
A PERFORMANCE MODELLING OF WEB SERVICES
SECURITY

Kezhe Tang, David Levy
School of Electrical and Information Engineering, University of Sydney, Australia

Shiping Chen, John Zic, Bo Yan
Networking Technologies Laboratory, CSIRO ICT Centre, Australia

Keywords: Web Service Security, WSS, Performance Modelling, SOAP Encryption, SOAP Signature.

Abstract: While Web Services Security (WSS) enhances the security of web services, it may also introduce additional
performance overheads to standard web services due to additional CPU processing and larger message
sizes. In this paper, we present a simple performance model for WSS. Based on the observations of WSS
performance in our previous work, we extend a web service performance model by modelling WSS extra
security operations and increased messages sizes into the existing model. As fitting the parameters on one
testing environment, we validate our performance model on another different environment with different
messages sizes and WSS security policies. Our testing results show that our performance model is valid and
can be used to predicate the performance of web services with a variety of WSS configurations.

1 INTRODUCTION

Web services provide a loosely coupled architecture
for building distributed systems with universal
interoperability. It uses XML to pack data into XML
messages defined by SOAP (Simple Object Access
Protocol) and also uses XML to describe the data
types and services in the SOAP message, called
WSDL (Web Service Description Language). With
web services, applications owned by different
organizations can be easily integrated; even if they
are developed in different programming languages
and deployed on different platforms
(Middleware/OS). As a result, web services have
been widely adopted in the industry as a standard
platform-independent middleware technology.
(Tang, Chen, Levy, Zic and Yan, 2006)

Since SOAP itself does not provide secure
transmission protocol for messages, it brings high
risks to both sides of the message exchanger.
Although traditional security technologies such as
SSL and HTTPS can partially resolve this problem
by encrypting messages transferred between two
points (Booth, Haas, McCabe and etc, 2004), these
point-to-point transport-layer security technologies

cannot insure end-to-end security along the entire
path from client to a web service in a complicated
multi-tiers distributed system. Furthermore, these
point-to-point security technologies are all based on
a specific transport protocol/layer, such as TCP/IP
for SSL and HTTP for HTTPS. Since SOAP is a
transport-independent messaging protocol for web
services, the capacity and application of web
services would be limited if its security relies on
these transport-dependent technologies. As a result,
OASIS developed Web Services Security (WSS)
specification (Web Services Security: SOAP
Message Security 1.0, 2004) to provide message-
level protection between two ends (clients and web
services) through message integrity, message
confidentiality and message authentications. WSS
makes use of SOAP’s composable and extendable
architecture by embedding security-related
information (security token, signatures etc.) in the
SOAP header without affecting the data stored in
the SOAP’s body (but maybe encrypted/signed).
This design allows WSS to integrate with SOAP as
a plug-in and still retain SOAP’s composability and
extensibility for other purposes. Today more and
more web services products are beginning to support
the WSS standard (Web Services Security: SOAP

64
Tang K., Levy D., Chen S., Zic J. and Yan B. (2007).
A PERFORMANCE MODELLING OF WEB SERVICES SECURITY.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 64-71
DOI: 10.5220/0001277600640071
Copyright c© SciTePress

Message Security 1.0, 2004) (Web Services
Security: X.509 Certificate Token Profile, 2004)
(Web Services Security: Username Token Profile
1.0, 2004) (Microsoft Web Services Enhancements
(WSE) 2.0 and 3.0 for .NET) (XML and Web
Services Security).

While WSS enhances the security of web
services, people may be concerned with its
performance overheads. The overheads can come
from: (a) extra CPU times to process WSS-related
elements/operations at both client and services ends;
(b) longer networking times to transport larger
SOAP messages due to additional WSS contents.
(Tang, Chen, Levy, Zic and Yan, 2006)

In our previous paper (Tang, Chen, Levy, Zic
and Yan, 2006), we evaluated the performance of
WSS by benchmarking a web service with and
without applying the WSS basic security policies, i.e.
encryption, signature, and authentication, and their
combinations. We observed that both encryption and
signature added significant performance overheads
to web services, as there are little performance
differences between using user names and X509
certificates. These observations motivate and guide
us to develop a simple performance model for WSS.

In this paper, we present the development and
validation of the simple WSS performance model.
Based on the observations in our previous paper
(Tang, Chen, Levy, Zic and Yan, 2006), we extend
the existing web services performance model (Chen,
Yan, Zic, Liu and Ng, 2006) by adding the extra
overhead for each basic WSS security operations
into the performance model. As fitting the
parameters on one testing environment, we validate
our performance model on another different
environment with different messages sizes and WSS
security policies. Our testing results show that our
performance model is valid and can be used to
predicate the performance of web services with a
variety of WSS configurations.

The rest of this paper is organized as follows:
Section 2 gives an overview of WSS and
introduction to the web services performance
modelling in (Chen, Yan, Zic, Liu and Ng, 2006).
Section 3 discusses how to extend the existing web
services performance model for WSS. In Section 4,
the benchmark and approaches used for fitting the
parameters in our performance are described in
Section 4. We also discuss some observations found
during the tests in Section 4. We present the results
of the validation in Section 5 and conclude in
Section 6.

2 BACKGROUND

2.1 SOAP vs. WSS

SOAP is the core messaging protocol for web
services. A SOAP message is constructed as an
envelope, which consists of a header and a body.
While the body is mandatory and usually is used to
carry application-level data, the header provides a
flexible mechanism as an option to compose any
schemas for extensions. One of the OASIS standards
for Web Service Security, WS-Security, leverages
this flexibility to provide security mechanisms that
enhance the message integrity and message
confidentiality. For example, it enables security
tokens, which carry security credentials for
authentication, to be attached to the message and
specify the manner of which the binary tokens are
encoded. (Web Services Security: SOAP Message
Security 1.0, 2004)

By implementing XML Encryption and XML
Digital Signature in association with security tokens,
WSS keeps the sensitive portions of message
confidential from intermediaries and guarantees the
message integrity while the message is on wire
(XML Encryption Syntax and Processing) (XML
Signature Syntax and Processing,). Figure 1 (a) lists
a plain SOAP message from a ‘CustomerService’
web service, while the SOAP message in Figure 1
(b) is captured from the same web service but
deployed with WSS Encryption policy. It can be
seen that the <wsse: Security> element and its
descendants in the encrypted message make the
SOAP message much larger in size than the original
message.

2.2 Performance Modelling of Web
Services

The work done by Dr. Chen and etc (Chen, Yan,
Zic, Liu and Ng, 2006) is a study on web services
performance by evaluating the current
implementations of web services and comparing
them with a number of alternative technologies. A
performance model of Web Services is also
introduced to estimate the web services latencies
(Chen, Yan, Zic, Liu and Ng, 2006).

According to the Modelling analysis in (Chen,
Yan, Zic, Liu and Ng, 2006), the performance of
web service is modelled as follows:

A PERFORMANCE MODELLING OF WEB SERVICES SECURITY

65

<soap:Envelope>
 <soap:Header>
 </soap:Header>
 <soap:Body>
 <createWorkOrdersResponse>
 <createWorkOrdersResult>
 <WorkOrder>
 <customerID>1</customerID>
 <customerName>Tang</customerName>
 <addressStreet>A Street</addressStreet>
 <addressCity>Sydney</addressCity>
 <addressState>NSW</addressState>
 <addressZip>2006</addressZip>
 <sourceCompany>EE</sourceCompany>

<appointmentDate>210406</appointmentDate>
 </WorkOrder>
 </createWorkOrdersResult>
 </createWorkOrdersResponse>
 </soap:Body>

</soap:Envelope>

(a) A Plain SOAP message without WSS

<soap:Envelope>
 <soap:Header>
 <wsse:Security>
 <wsse:BinarySecurityToken ValueType="...”>

MIICnzCCAgigAwIBAgIQBHB1ZCwolDXbdsxTrNLjA
MAsGA1UECxMEQ2VydDEMMAoGA1...

 </wsse:BinarySecurityToken>
 <xenc:EncryptedKey>
 <xenc:EncryptionMethod Algorithm="…" />
 <KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="… " …/>
 </wsse:SecurityTokenReference>
 </KeyInfo>
 <xenc:CipherData>

<xenc:CipherValue>
iHlscgQVO4uCwztyCBwFzH8CIekMAoG
A1QBHB1gGjHa2GAKiaTaAgU…
</xenc:CipherValue>

 </xenc:CipherData>
 <xenc:ReferenceList>
 <xenc:DataReference URI="…" />
 </xenc:ReferenceList>
 </xenc:EncryptedKey>
 </wsse:Security>
 </soap:Header>
 <soap:Body>
 <xenc:EncryptedData Id="…" …>
 <xenc:EncryptionMethod Algorithm="…" />
 <xenc:CipherData>

<xenc:CipherValue>
QtzfuLYO/qh45yDxaypPhI/YdH4bJ…
</xenc:CipherValue>

 </xenc:CipherData>
 </xenc:EncryptedData>
 </soap:Body>
</soap:Envelope>

(b) The SOAP message with WSS Encryption

Figure 1: An example of SOAP message with and without
WSS Encryption.

According to the Modelling analysis in (Chen,
Yan, Zic, Liu and Ng, 2006), the performance of
web service is modelled as follows:

msgProc msgTrans Synch appLatency T T T T= + + + (1)
Where:
• TmsgProc represents the total cost of processing

the messages, including coding/encoding,
security checking, data type marshalling;

• TmsgTran represents the total cost to transfer a
specific amount of messages over network;

• Tsynch represents the overhead of the extra
synchronization required by protocols;

• Tapp represents the time spent in business logic
at application level.

Following assumptions are made for simplicity:
• The transmission speeds of data on wire are

even on the whole path and approximated as the
light speed in glass.

• All network devices (routers/switches) involved
into the transmission have the comparable
capacity and thus no network
overflow/retransmission occurs at any point.

• The message complexity is proportional to
message size, and thus overhead of processing a
message can be modelled by message sizes.

Based on the above assumptions, the three terms in
(1) are modelled in (Chen, Yan, Zic, Liu and Ng,
2006) as follows:

2

1 1
()

w
j

msgProc j j i
i j j

refP
T M

P
α β

= =

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ (2)

Where:
• w is the number of transits between client and

server, e.g. w=1 for one way sending and w=2
for an normal request/response call;

• refPj specifies the CPU capacity of the reference
platform;

• Pj represents the CPU capacity of the machine
where client/server is deployed;

• αj represents an identical inherent overhead of
processing/parsing a message for client/server
built on a specific middleware running on the
reference platform;

• βj represents the overhead of processing/parsing
an unit amount of messages (say 1KB) for the
same middleware j also running on the
reference platform;

1 1

()
w n

i
msgTtran j

i j j

MoW DT W
N L

τ
= =

⎡
= + + +⎢

⎢⎣
∑ ∑

(3)

• n the total number of network devices
involved;

WEBIST 2007 - International Conference on Web Information Systems and Technologies

66

Figure 2: A WSS secured web service call.

• MoW the actual message size transferred on
wire;

• N the bandwidth of the network devices;
• τ message routing/switching delay at each

network device;
• D the distance between the client and server;
• L the speed of light in glass, i.e. L = 200,000

km/s;
• W the delay on the core WAN;

∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++=

s

i j

i
n

j
jsynch W

L
D

N
mT

1 1
)(τ

(4)

• s is the number of synchronizations occurred
during messaging

• m the message size for each synchronization
• Ws the TPC window size ranging from 16K to

64K.

3 WSS PERFORMANCE
MODELLING

WSS is an additional security deployment that is
added on a web service, by which the SOAP
messages are encrypted/signed, transmitted to the
recipient and decrypted/verified. Likewise, the
performance of WSS can be regarded as the
performance of a web service plus additional time
cost on SOAP message transmission and additional
time cost on processing the security content of the
SOAP message. Thus, the Performance Model of
Web Services from (Chen, Yan, Zic, Liu and Ng,
2006) is a good model to be based on for modelling
performance of WSS.

We analysed the performance of WSS and

developed a Performance Model for WSS by
extending the Performance Model of Web Services
from (Chen, Yan, Zic, Liu and Ng, 2006) for
estimating the latency of a web service with a
specific WSS setting in a certain hardware and
software environment.

Figure 2 illustrates a web service call secured by
WSS. There are eight major processes taken places
on client and web service machine. They are:

• Pr1: The computational procedures to
encode the data object to generate a plain
SOAP request.

• Pr2: The computational procedures to
encrypt and/or sign a plain SOAP request.

• Pr3: The computational procedures to
decrypt and/or verify the signature of an
encrypted and/or signed SOAP request.

• Pr4: The computational procedures to
decode a plain SOAP request.

• Pr5: The computational procedures to
encode the data object to generate a plain
SOAP response.

• Pr6: The computational procedures to
encrypt and/or sign a plain SOAP response.

• Pr7: The computational procedures to
decrypt and/or verify the signature of an
encrypted and/or signed SOAP response.

• Pr8: The computational procedures to
decode a plain SOAP response.

Pr1, Pr4, Pr5 and Pr8 are the processes of a web
service call without WSS, while Pr2, Pr3, Pr6 and
Pr7 are the additional security related (encryption,
decryption, signing or verification) processes that
are required by WSS deployments. Thus, we can
model the TmsgProc of the WSS Performance by

A PERFORMANCE MODELLING OF WEB SERVICES SECURITY

67

adding additional time cost on the security related
processes to the term (2).

The performance modelling of WSS Encryption
and WSS Signature combination (WSS
Encryption+Signature) is inspired by our previous
work in 0. Figure 3 shows the LIP (Latency
Increment Percentage) of WSS Encryption,
Signature and Encryption+Signature from 0. The
LIP is defined as a metric to evaluate the
performance overhead for a specific WSS
deployment:

100%WSSDeployment NonWSS

NonWSS

L LLIP
L

−
= ×

Where :
• WSSDeploymentL is the latency of the web service

with a specific type of WSS deployment, e.g.
WSSEncyptionL for encryption.

• NonWSSL is the latency of the web service
without any WSS deployment.

Figure 3: LIP of WSS Encryption, Signature and
Encryption+Signature.

By comparing the LIP of three WSS
deployments, we observed that the sum of
Encryption LIP and Signature LIP is roughly equals
to the Encryption+Signature LIP. Thus, we model
the additional time cost on encryption+signature/
decryption+verification combination as the sum of
the additional time cost on encryption/decryption
and the additional time cost on signature/verification.

 In order to generalize the model, we introduce
αsec and βsec to represent the total processing time on
WSS as following:

Where:

sec

sec

enc dec sig veri

enc dec sig veri

α α α α α
β β β β β+ + +

= + + +
=

• αenc, αdec, αsig and αveri represent the additional
identical inherent overhead of encrypting,
decrypting, signing and verifying a SOAP
message for client/server running on the
reference platform respectively;

• βenc, βdec, βsig and βveri represent the additional
identical inherent overhead of encrypting,
decrypting, signing and verifying an unit
amount of a SOAP message for client/server
running on the reference platform respectively;

4 MODELLING TESTS

This Section introduces the benchmark for the
modelling tests and describes how the parameters
are fit into the performance model. Some
observations on the performance of WSS are also
discovered during the parameter fitting.

4.1 Benchmark

We reuse the benchmark in (Tang, Chen, Levy, Zic
and Yan, 2006) for the modelling tests to fit the
parameters. In addition to the benchmark in (Tang,
Chen, Levy, Zic and Yan, 2006), we also add a test
driver for testing CPU load to both client and server
side.

As shown in Figure 4, the client application
sends a SOAP request for an array of customer
records from the web service on the server machine.
The web service receives the request and generates
an array of random objects containing customer
records. The array is encapsulated in the SOAP
response and the SOAP response is processed
(encrypted / signed) according to the WSS policy
that is deployed on the web service. The test drivers
measure the average value of the latency of the
round-trip web service calls on the client machine
and measure the average value of CPU load during
the calls on both machines.

2

secsec
1 1

(())
w

j
msgProc j j i

i j j

refP
T M

P
α α β β

= =

⎡ ⎤
= + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ (5)

WEBIST 2007 - International Conference on Web Information Systems and Technologies

68

Figure 4: Benchmark for modelling tests.

The web service and the client for modelling tests
are deployed and run on two identical Dell single
CPU machines connected via a dedicated high-speed
LAN, whose specifications are:

• CPU: 3.00GHz Intel Pentium
• Memory: 1.00GB
• LAN: 1Gbps switched

4.2 Fitting αsec and βsec

αsec and βsec are the two parameters related to time
spent on processing security contents of the SOAP
message. They include different elements in
different security deployment. For example, in the
case of WSS encryption, αsec and βsec is one pair of
αenc and βenc on the machine where encryption of the
message happens while they are a pair of αdec and
βdec on the machine where decryption of the message
happens. However, in the case of WSS
Encryption+Signature combination, αsec is αenc+αsig
and βsec is βenc+βsig on the machine where encryption
and signature of the message happens while αsec is
αdec+αveri and βsec is βdec+βveri on the machine where
decryption and signature verification of the message
happens. For the sake of simplicity and convenience
in description, we can call αenc, αdec , αsig and αveri as
α* and βenc, βdec , βsig and βveri as β* in the rest of the
paper.

In order to fit every α* and β* for each WSS
deployment, we need to isolate them from other
objects in term (5):
• Mi, refPj and Pj are the constants that we are

able to obtain from each web service call.
• TmsgProc for each test can be calculated as

following by applying Utility Law:

1

msgProcT
Throughput

Throughput
Latency

λ
=

=

λ is the CPU load of the machine running the
web service or the client application.

• αj and βj , or we can call them αsoap and βsoap, are
fitted in the same way described in (Tang,
Chen, Levy, Zic and Yan, 2006) by running the
modelling tests on a web service without any
WSS deployment.

Therefore, a pair of λ and Latency for each WSS
deployment needs to be tested to obtain TmsgProc for
fitting α* and β*.

We run the modelling tests to fit α* and β* on the
benchmark described in Section 4.1. The results of
the tests are listed in Table 1.

Table 1: Results of parameter fitting tests.

With the tests results, we can calculate the TmsgProc
for each test case to work out α* and β*. The results
of fitting α* and β* are listed in Table 2.

Table 2: Results of fitting α* and β*.

A PERFORMANCE MODELLING OF WEB SERVICES SECURITY

69

4.3 Encryption vs. Decryption and
Signature vs. Verification

As we have tested λ and Latency for each WSS
deployment in the parameter fitting tests of α* and β*,
the TmsgProc of each test allow us to observe the
differences in performance between encryption and
decryption of a SOAP message, and also between
signature and verification.

As illustrated in Error! Reference source not
found., based on encryption algorithm RSA1.5 and
signature algorithm RSA-SHA1 used in our tests,
we can make the following observations,
• Encryption takes more time than decryption for

WSS with Username token.
• In the cases using X509 certificate token, when

the data size of the message is less than the
turning point (83071 bytes), encryption is faster
than decryption; while when data size of the
message is larger than the turning point,
encryption is slower than decryption.

• Signature generation is faster than verification
of the signature in both of the cases of
Username and X509 token.

4.4 Username vs. X509

According to the results of fitting α* and β* in Table
2, the following observations can be made,
• The α* in the performance model of WSS with

Username token is always smaller than
corresponding α* of WSS with X509.

• The β* in the performance model of WSS with
Username token is always the same as
corresponding β* of WSS with X509.

Thus, we can make the following conclusions,
• The difference in TmsgProc of WSS for a certain

message size between using Username and
X509 does not vary.

• The performance gap of WSS between using
Username and X509 might be the additional
time required for certificate-related operations,
such as, time spent on retrieving an X509
certificate from the system certificate store.

5 MODEL VALIDATION

We run a few latency tests in a different hardware
and network environment to validate the WSS
Performance Model, which are listed as follows:
• Client

 CPU: 1.7 GHz Intel Celeron
 Memory: 256MB

• Web Service
 CPU: 3.00GHz Intel Pentium
 Memory: 1.00GB

• LAN: 10Mbps switched
We run tests with three different message sizes:
• Small: 10 customer records in the SOAP

message
• Medium: 50 customer records in the SOAP

message

Figure 5: TmsgProc of encryption/signature and decryption/verification.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

70

• Large: 100 customer records in the SOAP
message.

Predicated results of Latency are calculated from
the extended model of web service and compared
with actual testing results after the validation tests.
Both of the results are shown in figure 6.

As shown in Figure 6, our model maintains valid
on WSS Encryption with small, medium and large
sized messages. The validation results are also
positive on WSS Signature and WSS
Encryption+Signature combination with small and
medium sized messages. However, there is still
space for improvements on the accuracy of the
model with large sized message.

6 SUMMARY

In this paper, we developed a simple performance
model for web services security. Based on the
observations made in our previous paper, we
extended our existing web services performance
model by modelling the basic WSS security
operations into the mode. We instanced our model
by fitting the performance parameters on a testing
environment and validated the model by using these
parameters on another different testing environment.
The testing results show that our model is able to
provide approximate performance estimation for a
web service with a variety of WSS configurations
and message sizes. This WSS performance model
can be used by web services architects and/or
developers to evaluate the performance cost of
applying WSS.

REFERENCES

Booth, D., Haas, H., McCabe, F. and etc., 11 February
2004. Web Services Architecture, W3C Working
Group Note. http://www.w3.org/TR/ws-arch/

Chen, S., Yan, B., Zic, J., Liu, R., Ng, A., 2006.
Evaluation and Modeling of Web Services
Performance, In Proceedings in the IEEE
International Conference on Web Services (ICWS'06).

Liu, H., Pallickara, S., Fox, G., February 2005.
Performance of Web Services Security. In
Proceedings of the 13th Annual 13th Mardi Gras
Conference, Baton Rouge, Louisiana, USA

Microsoft Web Services Enhancements (WSE) 2.0 and 3.0
for .NET. Retrieved March 9, 2006, from
http://msdn.microsoft.com/webservices/webservices/b
uilding/wse/default.aspx

Tang, K., Chen, S., Levy, D., Zic, J., Yan, B., 2006. A
Performance Evaluation of Web Services Security,
edoc, pp. 67-74, 10th IEEE International Enterprise
Distributed Object Computing Conference
(EDOC'06).

Web Services Security: SOAP Message Security 1.0(WS-
Security 2004), OASIS Standard 200401, March 2004.
Retrieved March 9, 2006, from http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0.pdf

Web Services Security: Username Token Profile 1.0,
OASIS Standard 200401, March 2004. Retrieved
March 9, 2006, from http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username-
token-profile-1.0.pdf

Web Services Security: X.509 Certificate Token Profile,
OASIS Standard 200401, March 2004. Retrieved
March 9, 2006, from http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0.pdf

XML and Web Services Security, Retrieved March 9,
2006, from http://java.sun.com/webservices/xwss/index.jsp

XML Encryption Syntax and Processing. Retrieved March
9, 2006, from http://www.w3.org/TR/xmlenc-core/

XML-Signature Syntax and Processing. Retrieved March
9, 2006, from http://www.w3.org/TR/xmldsig-core/

Figure 6: Validation results.

A PERFORMANCE MODELLING OF WEB SERVICES SECURITY

71

