
DYNAMIC DEPLOYMENT OF SEMANTIC-BASED
SERVICES IN A HIGHLY DISTRIBUTED ENVIRONMENT

Christos E. Chrysoulas and Odysseas Koufopavlou
Electrical and Computer Engineering Department of University of Patras, Rio, 26500, Greece

Keywords: Semantic Service Discovery, Semantic Web Services, Node Model, Dynamic Service Deployment.

Abstract: Today’s Networking Systems tend to increase in both heterogeneity and complexity. So there arises the
need for an architecture for network-based services that provides flexibility and efficiency in the definition,
deployment and execution of the services In this paper we present an approach that applies a Semantic-
based Service deployment framework, which enables the provision of parallel applications as QoS-aware,
whose performance characteristics may be dynamically negotiated between a client application and service
providers. Our component model allows context dependencies to be explicitly expressed and dynamically
managed with respect to the hosting environment, computational resources, and dependencies on other
components.

1 INTRODUCTION

Network and service management fields find
themselves nowadays at crossroads with middleware
technologies, new network architectures and
emerging research directions. Middleware
technologies like web services have reached
maturity enjoying wide deployment and adoption.
Network architectures and infrastructures built for
different purposes are on their way towards IP
convergence giving rise to new integrated and more
complex architectures. Finally, recent ambitious
research directions like autonomic computing and
communications have already made a dynamic
appearance in the networking community raising the
challenges even higher.

This activity has coincided with the end of a
period in network and service management during
which vast experience and lessons learned have been
accumulated based on what constitutes the past state
of the art in telecommunications and in data
networks, realized by many as CORBA-based
distributed management platforms and SNMP-based
platforms, respectively.

This encounter in the making already produces
speculation and activity about redefining/reassessing
the initial requirements that drove the developments
in network and service management during the past

period and about the “shape” of management when
projected into the future.

The most prominent decentralized management
approaches are based on distributed object
technologies as CORBA (Common Object Request
Broker Architecture) (Object Management Group,
2006) and Java RMI (Remote Method Invocation)
(Jae-Oh L, 2000). According to these paradigms,
information can be gathered from any location based
on invocations of distributed remote objects on the
target network element. The afore- mentioned
distributed object technologies allow management
operations to be performed on simple service-
oriented APIs. On the downside they are resource
expensive for large object populations, resulting in
suboptimal object retrieval.

Apart from decentralized approaches based on
agents or distributed object technologies, there are
also approaches offering management capabilities
over the Web. Approaches that are based on the
Common Information Model (CIM), which
encompass a set of common management operations
(Distributed Management Task Force, 2006).

As network infrastructure is shifting towards
service-centric networks a number of architectural
characteristics are likely to influence management
operations and functionality and dictate the specific
choices of technologies that realize thereof. To our
view, three of such characteristics are going to play
a crucial role in the coming years:

416
E. Chrysoulas C. and Koufopavlou O. (2007).
DYNAMIC DEPLOYMENT OF SEMANTIC-BASED SERVICES IN A HIGHLY DISTRIBUTED ENVIRONMENT.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Web Interfaces and Applications, pages 416-419
DOI: 10.5220/0001278504160419
Copyright c© SciTePress

1. Federated Network Architectures
In an effort to provide seamless end-to-end

connectivity that meets customer demands,
networks/service providers have started forming
federations of networks wherein a number of
operations like AAA, monitoring and SLA support
are treated in homogeneous way in a heterogeneous
environment.

2. Network architectures with distinct
separation of concerns
The most representative example is the

separation of control from the forwarding plane
(Yang L et al, 2005), which allows the two to evolve
separately of each other. The binding element
between the two is a set of open interfaces that
abstract functionality and allow access to
functionality and resources that are vendor
independent.

3. Distributed Network Node Architectures
Individual network nodes and other devices are

clustered together in order to form more complex
and extensible distributed architectures that operate
as one integrated node. Such constellations provide
the means of adding resources as needed and foster
dynamic service deployment, namely, injecting new
functionality in the network.

In such context, management faces a number of

challenges originating from the increasing
complexity and size of networks, the heterogeneity
of devices and technologies that must coexist and
the high degrees of flexibility required in services.
This has been primarily the motivation of our
research presented in this paper, which touches upon
these issues by exploring potential solutions on the
service deployment and resource management
within a network architecture.

We have based our designs on web services as
the ‘de-facto’ omnipresent standard technology in
networks with high integration capability and one of
the most promising approaches to future
management technologies.

The remainder of the paper is organized as
follows: Section 2 describes in depth the proposed
architecture regarding the dynamic service
deployment and a user-case scenario of the
deployment of a new service is also presented.
Conclusions and future work are presented in
Section 3.

2 DYNAMIC DEPLOYMENT OF
SERVICES

2.1 Dynamic Service Deployment
Definition

Dynamic Service Deployment refers to a sequence
of steps that must be taken in order to deploy a
service on demand. The necessary steps regarding
the service deployment are service code retrieval,
code installing destination according to
matchmaking algorithms, and service deployment.
The matchmaking algorithms provide the most
efficient use of system resources by examining the
available resources of our system and comparing
them with the resources required by the service to be
deployed.

2.2 Proposed DSD Architecture

Figure 1: Internal architecture of Dynamic Service
Deployment service.

Figure 1 describes the internal architecture of the
Dynamic Service Deployment service:

• Semantic Web-Service Server: The Web-
services server sub-component hosts the
interfaces needed for the communication of
the whole DSD Module with the External
environment. The Web-service server sub-
component has the functionalities needed to
register a Web service in a UDDI directory.
This component also is capable of finding
other Web-service interfaces.

DYNAMIC DEPLOYMENT OF SEMANTIC-BASED SERVICES IN A HIGHLY DISTRIBUTED ENVIRONMENT

417

• DSD Manager: The DSD manager sub-
component has two functions, depending
on whether a user profile is required:
o The DSD manager must download

the user profile, in order to find,
which services must be deployed,
and provides the request to the DSD
controller.

o In the case of a bootstrap process,
the DSD manager passes the
bootstrap services required for
deployment to the DSD controller.

The DSD manager is responsible for
checking whether a user has terminated the
connection, and for undoing the user’s
personal configuration.

• DSD Controller: The DSD controller sub-
component has the following duties: it
receives the service request from the DSD
Manager, communicates with the proper
database in order to download the service
code and the service requirements, retrieves
the available resources from the node
model, performs the matchmaking
algorithm in order to find the most suitable
resources, and finally deploys the service.
The DSD controller is responsible for the
services in three dimensions: download,
deploy, and configure.

• Node Model: The node model is
responsible for keeping all information
regarding our system. It provides a
complete view of the system, and contains
information on available and used physical
resources, as well as data on running
services.

2.3 Semantic Description of Services

The first step to semantically deploy services is to
have a description of services.

The ontology chosen for our service description
is based on standard device property descriptions
and tries to be generic and to cover also implicit
information left out of those classifications.

Figure 2 is a part of this ontology and illustrates
that a service publishes its description and can be
provided by different kind of devices:

Our service ontology is independent of any
service model and implementations and can be
applied to EJBs (Monson-Haefel, 2000), CORBA
Components, Fractal components (Bruneton et al,
2006), OSGiTM bundles/services (OSGI
.

Figure 2: Proposed ontology.

Alliance, 2005) or Web services (Newcomer, 2002).
Our service description is also independent of

any description languages and can be written in
different standard description languages such as
WSDL (Newcomer, 2002), UDDI/XML
(Newcomer, 2002) or OWL (McGuinness, van
Harmelen, 2004).

2.4 Semantic Description of
Deployment

The second step for the semantic deployment of
services is to define the description of the
deployment itself.

As we have seen in the previous section, each
service has its own semantic description. In the same
way, each execution platform has its own semantic
description. The important description that we add is
the semantic deployment description. This
description is attached to the platform and links the
different services to the platforms they are running.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

418

Figure 3: Proposed platform ontology.

This semantic deployment description can be
instantiate in various different ways that we have
also described in an ontology:

Figure 4: ServiceDeployment ontology.

For instance, figure 4 shows that the deployment
can be optimized according to resources constraints
(such as CPU, memory, etc), or can apply migrations
to follow a user or can be customized by the user.

3 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented an architecture for the
semantic deployment of services in a highly
distributed environment. This architecture, based on
a middleware distributed on each device, specially
includes a Deployment Service interacting with
discovery and interoperability middleware services.
This Deployment Service takes into account the
semantic description of services and the semantic
description of deployment itself to apply a
semantically and timely local deployment strategy.

We presented an architecture that adds a
dynamic perspective to a Web-service-based

infrastructure. Our component-based model
addresses the issue of dynamic deployment of new
services in a highly distributed environment and the
way these address each other in that environment.
We expect that this work is not only relevant to the
Grid community but also to the Web-services and
the network communities as we not only addressed
concerns related to Grid computing but also
discussed architectural issues regarding Web-service
configuration and deployment.

As future work we plan to provide a more
sophisticated model for service deployment and
selection based on QoS properties.

REFERENCES

Object Management Group, 2006. The Common Object
Request Brocer: Architecture and Specification
(3.0.2). http://www.omg.org.

Jae-Oh, L., 2000. Enabling Network Management Using
Java Technologies. IEEE Communication Magazine
2000; January; 38(1):116-123.

Distributed Management Task Force, 2006. Common
Information Model (CIM),
http://www.dmtf.org/standards/cim/.

Yang, L., Halpern, J., Gopal, R., DeKok, A., Haraszti, Z.,
Steven Blake, S., 2005. ForCES Forwarding Element
Model. IETF draft, work in progress, <draft-ietf-
forces-model-04.txt >.

Monson-Haefel, R., 2000. Entreprise JavaBeans. O’Reilly
& Associates.

Bruneton, E., Coupaye, T., M. Leclercq, M., V. Quéma,
V., Stefani, J., 2006. The Fractal Component Model
and Its Support in Java. Software Practice and
Experience, special issue on Experiences with Auto-
adaptive and Reconfigurable Systems. 36(11-12).

OSGI Alliance, 2005. About the OSGI service platform.
Technical report, OSGI Alliance (2005) revision 4.1.

Newcomer, E., 2002. Understanding Web Services,
Addison-Wesley, Pearson Education. Boston, 3rd
edition.

McGuinness, D., van Harmelen, F., 2004. OWL Web
Ontology Language Overview, W3C.

DYNAMIC DEPLOYMENT OF SEMANTIC-BASED SERVICES IN A HIGHLY DISTRIBUTED ENVIRONMENT

419

