
IMPLEMENTATION OF INDEX SCHEMA FOR XML
DOCUMENTS BASED ON STRUCTURE OF DATABASE

Youngrok Song, Kyonam Choo
Department of Information and Telecommunication Engineering, University of Incheon

177 Dowha-Dong, Nam-Gu, Incheon 402-749, Korea

Yoseop Woo, Hongki Min
Department of Information and Telecommunication Engineering, University of Incheon

177 Dowha-Dong, Nam-Gu, Incheon 402-749, Korea

Keywords: Index Schema, XML, Database.

Abstract: In this paper, structural information between tree nodes is presented without any structural changes in tree
by converting number information added to tree into bit streams. It is also shown that other structural
information can be retrieved and added to index schema, and that in query schema it is possible to restore
host nodes by exploiting the given node information in case relative route query expressions as well as
absolute query expressions are given. It has an advantage of making derived query expressions through a
query. In addition, in the query-processing process, response time can be minimized by conducting bit
operation between bit streams with index schema and query schema in use, and accurate results can be
reached by searching only with information of record set by node in index files.

1 INTRODUCTION

Because of its simplicity and flexibility, XML is
rapidly becoming the most popular format for
information representation and data exchange on the
web. It has become more difficult to locate
information needed, so methods to search and
manage XML document information more
efficiently are necessary (Dao, 1998), (Milo and
Suciu, 1999) and recently studies have been actively
under way to store XML document information in
storage media such as database(Zhang et al, 2001),
(Chien et al, 2002), (Yoshikawa et al, 2001).

These studies aim to support efficient route
search for a single large volume XML document or
several XML documents with the same structure.

Thus, in case of using the aforementioned
indexing techniques to find the wanted routes from
several XML documents with different structures,
we need to compose each index for each XML
document and investigate every index. In addition,
in case the route includes ancestor-descendant
relationship, search performance becomes bad as the
wanted route is located only by visiting every node

of the established index. Though indexing methods
have been suggested to complement the defects,
there is still the drawback of lower performance in
case the ancestor-descendant relationship in case an
ancestor-descendant relationship appears in the
middle of the rout, not in root (Chung et al, 2002).

 At the same time, an integrated indexing method
(Zhang et al, 2001), (Chien et al, 2002), (Yoshikawa
and Amagasa, 2001) is also presented which enables
us to search XML documents with different
structures. It has adopted the way of reflecting and
expanding structural characteristics of XML in the
inverted index opposite to the term basis used in the
information search field.

 However, the index techniques suggested in
Zhang et al (2001) and Chien et al (2002) face lower
search functions as increased number of documents
brings about index data to be compared and searched,
Yoshikawa and Amagasa (2001) show the
disadvantage of lower search performance with
more documents. The characteristics serve as a
factor that makes it difficult to apply them in the
situation route search for XML documents is
needed.

402
Song Y., Choo K., Woo Y. and Min H. (2007).
IMPLEMENTATION OF INDEX SCHEMA FOR XML DOCUMENTS BASED ON STRUCTURE OF DATABASE.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 402-405
DOI: 10.5220/0001278304020405
Copyright c© SciTePress

Therefore, query search is made possible through
operations between bits by avoiding complicated
structure search and using stream-based index
algorithm. As well, in this article, query processing
in diverse forms is given flexibility by adding
structural information field needed for the structure
of existing index files, if additional structural
information is added to XML documents. As a
result, the given query analysis time is reduced and
thus response time to output return is reduced by
using query schema based on index schema in order
to improve query processing efficiency.

2 INDEX SCHEMA BASED ON
DATABASE STRUCTURE

2.1 Index Schema

This paper has gone through the following processes
to make index schema:

(1) Build up XML documents into trees by
using DOM (document object model)
trees.

(2) Give sequential numbers to the built-up
trees by node of each level.

(3) Trees given numbers are rebuilt-up.
(4) Data to be stored in index files are

acquired from the trees.
(5) Make bit streams by using the number

given to each node.
(6) Store the data gained from [(4),(5)] in

index files.

2.1.1 XML Tree Numbering Technique

Figure 1 is a DTD used for shipments between
buyers and sellers.

<!ELEMENT deliveries (delivery*) >
<!ELEMENT delivery (sender, receiver) >
<!ELEMENT receiver (name*, item) >
<!ELEMENT name (#PCDATA)>
<!ELEMENT receiver (item*) >
<!ELEMENT item (item*, payment, price,
raddress)>
<!ELEMENT raddress (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST item iname CDATA #REQUIRED

fee CDATA #IMPLIED
icode CDATA #IMPLIED
dn CDATA #REQUIRED
amount CDATA

#IMPLIED>
 <ellipsis>.......

Figure 1: DTD of shipping XML document.

Figure 2 the node of each level is sequentially
given a number, and bits which can express each
node are assigned in as the same number as that of
the node of each level, among the numbers given to
nodes of trees, those starting with bit 0 are excluded
and the numbers should be given from bit 1. In this
way, sequential numbers are given from the root
node to the least significant nodes. After the
operations are completed, the only bit stream for
each route is generated when the assigned numbers
are connected with the root node as the reference
point. The value itself shows the super-sub
relationship, the structural information of the entire
node in the same tree such as parent-children,
ancestor-descendant and sibling nodes from the root
node up to the node where the route ends.

Figure 2: Tree of shipping XML document given bits.

2.1.2 Technique of Converting Bit Stream of
XML Structural Information

Figure 2 shows that bit stream value given to each
node is gained by successively visiting each from
the root node, and with this bit stream, the bit value
by level is stored from the least significant bit in the
assigned fixed bit space. The bit values from L0 to
L7 expressed in Figure 3 show the bit stream value
concerning hierarchical relationship by node in
Figure 2. The bit stream values correspond with all
the nodes one to one, and they are the only and
unique values. As well, as the value is the only
value, the whole XML document can be restored if
the bit value by each node name is known. The
entire size of the bit stream is 64 bits, which means
that the fixed space is assigned. Yet, if the level of
an XML document goes up or the node number by
level increases, the value will exceed the fixed bit of
64 bit. In that case, it can be solved by assigning a
space bigger than 64 bits. Even so, the whole
algorithm for the bit stream is not affected. It has the
advantage of expanding the bit stream without
changing the index schema when a number of

IMPLEMENTATION OF INDEX SCHEMA FOR XML DOCUMENTS BASED ON STRUCTURE OF DATABASE

403

documents should be processed. The bit stream
gained from the processes is again converted into
hexadecimal forms, and it can be stored in each field
of database index schema.

0i = i times repetition of bit ‘0’

Figure 3: Bit stream assigned to each node.

2.1.3 Building up Index Schema Based on
Database

In index schema table, names of each node, unique
bit stream values, bit stream values of parent node,
and level values needed for query analysis when
user's queries come up are stored. The roles of the
schema structure of index files are defined as
follows:

(1) N_name field: names of XML tree nodes
(2) B_value field: bit stream values of each

node
(3) Tb_len field: certain node length of the

whole bit stream
(4) B_len field: bit stream length assigned

temporarily to the present node
(5) Level field: the level of the present node

on XML tree
(6) P_value field: bit stream value of the

parent node of the present node
(7) Ctype field: It shows if the present node

is a primitive or an attribute.
(8) Position field: It shows the order of the

present node as a child node to the parent
node.

(9) D_num field: the document no. of XML
document

(10) Data field: the value each node has

3 EXPERIMENTS AND RESULTS

The accuracy test was conducted about the general
query types by using 1000 all different XML
documents, and another test was carried out to
compare performances between the experiments of

existing XRel(Yoshikawa and Amagasa, 2001) and
INRIA(Floresc and Kossman, 1999) and the
methods suggested in this article.

3.1 Accuracy Test of Search Results in
Addressing Queries

In this paper, the experiment data in Table 1 were
built up to conduct an accuracy test for query
performances in an XML index system.

The index algorithm suggested by Chien et al
(2002) focuses on the index techniques centering on
three points. That is, to process XML queries
effectively, it takes I) quickly testing the structural
relationship of ancestor-descendant (parent-child)
between the two given primitives II) quickly finding
out the candidate list that satisfies the structural
relationship in I), and III) effectively drawing the
pairs that satisfy the structural relationship from the
candidate list, the result of II).

This paper also suggested the algorithm
concerning the new structure search about I) and II)
mentioned above. In stage III), Chien proved its
efficiency with B+ trees. Yet, this paper presents a
more efficient method of storing and searching the
index algorithm that suits the processes of I) and II).

As the queries are already optimized after the
processes of I) and II), the result of one to one
corresponding from database in Stage III). However,
in compared with Chien's method, this paper shows
a slight difference. As Chien concentrates on
structural relationship index, he does not consider
the characteristics of storage media such as database.
Rather, he simply stores and searches the structural
information with B+ tree. However, there is a close
relationship between index structure and storage
structure in this paper, it is not appropriate to be
compared with Chien's method which indexes only
XML documents.

Table 1: Experiment data for accuracy evaluation.

MEAN VALUE
Num. of entire documents 1000
Average size of documents 10KB
Average num. of elements per document 128
Average num. of attributes per documents 98
Average depth of element 5.24
Average num. of keywords per documents 226
Average num. of child nodes of element 4.29
Average value of K in index based on
K-ary 10

Num. of entire elements 128,942

WEBIST 2007 - International Conference on Web Information Systems and Technologies

404

The index and query schema about XML
documents suggested in this article was conducted
1000 times by repeating the queries with the XPath
expression depth of 10 by using experiment data as
in Table 1, and the results are in Figure 4. As shown
in Figure 4, the accuracy was more than 94%,
though the number of primitives, attributes and texts
in expressions increases. The error rate was less than
6%, the reason is that with increased complexity of
documents, the number of nodes by level in XML
document trees increases. Thus, as the length of bit
stream that can express structural information of
each node exceeds 64 bits, query processing
operations fail, otherwise inappropriate results were
returned though query processing was successful.

Figure 4: Accuracy of retrieval result.

3.2 Response Time Experiment of
Query Processing

To experiment response time experiment of query
processing, queries and Shakespeare's plays (Bosak
Shakespeare Collection) used in INRIA and XRel‘s
comparison experiment in Yoshikawa and Amagasa
(2001) were adopted for experiment data and queries.
The queries have different complexity level as it
goes up from Q1 to Q6.

Figure 5: Response time of retrieval result.

As shown in Figure 5, the join operations were

made to search the results of the given queries for
the methods the existing INRIA and XRel
suggested, but the queries were already converted

into optimized forms before index file access in the
query method suggested in this paper, there was a
big difference from the operation results of INRIA
and XRel since there were no join operations
between tables that occur database access.

4 CONCLUSIONS
The index and query schema is the method of
searching structural information and data of XML
documents and storing it in the storage media such
as database which can manage a lot of information.

However, when XML documents are changed,
the numbers given to XML document trees should
be changed too. It means that there are advantages:
one is that bit stream values should be changed in
that case and the other is that search is possible after
bit streams are completed by visiting all the nodes of
XML documents. Again, another disadvantage is
that search time increases as index fine is
bigger. Therefore, future studies are needed for the
research about dynamic models of bit streams
without any changes in bit streams even in case of
changes in XML trees, and about the search
techniques that makes it possible to search structures
without visiting all the nodes of XML documents
trees. In addition, another study about expanding
index file structures is also necessary to cope with
the problem that database table becomes big as
structural information needed for XML document
indexing increases.

REFERENCES
Tuong Dao, 1998. An Indexing Model for Structured

Document to Support Queries on Content, Structure
and Attributes. In Processing of IEEE ADL. pp. 88-97.

Tova Milo, Dan Suciu, 1999. Index structures for Path
Expressions. In ICDT. pp. 277-295.

C.Zhang, J. Naughton, D. Dewitt, etc, 2001. On
Supporting Containment Queries in Relational
Database Management System. In ACM SIGMOD.

Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, etc,
2002. Efficient Structural Joins on Indexed XML
Documents. In VLDB. pp. 263-274.

Masatoshi Yoshikawa, Toshiyuki Amagasa, 2001. XRel :
A Path-Based Approach to Storage and Retrieval of
XML Documents Using Relational Databases. In ACM
TOIT. pp. 110-141.

Chin-Wan Chung, Jun-ki Min, Kyu-seok Shim, 2002.
APEX : An Adaptive Path Index for XML Data.

In SIGMOD. pp. 121-132.
D. Floresc, D. Kossman, 1999. A Performance Evaluation

of Alternative Mapping Schemes for Storing XML
Data in a Relational Database. In Technical Report of
INRIA.

IMPLEMENTATION OF INDEX SCHEMA FOR XML DOCUMENTS BASED ON STRUCTURE OF DATABASE

405

