is evaluated and produces an XML result.

logical plan

physical plan

XML

XQuery

XAlgebra
Annotated
TGV

Canonized
XQuery

TGV

transformation
into a physical
algebra

optimization
(physical rules)

(logical rules)
optimization

Preparing the execution plan

annotation

modelizationcanonization

evaluation

Figure 2: XQuery evaluation process.

Table 1: An XQuery query example.

<bib>{

for $b in doc("http://bstore1.example.com/bib.xml")//b ook

where count ($b/author) > 0

return

<book>

{$b/title}

{$b/author[position() <= 2]}

{if (count ($b/author) > 2) then <et-al/> else ()}

</book>

}</bib>

The whole process is implemented in the XLive
(Dang-Ngoc et al., 2005) system and validates all use-
cases defined by the W3C that do not imply strong
typing consideration (our system recognize 8 of the 9
categories of XQuery).

Table 1 gives an XQuery query example supported
by our XQuery processor. It is the query XMP-6 de-
fined in the W3C use-cases document. This query ex-
presses the following request:”For each book that
has at least one author, list the title and first two au-
thors, and an empty ”et-al” element if the book has
additional authors.”

2.1 XQuery Canonization

XQuery defines complex operations such as ag-
gregation, ordering, nesting/unnesting, document
construction, conditional cases (if-then-else),
and XPath filter. To handle such functionali-
ties, a canonical form using simple sequences of
FOR...LET...WHERE...ORDER-BY...RETURN
(FLWOR) expressions can be used (the demonstra-
tion begin in (Chen et al., 2003) and achieved in
(Travers and Dang-Ngoc, 2006b)).

In order to optimize the evaluation of such queries,
we propose to structure the language declaration by
canonizing it using some transformation rules. These
transformation rules keep the semantic of queries and
make them more convenient to manipulate.

XLIVE: INTEGRATING SOURCES WITH XQUERY - An Efficient XQuery Evaluation Prototype with TGV

379

Table 2: Canonized XQuery query.

let $r_1 :=
for $b in doc("http://bstore1.example

.com/bib.xml")//book
let $r_2 := for $a in $b/author

where position ($a) <= 2
return $a

let $agg_1 := count ($b/author)
where $agg_1 > 0
return

<book>
{$b/title}
{$r_2}
{if ($agg_1 > 2) then <et-al/> else ()}

</book>
return

<bib> {$r_1} $</bib>

Table 2 gives the canonized XQuery form of query
shown of the example presented in table 1. The fol-
lowing canonization rules have been used:

• Each FLWR-type queries nested in thereturn
clause is redefined in alet clause and is assigned
to a variable. In thereturn clause, the nested
queries are replaced by their assigned variable.

• Each aggregate function is redefined in alet
clause and is assigned to a variable that replaces
the aggregate function in the main expression.

• Each quantifier functions (every and some) is re-
defined in alet clause and is assigned to a variable
that replaces the quantifier functions in the main
expression.

• Nested expressions in conditional expressions
If/Then/Elseare declared inlet clauses with new
variables. The conditional expression is rewritten
using those variables.

2.2 TGV

XQuery modeling is a difficult goal since it pro-
vides a large set of functionalities. Its canonization
in a canonical form helps us defining a more sim-
ple model. Moreover, mediation purpose directs our
reflection for modeling in specific Tree Patterns in
which all XQuery operations are represented in a sin-
gle expressive form. Each set of trees defined in can-
onized queries generates a particular representation.

Tree Pattern Queries (Sihem et al., 2002; Jagadish
et al., 2001) are now well admitted for modeling parts
of XML Queries. Works as GTP (Chen et al., 2003)
use the Tree Pattern Query as a basis to model a part
of the XQuery specification.

We propose the TGV (Tree Graph View) model
which is implemented in the XLive mediator to

process XQuery. The TGV model (Travers and Dang-
Ngoc, 2006a; Travers et al., 2007) extends the Tree
Pattern representation in order to make it intuitive and
full non-typed XQuery support. XQuery queries are
modeled in TGV, then optimized, translated to an ex-
ecution plan and evaluated.

The TGV model allows us to cover 8 of 9 use
cases of the W3C (unless strong typing). In fact, spe-
cific XQuery characteristics have been integrated into
the TGV model by canonization or specific elements.

Figure 3: TGV.

The TGV proposed in figure 3 illustrates the can-
onized query (table 2). We can identify tree pat-
terns for source document, return document and in-
termediate structures. On tree patterns are represented
by labels, constraints and ascendant-descendant links
(simple line for descendant axis, double link other-
wise), and a variable is bound. Between trees, hyper-
links represent aggregation, join, projection or condi-
tion. More description on TGV are given in (Travers
and Dang-Ngoc, 2006a; Travers, 2006).

3 THE XLIVE SYSTEM

The whole XLive architecture with TGV support and
full untyped-XQuery implementation has been re-
leased as an Open-Source software1.

In the figure 4, we show a XLive screenshot where
we see1© data sources management2© global schema
management3© an XQuery query4© the associated
logical TGV 5© the associated XAlgebra execution
plan and6© the XML result document.

A benchmark (Dragan and Gardarin, 2005) has
been created in the context of distributed semi-
structured model on heterogeneous sources. It has

1The XLive system is downloadable at
http://www.prism.uvsq.fr/˜ntravers/xlive/

WEBIST 2007 - International Conference on Web Information Systems and Technologies

380

1

2 3
4

5
6

Figure 4: XLive execution.

been specified and applied to XLive. It performs com-
parisons between queries evaluated on single sources
and queries evaluated through the mediator. Medi-
ator performance is shown in Figure 5 for a set of
representative queries (Selection, projection, join, re-
construction). We use two kinds of XML data in our
scenarios, data oriented and structure oriented. XLive
stores those data in different systems: native XML
repositories (XHive, Xyleme), relational systems (Or-
acle, MySQL) and web sources (Google, Amazon).
There is an overhead due to the mediation process
compared to single source evaluation. The execution
is 1.4 to 2 times slower.

Figure 5: Benchmark.

ACKNOWLEDGEMENTS

The XLive is supported by the ACI Semweb project.
The cost model is supported by the ANR PADAWAN
project and XCalia S.A.

REFERENCES

Chen, Z., Jagadish, H., Laksmanan, L. V., and Paparizos, S.
(2003). From Tree Patterns to Generalized Tree Pat-
terns: On efficient Evaluation of XQuery. InVLDB,
pages 237–248, Germany.

Dang-Ngoc, T.-T. and Gardarin, G. (2003). Federating
Heterogeneous Data Sources with XML. InProc. of
IASTED IKS Conf.

Dang-Ngoc, T.-T., Jamard, C., and Travers, N. (2005).
XLive: An XML Light Integration Virtual Engine. In
Proc. of BDA.

Dragan, F. and Gardarin, G. (2005). Benchmarking an XML
Mediator. InICEIS, Miami USA.

Jagadish, H., Lakshmanan, L. V., Srivastava, D., and
Thompson, K. (2001). TAX: A Tree Algebra for
XML. In DBPL, pages 149–164.

Sihem, A.-Y., SungRan, C., Laks, L. V. S., and Divesh,
S. (2002). Tree Pattern Query Minimization.VLDB
Journal, 11(4)::315–331.

Travers, N. (2006).Extensible Optimization in an XML Me-
diator. PhD thesis, University of Versailles.

Travers, N. and Dang-Ngoc, T.-T. (2006a). Tree graph view
(tgv). Technical report, PRiSM Laboratory.

Travers, N. and Dang-Ngoc, T.-T. (2006b). Xquery canon-
ization. Technical report, PRiSM Laboratory.

Travers, N., Dang-Ngoc, T.-T., and Liu, T. (2007). Tgv:
an efficient model for xquery evaluation within an in-
teroperable system.International Journal of Interop-
erability in Business Information Systems (IBIS), 2.
ISSN: 1862-6378.

W3C (2005). An XML Query Language (XQuery 1.0).

Wiederhold, G. (1992). Mediators in the Architecture of
Future Information Systems.Computer, 25(3):38–49.

XLIVE: INTEGRATING SOURCES WITH XQUERY - An Efficient XQuery Evaluation Prototype with TGV

381

