
WAINE
Automatic Generator of Web Based Applications

A. Delgado, A. Estepa and R. Estepa
Escuela Superior de Ingenieros, Universidad de Sevilla

C/ Camino de los Descubrimientos s/n, Seville, Spain

Keywords: User Interfaces, Software architecture, Automated Tools.

Abstract: This paper presents WAINE (Web Application & INterface Engine), a system for quick web application de-
velopment based on a novel architecture which provide multiple benefits like: zero programming, integrated
security, high re-usability and many degrees of independence. The architecture is well suited for develop-
ment of multi-user applications and is based on an abstract model which captures all the elements of a typical
application. The sample applications developed validate the advantages of the proposed architecture.

1 INTRODUCTION

Reducing the development cost is clearly one of the
goals of software engineering. However, customers
are more and more demanding respect to software,
imposing higher requirements in the application qual-
ity and paying special attention to user interfaces.
This justifies the fact that the user interface is grow-
ing in complexity, meeting currently requirements
like: platform independence, remote access, usabil-
ity, multi-user support, clean design, etc ... This also
implies complexity in the development, burdening it
with more technologies and code. Therefore, it is a
well known fact since early 90’s that the user interface
development takes a significant part of the overall de-
velopment cost (Myers and Rosson, 1992).

The trend in interfaces development is the use of
web technologies. This represents a important step
ahead in meeting user’s requirements like platform
independence and remote access. In addition, compa-
nies also save deployment costs, version update meth-
ods, etc... However, the use of web technologies have
also exposed developers to new problems:

• the increasing number of web technologies (e.g.
HTML, XHTML, CSS, Webservices, etc..), XML
(e.g. dtd, xschema, xslt, etc ..) and programming
languages involved the client side(e.g. Javascript,
EMACScript, Java, etc..) or server side (e.g.
java, PHP, ASP, etc ..) have all contributed to

increase the complexity of interface development
and maintenance.

• The long learning curves and the difficulty of de-
velopers integration in projects are increasing the
development costs.

• The applications implementations and coding has
become chaotic in some cases due to the fact
that some programmers embedded the application
logic in the interface, disfavoring the reutiliza-
tion and maintenance of the application. In other
cases, companies take advantage of open-source
projects that have multiple contributors with dif-
ferent coding styles and manners, which difficul-
ties its maintenance.

Although some web-specific implementations of
the pattern Model-view-Controller like Struts(Davis,
2001) or Spring(Arthur and Azadegan, 2005) have
notably helped to overcome the previous drawbacks,
still the learning curve of these frameworks (which
are difficult to use without the help of specific devel-
opment tools like those included in jdeveloper or net-
beans) makes them unaffordable for many small-sized
software companies.

Some of the traditional practices to achieve cost
savings in the software industry are code reutiliza-
tion and code automatic generation. Regarding to
the automatic generation of user interfaces, some au-
thors have proposed since early 80’s means to autom-

226
Delgado A., Estepa A. and Estepa R. (2007).
WAINE - Automatic Generator of Web Based Applications.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Web Interfaces and Applications, pages 226-233
DOI: 10.5220/0001279002260233
Copyright c© SciTePress

atize the interface generation based in the close re-
lationship between the data model and the interfaces
that users need. Thus, the early approaches gener-
ated automatically forms that allow the user interac-
tion with tables((Arturo Pizano and Iizawa, 1993))
or objects((Branko Milosavljevic and Milosavljevic,
2003)). However, most of these first attempts((Olsen,
1989), (Arturo Pizano and Iizawa, 1993), (Chris-
tian Janssen, 1993), (Vigna, 2002), (Branko Milosavl-
jevic and Milosavljevic, 2003)) lacked of interfaces
that handled important application elements like: user
management, security policies, menus, reports, etc ..
In addition, most of these first proposals were not
platform independent but offered a strong dependence
with elements like operating systems or database sys-
tems.

Most recent approaches ((eGen, 2005),(JSenna,
2005)) success in automatizing the major part of a
complete web-interface application however they fail
to support important aspects of interfaces like com-
plex forms where several entities (i.e. several related
tables) are involved in the same form. Some of these
approaches also lack of the customization that cus-
tomers frequently demand. In addition theses systems
are attached to their own development toolkit that pre-
vents third parties to contribute or improve the devel-
opment tools.

We have developed a new approach that aims
to overcome all the problems previously mentioned.
The outcome is a system named WAINE, a sys-
tem with the features of: efficiency, independence,
reusability and simplicity necessary to potentially in-
crease the productivity of software companies that de-
velop medium-complexity-level web-based applica-
tions. The architecture of WAINE is based in a model
that captures the relationship between the main as-
pects of a typical management application (e.g. users,
menus, forms, security, etc..) and the application de-
velopment is based in a simple descriptive language.

2 SYSTEM REQUIREMENTS

The challenges that our system pursues are the fol-
lowing:

• Independence. This key feature encompasses
other requirements like: OS independence, data-
source independence (i.e. relational databases,
XML files, text files, directories, etc...), web-
server, browser and application specification tool
independence.

• Security. Another key feature that should be in-
cluded is at least: Access Control List (ACL) and

different authentication methods (i.e. password
files, LDAP, IP address, etc...). New authentica-
tion methods should be easily added to the sys-
tem.

• Web-based interface. This requirement is basic
to grant universal access and suppress installation
costs to applications. Additionally, the applica-
tion should be able to represent results with dif-
ferent layouts and issue complex widgets which
include charts, images or multimedia data. New
widgets and form layouts should be easily added
to the system.

• Zero programming. The application development
should use the minimum coding task possible.
Ideally, it should lack of any code except for, ob-
viously, a declarative language used to describe
the objects of the application model, but minimal
pieces of software like actions or events could be
potentially coded in some programming language.

• Customizable. The applications generated must
be easy to configure. From different look&feels
for menus, forms, etc... to the configuration of
data sources, form templates, internationalization,
etc ... Also should be customizable for single
users with particular needs (for example for ac-
cessibility issues). The engine must be easy to ex-
tend for new authentication methods, datasource
types, form layouts, form widgets, etc...

• Independence between logic and GUI design. The
system should allow the application-logic and
graphic design teams work separately as done
in (Puerta, 1997). This is a key factor in web-
based development.

• Efficient. The run-time engine must be light and
small enough to run in low-performance hardware
or embedded systems.

3 THE APPLICATION MODEL

This section proposes a simple model to capture all
the components of an application. We first describe
each component of the model and then we explain the
relationship between them using an ERD.

3.1 Model Components

3.1.1 Users and Groups

Users represent different ways of interacting with the
application and allow the access control mechanisms
necessary to achieve a secure system.

WAINE - Automatic Generator of Web Based Applications

227

In our model, users are classified in groups that
represent roles, and the access to different application
functions or components is based on creating different
menus associated to user’s id or user’s group. Addi-
tionally, ACLs grant the access of users or roles to the
application’s forms or actions. A user is character-
ized by attributes like a username, some authentica-
tion info (password or others), a reference to a main
menu, a profile to customize the system to the user
preferences and some account information.

3.1.2 Menus and Options

Any application holds a main menu with a number of
options that allow users to access all the application
functions. The menu layouts in a web interface are
diverse (e.g. toolbar, link list, javascript or java built-
in menus, etc ..) and should not be restricted by the
system engine.

user 1

user 2

user N

group of users

Menu 1 Menu 2

option N

option 2

option 1

Form

ACTION !

ACTION !

Form

main app 1

main app 2

YaMenu 1

option 2

option 1

Figure 1: Relationship between users, menus and options.

As shown in figure 1, in our model, users have a
main menu which is composed by a set of menu items.
The menu items are composed by a set of options.
Every option will launch a form, an action or just a
URL link. Actions are used to perform application
functions while forms are used to manage data.

3.1.3 Forms, Fields and Actions

Forms are used by applications to manage and rep-
resent data. Forms and the data model have a close
relationship since forms are the application compo-
nents that allow to visualize data (mainly by means
of fields elements) and perform operations over the
data (through action buttons or links). Usually one
form represents data from one entity in a ERD dia-
gram(Chen, 1976) (i.e. one table) but in our applica-

tion model this should not be a constraint and the use
of composite forms (i.e. a number of related single-
forms) should be allowed to represent complex rela-
tions (Arturo Pizano and Iizawa, 1993).

The main properties of a form should include, at
least, a data source, a set of fields, a set of actions,
and a set of events. Additionally, different layouts
could be used to place fields inside a form. There
are some common layouts like combo, table, form,
tabbed form, grid, etc ... but a programmer could de-
fine how widgets must be placed in a new kind form
extending the system layouts. A simpler way to de-
fine how a particular form must be displayed is using
form templates which, basically, indicate how fields
are distributed for a specific form.

......... ...

...

...

...

...

data11

dataM1

data21

data12

data22

dataM2

data1N

data2N

dataMN

......... ...

...

...

...

...

data11

dataM1

data21

data12

data22

dataM2

data1N

data2N

dataMNrow M

row 2

row 1

row M

row 2

row 1

The source table

field2 value2

field1 value1

field3 value3

fieldN valueN

Add

action 1 action Naction 3action 2

Table

access

column 1 column 2 column Ncolumn 1 column 2 column N

Nextpos.Prev

FORM

...

Tuples navigator

...

Data Navigator

Custom actions

Field widgets

Predefined actions

− Delete
− Insert

− Update

The bussines database

Figure 2: Forms.

Thus, one form can be related to a set of fields and
to a set of actions. Next we address these elements in
deeper detail:

• Fields. A field should be characterized at least
by its type, its source, and the widget presenting
it. The field source is the element of the data-
source that the field represents, (e.g. one column
of a given table in a relational database) while the
field type represents the domain of the field value,
i.e. the allowed values for the field. The source
of some fields would be an expression with some
other fields. They are called calculated fields. Fi-
nally, a widget defines how a field value must
be presented and edited. Programmers should
be able to write their own widgets to improve
the interface usability modifying existing widget

WEBIST 2007 - International Conference on Web Information Systems and Technologies

228

objects or extending the system widgets classes.
Some field attributes like read/write or show/hide
could be potentially customized resulting in dif-
ferent form views.

• Actions.Actions are user procedures triggered by
either a button in a form or a menu option. An ac-
tion can be also automatically be triggered before
of after an event like the form creation, the form
destruction, or data management actions. Regard-
ing to the set of potential actions included in a
form, at least it should include those stated in
the so called CRUD model (Create, Retrieve, Up-
date and Delete) but the set of potential actions
should not restricted to these ones, but should al-
low user’s defined actions and events.

3.1.4 Composite Forms

In many cases a set of forms are related between them
and a single form is not sufficient to implement a use-
ful interface. Composite forms (termedstructsin our
model) are forms which are themselves composed by
a set of single related-forms in a structured way. Some
other systems only allows the use of master-detail
forms. This is a very useful form but not powerful
and flexible enough for any situation.

3.2 Relationship Between Model
Components

Finally, to summarize this section we could think of
all the previous application components as a set of
entities related between them. In fact, we could use a
Entity Relationship Diagram (ERD) to represent our
model. Figure 3 represents such a diagram.

_group_menu

_option

_acl

_user

_action

_main

_form

_struct _parameter

_field

1:1

1:N

1:N

0:N

0:N

1:N

0:N

0:N

1:N

0:1 0:N

0:1

1:N

Figure 3: The Application’s model.

According to the diagram of figure 3, we could
potentially store all the application components in a
database handled by a common engine to serve the
application. This is the key idea behind the system
architecture presented in next section.

4 SYSTEM ARCHITECTURE

The model described in previous section is imple-
mented following an architecture that allows to meet
all the characteristic expressed in the initial require-
ments. This section presents the architecture imple-
mented, which is based on four basic elements as il-
lustrated in figure 4:

• The business database(DB). It handles all the
business information managed by the system.
The system uses a extensible data abstraction
layer that allows the connection to different data
sources which allow datasource independence.

• The application repository or Meta-Database
(MDB). Since the elements of the applications
(i.e.:forms, structs, users, menus, forms, etc...)
are a set, they can be represented in a relational
database (meta-base) whose schema is presented
in figure 3. Different database systems could be
used to implement the Meta-Database , which
would allow more flexibility and independence to
the system.

• The application engine. The run-time engine ac-
cesses to the application Meta-Database to obtain
the information for the application automatic gen-
eration (menus, forms, etc...) and access to the
application database to perform the basic actions
(create, update, and delete) and performs the user
defined actions and events.

• The configuration repository. The system can be
configured, customized (e.g. look&field) and ex-
tended in a easy way by means of setting a set of
parameters in the configuration repository.

Next, we address in detail the main components of
the system: the application engine and the configura-
tion repository.

4.1 The Application Engine

The engine accesses the Meta-Database and automat-
ically generates the menus and forms that will be send
to the end-user by means of a web server. It also ex-
ecutes the actions selected by end-users like: insert,
delete, update over the database or any user defined
action or event and stored in the meta-base.

The engine is composed by a set of modules or
sub-systems (e.g. menus, forms, reports, etc ...)
which mainly use the services provided by two ab-
straction layers: data and render, in order to access
to different data sources and to generate all the ap-
plication objects and outputs. Additionally, the user
and security modules provide access control and au-
thentication services to the rest of the engine modules.

WAINE - Automatic Generator of Web Based Applications

229

M
en

u
s

F
o

rm
s

R
ep

o
rt

E
xp

o
rt

s

Data Access Layer

Output Render Layer

HTML XML PDF PS OTHERS

MDB DB

U
s
e
r
 &

 S
e
c
u

r
it

y

C
O

N
F

Engine

Figure 4: The system architecture.

The object access security is based in ACLs. The au-
thentication methods used in the login process could
potentially be extended to allow new ones. This is an
important requirement for any system.

4.2 The Configuration Repository

The configuration repository allows developers to
customize the application in many ways. The main
aspects to be addressed are: database configuration,
preferred authentication methods, application fonts
and colors, form templates, etc ...

The users subsystem can be used to override val-
ues of some system variables declared in the config-
uration repository and customize the application for
special users. This can be useful to customize locale,
languages, color preferences, printers, etc...

Also some system functions can be redefined or
extended parameterizing the system, extending sys-
tem classes or creating new ones where possible. An
example of this kind of extension are new widgets
(extending the basic widgets classes or creating new
widget objects), new form layouts (creating a new lay-
out class), or new authentication methods. All this
extensions are made in the configuration repository
and allows the high system flexibility required in sec-
tion 2.

5 IMPLEMENTATION ISSUES

This section addresses those aspect specific to the cur-
rent implementation of WAINE. This allows to have a
closer view of the insights of the application engine.

5.1 The Application Repository

As one of the main objectives in this system is the data
source independence, a data abstraction layer is used
to access to both: the application databases and to the
system Meta-Database see figure 4. This allows that
both databases are run in different database systems
like csv text files, XML files or a number of relational
database management systems, making our run-time
more portable, flexible and independent.

5.2 The Application Engine

The application engine is the kernel of the system.
It is designed using an Object-Oriented methodology
and it has been coded using PHP. PHP is free and
available for many platforms and webservers, it’s our
choice to build WAINE as an OS and webserver inde-
pendent piece of software. PHP is also small enough
to run in low-performance hardware as required in
section 2.

The main implementation modules of the engine
are:

• The data access layer is composed by two inter-
faces (i.e: Data sourceand Data result) which
define an abstract driver for data access. Any sys-
tem (or user defined) driver extends these inter-
faces and register itself as ready to be used. Cur-
rent implementation includes native drivers for
PostgreSQL, MySQL, SQLite, Firebird, cvs files,
XML files, ldap directories, etc...

• The output render layer. Current implementation
contains three rendering classes which represents
three kinds of render: the plain render, the head-
body-tail render (HBT), and the multiple render.
A Render substitute widgets inside a form tem-
plate which can be created automatically by a
system-defined layout object like, table, combo,
form, etc ... or can be directly specified for a sin-
gle form by programmers. Form templates are
used to allow graphic designers and programmers
to work separately. Graphic designers can gen-
erate web pages for special forms (where graphic
design if very important) while programmers can
work using system predefined layouts to develop
the application. When all the work is done pro-
grammers only tell the system to use the template
(a web page with some special tags to locate fields
inside it) made by graphic designers.

The run-time also performs system actions (pre-
defined or user-defined). The predefined actions are
those of the CRUD model, and of course, are data
source driver dependant ones. Currently, the fol-
lowing types of user-defined actions are supported:

WEBIST 2007 - International Conference on Web Information Systems and Technologies

230

PHP code, native database code driver dependent (like
SQL sentences ...), opening new forms, calls to exter-
nal programs, or to external web pages, CGIs or web
services.

5.3 The Configuration Repository

The configuration repository is a set of configuration
files codified in PHP, defining system variables (for
system configuration), functions or classes for system
extension when necessary.

The user profile stored in the metabase is also a set
of variables in a field-value type configuration. User
profiles are useful to customize the application for a
particular user or group.

6 POPULATING THE METABASE

The Meta-Database contains objects collection from
the application model. Additionally, as it has been
shown in the previous sections, several database for-
mats can be selected for the Meta-Database , so a
common way to define the application objects in ev-
ery database type is needed. We have opted for
defining the model objects in a XML based language
named ASL (Application Specification Language).
There are some advantages in the use of ASL:

• XML is a widely extended language and provides
a set of facilities to parse the contents or to con-
vert XML documents to a different formats like
HTML, SQL, textfiles, etc... This will be useful to
parse ASL or to translate a file written in ASL to
the selected target database for the Meta-Database

• Developers are familiar with XML technologies.
They haven’t to learn new languages and new syn-
tax rules, and they can use their preferred XML
editors and tools to work with ASL.

• Using ASL to specify the application model al-
lows developers to reutilize the code. Also they
can use an ASL description file as a media to share
design ideas and application concepts.

• The use of an ASL file to populate the Meta-
Database , allows the system to be independent
of the tools used to specify the application model.
Currently a text editor (or XML editor) and a web-
based RAD can be used to specify the application
model and generate the ASL file. Also, any per-
son interested in other methods to specify the ap-
plication model can implement their own tools to
do this work.

The syntax for the ASL lan-
guage in dtd format is available at
http://waine.us.es/DTD/WAINE/0.6/asl.dtd

7 DEVELOPMENT PROCESS

To illustrate the development process we have decided
to create a full small system in this section. The sys-
tem is a very reduced suggestion track system see fig-
ure 5. A secretary (joe) will receive suggestions by
email, letter, telephone calls or sms and he’ll fill a
form in the application with the required information.
The supervisor (sarah) can only fill the categories for
people and suggestions type. In this reduced version
of the application there are no reports or query forms.

sugg. type

people cat.

SECRETARY

SUPERVISOR

Management Misc
Suggestions

Management Misc
People category
Suggestion type

Sarah

Joe

category

name
address
phone

descr.

99/99

99/99

datetype

����

Figure 5: Suggestion system.

1. Create the application Database: The first step is
to design and build the application database (DB).
The conceptual design for the DB and the SQL
creation script are presented in figure 6. The sys-
tem must impose some restrictions.

(a) The Default category (code 0) will be
uneraseable.

(b) A people category can’t be deleted if some peo-
ple belong to it.

(c) When a person is deleted all his/her suggestions
are deleted.

(d) Suggestion types can’t be deleted.

We have selected sqlite 2.8.16 for both application
DB and Meta-Database . Sqlite is a small, secure
and fast SQL database engine which implements
most of SQL92, but foreign key constraints are
not enforced. We can create some database trig-
gers to do this work, but we prefer to code some
WAINE events to illustrate how WAINE can force
this restrictions (a,b,c). The last restriction will
be forced disabling the delete button in the form
frm type.

WAINE - Automatic Generator of Web Based Applications

231

CATEGORY

PEOPLE

pk
name

pk
description

pk

address
phone

name

date

SUGGESTION

pk
descriptionTYPE

C �T �c �
��� I �P �K ,
��� V (8)�N �N
)

IN �INT �c �V (0,')

C �T �
��� I �P �K ,
��� V (80)�N �N ,
��� V (80),
��� V (1),
��� I �N �N �R �c (
)

CR �T �
��� I �PRI �K ,
��� N �N ,
��� D �N �N ,
��� I �N �N �R �
��� I �N �N �R �t (
)

CR �T �t �(
��� I �PRI �K ,
��� V (80)�N �N
)

���

1:N

1:N

1:N

Figure 6: Suggestions Database.

2. Design the application model. Design groups,
users and the different menus associated them. Of
special interest is the design of forms and structs.
In the figure 5, a small schema of this objects
is represented. The system has only two groups
(supervisor,secretary) with a single user each one
(sarah and joe). The supervisor will have a main
menu linked to two simple forms: category and
type. The secretary will use a main menu linked to
a composite form where he can select categories
and manage persons and suggestions at the same
time (see figure 7).

CATEGORY
pk
name

PEOPLE

pk

address
phone

name

date

pk

SUGGESTION descr.

RELATION

frm_category: Combo[name]

frm_people: Form[*]

frm_suggestion: Table[*]

fktype

RELATION

st
_s

ug
ge

st
io

n_
au

x
st

_s
ug

ge
st

io
n

1:N

1:N

Figure 7: The resulting interface for the secretary.

3. Write the application specification in
ASL. A XML editor or a RAD like
wbuilder (http://waine.us.es/demo/wbuilder)
can be used to generate this file. In
http://waine.us.es/demo/sample/code.asl the
ASL for this application is presented.

4. Translate the ASL into the desired target Meta-
Database format using theasl2mdb system tool.

asl2mdb is a shellscript that uses thexmlstarlet
command line XML toolkit.

5. Create a new application with themkapp com-
mand utility. This will generate a new application
instance linked to a run-time engine. The gen-
erated configuration repository contains default
variables that would be customized.

6. Configure the application. Edit some config files
from the configuration repository, at least (db.cfg
and mdb.cfg). These files are used to configure
the access to the application database and Meta-
Database . Many other files can be modified if
desired to parameterize the application (colors, ti-
tles, printers, extensions, etc ...). For example we
can see here the configuration code for the default
business database.

<?php
$DBDRIVER=’dssqlite.inc’;
$DBFILE=’./DB’;

?>

The sample application can be tested at
http://waine.us.es/demo/sample.

8 MORE APPLICATIONS

We recruited a group of students who developed
a number of small-medium size applications (see
http://waine.us.es/demo) from which we stand out the
following:

8.1 Conferences

Dbconferences (http://waine.us.es/demo/dbconferences)
is a complete accreditation system specially designed
to be used in large scientific events. The applica-
tion manages all the logistic information related to
attendants, reviewing process, papers, conference
scheduling, accommodations, transport, categories,
access areas, etc... It can also be used to print the
accreditation cards of the people involved in the
conference (lecturers, organizing committee, etc...).

The application considers three basic roles: ad-
ministrator, user, and worker and every role has its
associated menu.

8.2 Sysbook

System Book (http://waine.us.es/demo/sysbook) is a
system to write documents in collaborative environ-
ments. The documents have a predefined structure
with a title, an abstract, some section levels, etc...

WEBIST 2007 - International Conference on Web Information Systems and Technologies

232

Figure 8: Conferences accreditation system.

which meet the basic requirements of technical docu-
ments. Conversely to a wiki, every part of the doc-
ument has a user in charge. Currently the system
supports documents in the following formats: LaTeX,
DocBook, LinuxDoc, HTML, and XML.

Finally, we would like to remark that in our team,
the learning period did not exceeded one month and
the application development was done after 4 weeks
after finishing the learning period. According to stu-
dent’s opinion, once they have already developed one
application, they would be ready to develop a new one
of the same level of difficulty in less than 2 weeks.

In figure 9 we present some indicators of the com-
plexity of some applications developed by students.

3/*
3
3
3
2

Groups
2

3/*
3/*
3/*
3/*

Users Main Apps

8
3
3
3
2

Menu options
9
61
45
20
170

Structs
4
46
38
22
82

Forms
4
27
29
9
35

Actions
2
9
2
3
5

DB Tables
4
17
24
8
21

Code lines
163
1152
1126
692
2147Small Web Portal

Sysbook
Conferences
dbBibTex
Sample aplication
Application name

Figure 9: statistics for some applications.

9 CONCLUSIONS AND FURTHER
WORK

In this paper we have presented WAINE, a system
that serves web applications implemented from a sin-
gle description xml file and a business database. The
system presents automatically the user interfaces nec-
essary to handle all aspect of the application: from
user’s access or menus to the web forms that inter-
act with data. The architecture is based in a simple
application model that addresses all the aspects of a
typical management application. It presents indepen-
dence at different levels and is flexible, being easily
customizable in many ways. The experience acquired

after several developed applications let us conclude
that WAINE is a cost-effective alternative for a num-
ber of medium-complexity applications, achieving a
short learning curve and development time and a high
reusability of application specifications. We are cur-
rently working on the design of new tools to spec-
ify applications using visual interfaces or natural lan-
guage.

REFERENCES

Arthur, J. and Azadegan, S. (2005). InSpring frame-
work for rapid open source J2EE Web application
development: a case study, volume ACM 1-58113-
867-9/04/0500. Software Engineering, Artificial Intel-
ligence, Networking and Parallel/Distributed Comput-
ing, 2005 and First ACIS International Workshop on
Self-Assembling Wireless Networks.

Arturo Pizano, Y. S. and Iizawa, A. (1993). InAutomatic
Generation of Graphical USer Interfaces for Interac-
tive Database Applications, pages 344–355. Proceed-
ings of CIKM’93.

Branko Milosavljevic, Milan Vidakovic, S. K. and
Milosavljevic, G. (2003). InUser Interface Code Gen-
eration For EJB-Based Data Models Using Interme-
diate Form Representations, pages 259–262. IEEE In-
ternational Conference on Automated Software Engi-
neering.

Chen, P. (1976). InThe Entity-Relationship Model Toward
a Unified View od Data, volume 1, pages 9–36. ACM
Transactions on Database Systems.

Christian Janssen, Anette Weisbecker, J. Z. (1993). InGen-
erating User Interfaces from Data Models and Dia-
logue Net Specifications, volume ACM 0-89791-575-
5/93/0004/0418. INTERCHI’93.

Davis, M. (2001). InStruts, an open-source MVC imple-
mentation, volume IBM developerWorks, February,
2001.

eGen (2005). e-Gen Group. http://www.egen.com.br.

JSenna (2005). JSenna project. http://www.jsenna.org.

Myers, B. A. and Rosson, M. B. (1992). InSurvey on
user interface programming. Proceedings of the ACM
CHI’92 Conference on Human Factors in Computing
Systems.

Olsen, D. R. (1989). InA Programming Language Basis
for User Interface Management, pages 171–176. Pro-
ceedings of the CHI’89 Conference on Human Factors
in Computing Systems.

Puerta, A. R. (1997). InA Model-Based Interface Devel-
opment Environment, volume 14, pages 40–47. IEEE
Software.

Vigna, S. (2002). InERW: Entities and relationships on
the web. Poster Proc. of Eleventh International World
Wide Web Conference.

WAINE - Automatic Generator of Web Based Applications

233

